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Abstract 

Background: Copy number variants (CNVs) have become increasingly instrumental 
in understanding the etiology of all diseases and phenotypes, including Neurocogni-
tive Disorders (NDs). Among the well-established regions associated with ND are small 
parts of chromosome 16 deletions (16p11.2) and chromosome 15 duplications (15q3). 
Various methods have been developed to identify associations between CNVs and dis-
eases of interest. The majority of methods are based on statistical inference techniques. 
However, due to the multi-dimensional nature of the features of the CNVs, these meth-
ods are still immature. The other aspect is that regions discovered by different methods 
are large, while the causative regions may be much smaller.

Results: In this study, we propose a regularized deep learning model to select causal 
regions for the target disease. With the help of the proximal [20] gradient descent 
algorithm, the model utilizes the group LASSO concept and embraces a deep learn-
ing model in a sparsity framework. We perform the CNV analysis for 74,811 individuals 
with three types of brain disorders, autism spectrum disorder (ASD), schizophrenia 
(SCZ), and developmental delay (DD), and also perform cumulative analysis to dis-
cover the regions that are common among the NDs. The brain expression of genes 
associated with diseases has increased by an average of 20 percent, and genes 
with homologs in mice that cause nervous system phenotypes have increased by 18 
percent (on average). The DECIPHER data source also seeks other phenotypes con-
nected to the detected regions alongside gene ontology analysis. The target diseases 
are correlated with some unexplored regions, such as deletions on 1q21.1 and 1q21.2 
(for ASD), deletions on 20q12 (for SCZ), and duplications on 8p23.3 (for DD). Further-
more, our method is compared with other machine learning algorithms.

Conclusions: Our model effectively identifies regions associated with phenotypic 
traits using regularized deep learning. Rather than attempting to analyze the whole 
genome, CNVDeep allows us to focus only on the causative regions of disease.
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Background
A copy number variant is an alteration of some base pairs in the human genome, 
which can be either deletion or duplication. Previously, due to the imprecision of 
CNV detection methods, CNVs were characterized as variations more significant 
than one kbps in size. From another point of view, CNVs can be inherited or de novo. 
Around 4.8–9.5% of the genome is affected by CNVs [1], a more significant portion 
compared to single nucleotide variants [2]. Together with single nucleotide polymor-
phisms and other types of structural variants, they are more likely to be associated to 
the etiology of genetic diseases. In addition, they are classified by their frequency of 
occurrence as rare variants or polymorphisms.

CNVs are associated with some disorders and phenotypic traits. For example, 
22q11. 2 deletions are widely known to be associated with schizophrenia [3]. Moreo-
ver, a 20-kb deletion in the IRGM gene is associated with Crohn’s disease, a 45-kb 
deletion of NEGR1 with body mass index, a 32-kb deletion with psoriasis, a 117-kb 
deletion of UGT2B17 with osteoporosis is reported in [4] and in Huntington disease 
the tandem repeat expansion occurs in HTT gene. Several studies have found CNV 
associations with diseases such as idiopathic learning disabilities, systemic lupus ery-
thematosus, and inflammatory autoimmune disorders [5]. Some of the regions are 
reported to be associated with the three brain related disorders; for example, accord-
ing to [6] (which gathered the regions from other papers), schizophrenia is associ-
ated with deletions at 1q21.1, 3q29, 15q11.2, 15q13.3, 16p12.1, and 22q11.2, as well 
as duplications at 1q21.1, 7q11.23, 15q11-q13, 16p13.11, and 16p11.2. Autism spec-
trum disorder is also associated with deletions in 1q21.1, 2p16.3, 15q11.2, 15q13.3, 
16p11.2, and 22q11.2 distal, and duplications in 1q21.1, 7q11.23, 15q11q13, 16p11.2, 
22q11.21, and 22q13.33 [7]. Besides, for the schizophrenia, deletions in 1q21.1, 1p36, 
15q13.3, 15q24 and 16p11.2 and 17q21.31 and duplications in 16p11.2 and 22q11.2 
are reported [8].

According to Fisher’s exact test and/or permutation tests, the associative analysis 
relies primarily on statistical inference techniques. Several papers discuss various 
p-value problems [9]. The primary problem with CNV association with significance 
tests is how to construct regions to search for associations. Some papers manipu-
late single basepairs one at a time. [10] After identifying significant DNA segments, 
the main challenge is merging significant basepairs. The other idea is to evaluate 
the regions using the CNVs of cases and/or controls. [11] However, this approach is 
biased towards long- or short-case CNVs. In addition, there might be a subregion of 
the CNV that is causative for the disease, but the algorithm may find a larger super-
region (instead of the subregion). Another idea is to determine the regions based on 
the positions of the genes. [12] The processing of this data will require a considerable 
number of genes. The next idea is to use a constant window size for the CNVs. [13] 
The problem of subregions (discussed above) is also associated with this idea. This 
approach may present another challenge in determining the window size and whether 
the windows overlap.

Several works have discussed the drawbacks of using p-values to measure significance. 
Another challenge is determining the significance threshold. SNATCNV [10] for autism, 



Page 3 of 25Rahaie et al. BMC Bioinformatics          (2024) 25:283  

Coe et al. [11] and Cooper et al. [12]’s work on developmental delay, and PLINK [13] are 
several highly cited and state-of-the-art works on statistical significance.

Moreover, these methods cannot handle all the heterogeneous characteristics of CNVs 
effectively. CNV heterogeneous features consist of the type (a categorical variable), the 
start and end (numerical variables), and the individual ID (An IDentifier that identifies 
who the CNVs belong to). For example, when the type of the CNV is ignored, two CNVs 
with the same starts and ends with different types are considered the same, which in 
turn affects the analysis results; or if the ID of the person is ignored, each CNV is con-
sidered for an independent person, which has its shortcomings.

From another perspective, some methods involve calling and associative analysis, 
whereas others involve only associative analysis. CNV signals are studied in the first 
group, whereas the outputs of calling algorithms are examined in the second group. Our 
work belongs to the second group.

An overview of the pipeline proposed in this study is presented in Fig. 1. According 
to Fig.  1, we have a stage for model building and choosing the regions; the next step 
is evaluating the results. To build our model, we need a set of case–control CNVs. We 
use these CNVs to create a group of regions where changes in their copy number might 
cause disease, and the model evaluates their associations with the target.

The proposed model is a multi-layer perceptron (MLP), with group LASSO regulariza-
tion at the first layer. The group LASSO regularization, an extension of LASSO (Least 
Absolute Shrinkage and Selection Operator) [14], helps to determine the significance 
of each region. Each group of features is the weight originating from an input node. 

Fig. 1 Graphical Abstract: This is the summary of the model building and evaluation of the results. On the 
left, the model building, which is a collection of CNVs of healthy/sick individuals, is explained. The data is fed 
into a deep learning model. The next step, on the right, is evaluating the results. The evaluation consists of 
genes associated with mouse models, brain-enriched data, DECIPHER genotype–phenotype associations, 
gene ontology analysis, etc.
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According to group LASSO, the selected groups correspond to regions implicated in the 
cause of the target disease. Training the model includes two steps. The first step is pre-
training, in which all of the data for three brain disorders are used, and the model has no 
regularization. For fine-tuning, the network is regularized with the data for the target 
disease; after the second step, we have three networks specialized for three disorders. 
The proximal gradient descent algorithm optimizes the network in the second step.

Using the brain disorders CNVs, we compare our results against state-of-the-art tools. 
Our tool overlaps a higher percentage of genes overrepresented in the brain (on average 
20 percent), and besides, our results have a higher overlap percentage (almost 18 per-
cent) with mouse mutant genes that cause nervous system phenotypes.

In addition, we performed gene ontology (GO) analyses for genes that overlap with 
the CNVs. GO analyses support the natural association with the target disease. Several 
terms, such as obsessive–compulsive behavior and axon development, were detected as 
related to the genes. Further, by utilizing DECIPHER [15], the renowned genotype–phe-
notype source of information, we analyzed the associated phenotypes with each causa-
tive region and examined their relationship to the target disorder. Some phenotypes, 
such as delayed speech and language development, seizures, microcephaly, and macro-
cephaly, were detected to be correlated with the causative regions that were found to be 
associated with the brain disorders. The other analyses involved investigating common 
genes in three brain disorders and examining more prevalent genes with one disease in 
one gender. For example, for ASD, duplication in a subregion on 16p11.2 is associated 
with males, and duplication in a subregion on 21q22.13 is correlated with females.

Results
Associations of the regions with the target disorders

Our model was trained using ~ 195,500 CNVs from patients and healthy individuals 
(nearly 60 percent from patients and 40 percent from healthy). We use the start and 
end points of the cases and controls to build the smallest possible regions for investi-
gating possible associations with disease (for each chromosome and type separately). 
This will create a list of regions with the help of CNV boundaries for each chromo-
some. The regions are depicted in Fig. 2. As a result, many of the problems discussed 

Fig. 2 We build the regions with the help of the starts and ends of the CNVs in cases and controls. To create 
the regions, we sort the starts and ends of the case/control CNVs in chromosomes and create the regions 
with these main points. In the figure, the blue line represents case CNVs, and the green represents control 
CNVs. Three regions are formed with (start_CNV_case, start_CNV_control), (start_CNV_control, end_CNV_
case), (end_CNV_case, end_CNV_control)
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in the Background section will be resolved. Then, we compute the amount of overlap 
of the CNVs of an individual (healthy or patient) with the regions. Each individual 
has a label of one if he is a patient or zero if he is not ill. This step will convert the 
case–control study into a format suitable for feeding into our model. In the next step, 
we have a multi-layer perceptron to train. For training each target disease, we first 
use the CNVs for all brain disorders in the pretraining. In the fine-tuning phase, we 
only use the CNV data for the target disease (with labels of the target disease). In the 
second phase, the training involves adding a regularization term, Group LASSO, to 
the first layer of the MLP. Using this term, we can identify possible disease-causing 
regions. The details are discussed in the Method section.

Comparison with machine learning methods

We selected some of the machine learning methods and some evaluation benchmarks 
to evaluate the algorithm’s performance from the machine learning viewpoint. The 
three chosen methods for comparison are described below.

The permutation feature importance algorithm [16] utilizes the shrinkage in a 
model performance once a feature value is randomly scrambled. The random forest 
algorithm [17] employs bagging and feature randomness with multiple decision trees. 
In Gradient Boosting [18], each classifier advances its predecessor by reducing the 
miscalculations. It fits a more accurate classifier to the residual errors of the last pre-
cursor. The results for ROCAUC and accuracy are reported in Table 1 and Fig. 3. The 
procedure is as follows: we fed the data of each disorder to every method (we assign 
label one to cases and label zero to controls), and after that, we evaluate the accu-
racy of the results (and also ROC AUC). CNVDeep achieves better results than other 
methods (for every disease, Table 11 lists the top regions discovered by CNVDeep).

Overrepresentation of brain‑enriched genes in the candidate regions

Brain disorders are the target diseases for which we seek CNV associations; a defi-
ciency in brain development characterizes this group. As a result, genes that overlap 
with candidate regions may be overrepresented in the brain [19]. We used the set of 
brain-enriched genes provided in [10] to measure the percentage of brain-enriched 
genes that overlap with the  candidate regions. Some brain-enriched examples are 

Table 1 Comparison with Different Machine Learning Methods in terms of machine learning criteria

SCZ ASD DD

Accuracy ROC AUC Accuracy ROC AUC Accuracy ROC AUC 

CNVDeep  ~ 85.0 .91  ~ 84.0 .93  ~ 88.0 .94
Permutation Feature 
Importance [16]

 ~ 61.2 .67  ~ 67.0 .68  ~ 56.4 .66

Random Forest [17]  ~ 68.0 .79  ~ 57.8 .76  ~ 66.7 .72

Gradient Boosting [18]  ~ 61.0 .68  ~ 66.5 .60  ~ 63.8 .70
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GABRG3 and GABRA5 duplications for ASD, FAM178B, ANKRD39 deletions for 
SCZ and SNHG14, and DIP2C duplications for DD. We compare the percentages of 
coding and noncoding genes for each disease to those found in previous studies. We 
compared our results to the most extensive study on developmental delay [11], the 
state-of-the-art results on ASD, and the most commonly used CNV tool (PLINK). 
They all covered lower percentages of brain-enriched genes than our list. Table 2 lists 
the results.

Among the chromosomes, the 22nd chromosome possesses the most significant num-
ber of brain-enriched genes for brain disorders. Some regions we identified overlap with 
many brain-enriched genes (coding or noncoding). They are listed in Table 3.

Fig. 3 AUC curves; yellow curves are for CNVDeep, red ones or random forest, green for gradient boosting, 
and blue for permutation feature importance; the diameter is the random association (Y = X). The top left 
chart is for SCZ, the top right is for ASD, and the bottom chart is for DD

Table 2 Comparison of the brain enrichment of various models in coding and noncoding genes. 
The method is compared with highly-cited and state-of-the-art methods for each dataset

Coding Noncoding

Deletion (%) Duplication (%) Deletion (%) Duplication (%)

Genome-wide Expectation 34.83 34.83 25.67 25.67

Coe et al. [11] 35.3 34.9 32.4 31.7

Cooper et al. [12] 35.1 33.7 33.4 31.7

Our Result (DD) 71.9 75.4 54.7 67.7
Plink [13] 35.1 36.3 28.3 33.9

Our Result (SCZ) 60.8 68.1 78.2 52.0
SNATCNV (ASD) [10] 40.4 45.5 33.6 45.2

Our Result (ASD) 68.1 72.3 58.5 65.5
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The analysis of the homolog of the genes in mouse associated with nervous system 

phenotypes

The study of animal models helps us understand disease mechanisms in similar crea-
tures. Mutant mouse models with phenotypic defects in the nervous system are among 
the models available for exploring neurocognitive disorders.

Our proposed method achieves better results than the other significant methods 
on these datasets; the details of the results are presented in Table 4. In our method, 
the overlap of coding genes with the  candidate regions is associated with a higher 
percentage of gene homologs with nervous system traits.

Table 3 Some regions overlap with many coding and noncoding brain-enriched genes. The 
column #Coding_OV is the number of brain-enriched coding genes overlapped with the region. 
Noncoding_OV is the number of brain-enriched noncoding overlapped ones

Target disorder Exact Region Cytoband Variation Type # Coding
OV

# Noncoding
OV

ASD (25,221,520, 25,666,706) 15q11.2 Duplication 4 9

(21,271,695, 21,398,258) 22q11.21 Deletion 4 2

SCZ (21,271,695, 21,398,258) 22q11.21 Deletion 4 2

(29,720,526, 29,862,986) 16p11.2 Duplication 4 1

DD (687,628, 1,305,338) 8p23.3 Duplication 2 5

(312,832, 735,608) 10p15.3 Deletion 3 4

Table 4 Comparison of the fractions of the overlaps with mouse mutant genes with nervous 
system phenotypes. Here, we seek the percentage of gene homologs that cause nervous system 
phenotype in mice. The tools are state-of-the-art and highly cited papers. The percentage is 
reported separately by variation type

Deletion (%) Duplication (%)

Genome-wide Expectation 12.7 12.7

Our Result (DD) 44.4 40.3
Plink [13] 12.0 13.7

Our Result (SCZ) 26.0 40.9
SNATCNV (ASD)[10] 14.4 14.4

Our Result (ASD) 46.5 48.9

Table 5 Regions that have much more overlap with the mouse mutant genes. #OV represents the 
number of genes that overlap with the region and cause nervous system phenotypes in mice

Target
Disorder

Exact Region Cytoband Variation Type # OV 
with 
Mouse 
Mutant
Genes

ASD 29,882,232, 29,937,536 16p11.2 Del 6

26,772,059, 27,184,715 15q12 Dup 6

SCZ 29,882,232, 29,937,536 16p11.2 Dup 6

19,744,300, 19,855,625 22q11.21 Del 5

DD 9,391,373, 9,535,614 3p25.3 Del 8

639,679, 710,481 11p15.5 Dup 7
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Some regions overlap with numerous mouse mutant genes, such as the ones listed 
in Table 5. Notably, some genes overlap much with the candidate regions; examples 
are GABRA5 and DSCAM for ASD. Within the chromosomes, the 22nd chromo-
some contains most of the genes with such characteristics for ASD, SCZ, and DD.

Phenotypes associated with the candidate regions

To analyze phenotypes associated with  the candidate regions of each disease, we can 
use the DECIPHER [15] data source, which contains genotype–phenotype information 
for ~ 12,600 patients and ~ 16,600 CNVs with ~ 2,600 phenotypes. Specifically, for each 
region-phenotype pair, we compute the fraction of patients (with that phenotype) whose 
CNVs overlap the target region and compare it with the natural expectation. For ASD 
disease, 1,748 patients with 1,031 phenotypes overlapped with significant regions. The 
number of overlapped patients for DD was 2,434, with 1,283 phenotypes. For SCZ, these 
numbers were 976 patients with 688 phenotypes. A heatmap shows the relationship 
between phenotypes and candidate regions for each target disease. Figures 4, 5, and 6 
show the results for ASD, DD, and SCZ, respectively. The detected regions are in the 
rows, and DECIPHER phenotypes are in the columns. The bold points are regions with 
overrepresented phenotypes.  

As shown in the heatmaps, among the phenotypes in the DECIPHER data source, 
some examples of ASD disease include ’intellectual disability,’ ’global developmental 
delay,’ ’delayed speech and language development,’ ’autism,’ ’seizures,’ ’microcephaly,’ ’obe-
sity,’ ’muscular hypotonia,’ ’short stature,’ ’behavioral abnormality,’ ’cognitive impairment,’ 
and ’autistic behavior’; for developmental delay (DD), ’intellectual disability,’ ’delayed 
speech, and language development,’ ’autism,’ ’seizures,’ ’microcephaly,’ ’behavioral abnor-
mality,’ ’short stature,’ and ’obesity,’ and for SCZ, ’intellectual disability,’ ’global devel-
opmental delay,’ ’delayed speech and language development,’ ’microcephaly,’ ’autism,’ 
’seizures,’ ’short stature,’’ ’behavioral abnormality,’ and ’cognitive impairment,’ were high-
lighted as associated phenotypes.

Besides, some regions have the most associations with phenotypes. For ASD, deletion 
in a region in 16p11.21; For DD, deletion in a subregion in 15q11.22; and for SCZ, dele-
tion in a subregion in 15q11.2.3

Genes common to all three disorders and those overrepresented in only one gender

Next, we conduct a cumulative analysis to identify the regions shared by all target dis-
orders and the associated genes. According to our investigation, considering the type 
of variation (deletion or duplication), some of the genes common in the three disorders 
are deletions in PRKAB2, CRKL, GJA5, and SLC7A4 and duplications in FAM57B and 
BCL7B. Some genes common in ASD and DD are deletions in GTF2IRD1, SNAP29, 
AC083884, and duplication in ACP6; common in ASD and SCZ are duplications in 
BCL7B, GDPD3, TMEM219, and PRKAB2, and deletion in TANGO2, and common 

1 (29,720,526, 29,862,986).
2 (22,833,499, 22,873,941).
3 (23,034,585, 23,037,636).
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between SCZ and DD are deletions in CDC45, FBXO45, LINC00624, and duplication in 
WBSCR22.

We performed another analysis for each target disorder using the datasets where 
their gender was available. We compared the percentage of males and females who 
were patients and had variation in that region. Accordingly, for ASD, the region 
duplication in 16p11.2, in subregion from 30,194,353 to 30,199,805, is dominated by 
males, and females dominate duplication in 21q22.13 in the exact subregion from 

Fig. 4 The heatmap for DD. The top labels represent DECIPHER phenotypes, and the left labels are candidate 
regions for developmental delay. The bolder the dots, the stronger the relationship between region and 
phenotype. Some associated phenotypes are seizures, abnormal facial shape, and specific learning disabilities



Page 10 of 25Rahaie et al. BMC Bioinformatics          (2024) 25:283 

38,735,314 to 38,909,325. Finally, for the DD, the following list can be proposed for 
males and females:

• Male: Deletion in 3q29, in the exact region, starts from 197,072,247 to 
197,300,214.

Fig. 5 The heatmap for ASD. The left labels are candidateregions for autism. The top labels are DECIPHER 
phenotypes. Some significant phenotypes for ASD are behavioral abnormality, intellectual disability, and 
cognitive impairment
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• Female: Duplication in 1q21.1 in the exact region starts from 146,852,473 to 
146,989,699.

• Female: Deletion in 15q11.2, the subregion starts from 22,833,499 to 22,873,941.

Gene ontology analyses of the candidate regions

To conduct gene ontology analyses on the overlapped genes, we used WebGestelat [20].
Several analyses were performed, including gene ontology, human phenotype ontol-

ogy, and disease terms (DisGeNet and GLAD4U), and several brain codes were used as 
background genes. The other parameters were the ones present on the website.4 Tables 6, 
7, 8 report the results for each target disease. In these tables, FDR stands for False Dis-
covery Rate. For ASD, some of the results, such as autistic behavior and autism, were 
trivial. Other nontrivial results were obsessive–compulsive behavior, axon development, 

Fig. 6 The heatmap for SCZ. The horizontal and vertical labels are the same as the previous heatmaps. Some 
of the highlighted phenotypes are autistic behavior and abnormal social behavior

4 http:// www. webge stalt. org/

http://www.webgestalt.org/
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cognition, regulation of membrane, abnormal social behavior, and hyperactivity, some of 
which were also mentioned in [21].

Results of the DD analysis include obsessive–compulsive behavior, cognition, neuron 
projection organization, regulation of membrane potential, regulation of neuron projec-
tion development, regulation of synapse structure or activity, positive regulation of sign-
aling receptor activity, and axon development, as exhibited in [22].

Statistical analysis

We also conducted an independent analysis of the regions of different chromosomes. We 
used Fisher’s exact test (Table 9) to evaluate each region’s relative amount of case and con-
trol overlaps. The threshold was determined using 100,000 random permutations of case 
and control labels to ensure the results were not produced randomly. The sample diagrams 
for the three chromosomes are shown in Fig. 7.

Table 6 ASD Analyses Results. Three types of analyses were performed on ASD candidate genes 
using WebGestelat. This table highlights obsessive–compulsive behavior, axon development, and 
cognition

Description p‑Value FDR #Genes Analysis Type

Autistic disorder 1.21E− 10 2.06E− 07 147 Disease Ontology Terms

Dyschezia 2.88E− 08 1.88E− 05 57

Obsessive–compulsive behavior 7.00E− 08 2.39E− 05 13

Deformity of neck 8.0537E− 06 4.66E− 04 5

Blepharophimosis 3.28E− 07 7.98E− 05 17

Chemical synaptic transmission, postsynaptic 2.23E− 04 3.87E− 02 79 Gene Ontology

Gamma-aminobutyric acid signaling path-
way

8.00E− 03 4.95E− 01 19

Mesoderm development 8.85E− 03 5.08E− 01 20

Axon development 1.42E− 02 6.22E− 01 282

Cognition 1.95E− 07 7.82E− 05 171

Regulation of membrane potential 3.37E− 04 3.87E− 02 253

Respiratory gaseous exchange 8.93E− 04 8.98E− 02 27

Neural precursor cell proliferation 1.11E− 02 5.93E− 01 65

Regulation of neuron projection develop-
ment

1.47E− 02 6.22E− 01 284

Intraspecies interaction between organisms 1.78E− 07 7.82E− 05 37

Multi-organism behavior 5.22E− 07 1.40E− 04 44

Abnormal social behavior 2.11E− 09 6.22E− 06 31 Human Phenotype Ontology

Retinal arteriolar tortuosity 4.40E− 07 4.32E− 04 6

Blue irides 6.25E− 07 4.60E− 04 14

Hyperactivity 1.24E− 06 6.08E− 04 121

Posterior embryotoxon 1.88E− 06 6.15E− 04 17

Myocardial infarction 9.25E− 06 2.09E− 03 11

Gastroesophageal reflux 1.84E− 05 2.66E− 03 94

Autism 5.73E− 08 8.43E− 05 65

Retinal arteriolar tortuosity 4.40E− 07 4.32E− 04 6

Blue irides 6.25E− 07 4.60E− 04 14

Autistic behavior 1.06E− 06 6.08E− 04 119
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Table 7 DD Analyses Results. Three types of analysis of candidate genes using the WebGestelat web 
source are available. Some highlighted terms are axon development, synapse structure or activity 
regulation, and Failure to thrive in infancy

Description p‑Value FDR #Genes Analysis Type

Autism spectrum disorders 7.78E-06 1.34E-03 44 Disease Ontology Terms

Autistic disorder 3.12E-06 1.34E-03 147

Blepharophimosis 3.25E-05 2.25E-03 17

Bunion 1.42E-05 1.34E-03 5

Chronic otitis media 1.83E-06 1.34E-03 9

Ear infection chronic 1.83E-06 1.34E-03 9

Failure to thrive in infancy 7.03E-06 1.34E-03 12

Hallux valgus 1.42E-05 1.34E-03 5

Macrostomia 6.94E-06 1.34E-03 25

Obsessive–compulsive behavior 1.01E-05 1.34E-03 13

Redundant skin 1.42E-05 1.34E-03 5

Cognition 4.00E-05 3.21E-02 171 Gene Ontology

Neuron projection organization 1.07E-03 4.20E-01 59

Chromatin remodeling 2.87E-03 4.20E-01 37

Regulation of membrane potential 3.03E-03 4.20E-01 253

Regulation of neuron projection development 2.16E-02 9.25E-01 284

Inorganic anion transport 2.33E-02 9.36E-01 79

Intraspecies interaction between organisms 2.87E-03 4.20E-01 37

Regulation of synapse structure or activity 3.96E-03 4.20E-01 137

Positive regulation of signaling receptor activity 6.69E-03 5.38E-01 16

Axon development 2.09E-02 9.25E-01 282

Retinal arteriolar tortuosity 1.20E-06 1.16E-03 6 Human Phenotype Ontology

Abnormality of the gastric mucosa 1.20E-06 1.16E-03 6

Hypoplastic toenails 1.44E-06 1.16E-03 13

Autistic behavior 1.72E-06 1.16E-03 119

Hyperacusis 2.76E-06 1.16E-03 7

Blue irides 2.22E-06 1.16E-03 14

Abnormality of the palpebral fissures 2.26E-05 3.33E-03 220

Autism 8.35E-06 2.05E-03 65

Table 8 SCZ Analyzes Results. The results of two types of analyses are listed in this table

Description p‑Value FDR #Genes Analysis Type

Redundant skin 2.97E-07 3.37E-05 5 Disease Ontology Terms

Chronic otitis media 8.71E-09 7.42E-06 9

Blepharophimosis 1.63E-07 3.37E-05 17

Lordosis 3.29E-07 3.51E-05 20

Ear infection chronic 8.71E-09 7.42E-06 9

Retinal arteriolar tortuosity 4.03E-09 2.97E-06 6 Human Phenotype Ontology

Posterior embryotoxon 3.72E-09 2.97E-06 17

Myocardial infarction 8.79E-08 3.23E-05 11

Spina bifida 3.84E-07 6.94E-05 40
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Analysis with synthetic data

The three datasets of available disorders were used to design a new dataset. A random sam-
ple of 25,000 patients from cases and 20,000 healthy individuals from controls was selected.

Let src_cnv be (src_ch, src_type, src_strt, src_end) for one of the three data sources. 
Each patient and healthy individual was subjected to a random perturbation to produce 
new_cnv = (new_ch, new_type, new_strt, new_end), where:

In this case, p is a random variable with a discrete uniform distribution. The new CNV 
is constructed in such a manner that the chromosome number will match the source 
CNV, the type of variation will be random deletion or duplication, and 10 k basepairs will 
be randomly perturbed at the start and end of the CNV in comparison with the source 
CNV. To produce these new CNVs, the CNVs for an individual should not overlap.

Table 10 shows the results of evaluating our dataset using machine learning criteria 
and measuring the percentage of brain-enriched and mouse-mutant genes.

(1)new_ch = src_ch

(2)new_type =

{

del, p = .5
dup, p = .5

(3)new_strt =







src_strt − 10kbp, p = 1
�

3
src_strt, p = 1/3
src_strt + 10kbp, p = 1/3

(4)new_end =







src_end − 10kbp, p = 1
�

3

src_end, p = 1
�

3

src_end + 10kbp, p = 1
�

3

Table 9 The matrix for computing Fisher’s exact test; we should have four numbers for each region 
to calculate the p-value of case/control and overlaps/nonoverlaps

# of cases
overlapped with the region

# of cases not
overlapped with the region

# of controls
overlapped with the region

# of controls not
overlapped with the region

Fig. 7 P-Values for three chromosomes; the Y-Axis is –log(10) (P-Value). The X-axis is the chromosome 
coordinates in the base pair
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Discussion
The current study presents a novel approach for identifying associations between CNVs 
based on deep learning. The proposed method detects regions accurately and effec-
tively based on the CNVs of cases and controls. Our training uses all cases and controls 
of brain disorders in the first step, followed by using CNVs of the target disorder to fine-
tune the network. We have used the data of 195,496 CNVs from 132,388 people, 76,528 
CNVs for 54,956 healthy, and 118,968 CNVs for 77,432 patients. Since we are looking 
for associations in brain disorders, we measure the percentage of genes that overlap with 
our regions that are brain-enriched. Our results were, on average, 20 percent higher than 
those of other works with similar findings. Furthermore, we study genes whose homologs 
cause mouse nervous system defects. From this perspective, the genes that overlap with 
our regions have, on average, 18 percent higher performance compared to previous works. 
Some regions have many overlaps with brain-enriched genes and genes active in the mouse 
nervous system; for example, 16p11.2 and 22q11.21 for the NDDs are highlighted regions. 
Similarly, in SCZ, a duplication in a subregion of 16p11.2 overlaps with brain-enriched and 
mouse genes. Another aspect of the analysis is that we have some genes that are both brain-
enriched and active in the mouse nervous system. Some genes such as SEZ6L2, KCTD13, 
DOC2A, PRRT2, TBX6, and MAPK3 in 16p11.2 are both brain-enriched and overrepre-
sented in mice, and have more than 600 overlaps with cases of ASD; others, like OTUD7A 
and CHRNA7 in 15q13.3, have the same features and have more than 150 overlaps with 
cases for SCZ; and OTUD7A, CHRNA7, MAPK3, TBX6, DOC2A, KCTD13, SEZ6L2, and 
PRRT2 from 16p11.2 and 15q13.3 have a lot of overlap with DD cases. Interestingly, some 
genes, such as OTUD7A and CHRNA7, were the top genes associated with all disorders 
(Table 11).

We further explore the DECIPHER data source to examine which phenotypes cor-
relate most with the discovered regions. It has been measured that intellectual disability 
(hp:0001249), global developmental delay (hp:0001263), delayed speech and language 
development (hp:0000750), microcephaly (hp:0000252), seizures (hp:0001250), muscular 
hypotonia (hp:0001252), autism (hp:0000717), hypertelorism (hp:0000316), low-set ears 
(hp:0000369), and short stature (hp:0004322) are top phenotypes associated with ASD.

Similarly, for SCZ, some phenotypes such as intellectual disability (hp:0001249), 
global developmental delay (hp:0001263), delayed speech and language development 
(hp:0000750), seizures (hp:0001250), microcephaly (hp:0000252), muscular hypotonia 
(hp:0001252), autism (hp:0000717), hypertelorism (hp:0000316), low-set ears (hp:0000369), 
strabismus (hp:0000486), short stature (hp:0004322), micrognathia (hp:0000347), and 
abnormal facial shape (hp:0001999) were identified.

Table 10 Performance Percentage for Synthetic Data

Accuracy Brain‑enriched coding 
(noncoding)

Mouse genes 
with nervous 
phenotypes

CNVDeep 79.9 69.0 (57.0) 35.7

Random Forest 60.6 57.7 (48.4) 24.6
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For DD, intellectual disability (hp:0001249), global developmental delay (hp:0001263), 
delayed speech and language development (hp:0000750), seizures (hp:0001250), micro-
cephaly (hp:0000252), hypertelorism (hp:0000316), muscular hypotonia (hp:0001252), 
autism (hp:0000717), low-set ears (hp:0000369), strabismus (hp:0000486), abnormal facial 
shape (hp:0001999) and micrognathia (hp:0000347) were recognized as top phenotypes.

Cumulatively, some phenotypes, such as delayed speech and language development, sei-
zures, and muscular hypotonia, were common among the three disorders. In light of these 
discoveries, clinicians might doubt the presence of comorbidities if a patient exhibits a vari-
ation. We can draw valuable conclusions about their differences and similarities based on 
our analysis of the three brain disorders separately and jointly.

Conclusions
To explore the effect of variations on neurocognitive  disorders, we developed a tool 
based on deep learning for analyzing CNVs responsible for a target disease. We trained 
our model with all the CNVs from the three brain related disorders. We made the most 
effective use of data in the pretraining phase and used CNVs of the target disease in the 
next stage for fine-tuning. We compared the results with some of the related works for 
each of the target diseases. Our discovered regions include more coding and lncRNA, 
which are enriched in the brain, and our results have more homologs in the mouse with 
nervous system phenotypes. Besides, we used the DECIPHER data source to identify the 
phenotypes related to the genes of the target disease. Integration with the phenotypic 
database revealed more attractive characteristics of the detected genes.

In future work, we can model CNV relationships with graph-based classification mod-
els. An alternative future path is to use additional evidence, such as protein networks, to 
analyze the association of CNVs with diseases. Additionally, as a multi-phenotype data 
source with CNVs for each patient, DECIPHER data can provide a basis for analyzing 
the relation of the genetic etiology of the disease with the observed phenotypes in the 
patient and the possible co-occurrence of some phenotypes. Additionally, we can inves-
tigate topologically associating domains and their destruction by CNVs as the etiology of 
the disease. Since our method uses CNV data, it can identify variations associated with a 
target disease in the context of a case–control study.

Materials and methods
Materials

The primary data we used in our study is from the three brain disorders: autism spec-
trum disorder, schizophrenia, and developmental delay. The statistics for the three disor-
ders and their references are listed in Table 12.

Some supplementary data were used to analyze the results. The first is FANTOM 5 
[23], which lists ~ 21,000 coding and ~ 28,000 noncoding genes. Figure  8 provides the 
distribution of the genes in different chromosomes. The next is DECIPHER [15], which 
contains genotype–phenotype information for ~ 12,600 patients and ~ 16,600 CNVs 
with ~ 2,600 phenotypes. Figure  9 provides the distribution of the genes in different 
chromosomes. The next is the list of brain-enriched genes [10], which contains 7,339 
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coding and 7,167 lnc_RNA genes. The distribution of genes across different chromo-
somes is provided in Fig.  10. The last data source is the genes whose ortholog causes 
nervous system phenotypes in mice [10].

We gathered the genes that their homologs associate with nervous system phenotypes 
from the [10]; this resource collects information, Nervous (MP:0003631),5 Abnormal 

Table 12 Statistics of the data used in this research with their references

Dataset Name # of Patients (# of CNVs) # of Healthy (# of CNVs) Ratio

Autism Spectrum Disorder [28] 19,663 (47,119) 6,479 (24,858) 3.03 (1.89)

Schizophrenia [29] 28,684 (42,046) 28,893 (40,414) 0.99 (1.05)

Developmental Delay [11] 29,085 (29,803) 11,256(19,584) 2.64(1.52)

5 http:// www. infor matics. jax. org/ vocab/ mp_ ontol ogy/ MP: 00036 31

Fig. 8 Distribution of Genes in FANTOM across different Chromosomes. The number of coding and 
noncoding genes are shown in different colors

Fig. 9 Distribution of brain-enriched Genes across Different Chromosomes. The number of coding and 
noncoding genes are shown in different colors

http://www.informatics.jax.org/vocab/mp_ontology/MP:0003631
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morphology (MP:0003632),6 Abnormal physiology (MP:0003633),7 and Ortholog map-
pings8 from the MGI repository. The web links for different resources used throughout 
the research are gathered in Table 13.

The next part is about preprocessing and data cleansing. The first step in all CNV asso-
ciation methods is to filter out regions with less than one kbps (kilobase pairs). Further-
more, in the DECIPHER, those patients without phenotypes were removed. We made 
sure that all data were in the form of HG19. If not, we convert it with the UCSC Lift 
Genome Annotation [24]. If a chromosome in a dataset lacks data (for example, X or Y 
chromosome), it is removed from the analysis. Besides, regions with more overlaps with 
controls than cases were not the results of the analyses, so they are removed; the last step 
is the standardization of variables (this step is necessary for our model). The standardi-
zation step in machine learning is essential for proximal gradient descent algorithms; it 
involves centering the variable at 0 (zero mean) and standardizing the variance to 1 (unit 

Fig. 10 Distribution of Mouse Mutant Genes across Different Chromosomes. Different types are shown in 
different colors

Table 13 The list of main and auxiliary resources used in this research with their web links

Resource Name Address

Autism Spectrum Disorder http:// autism. minds pec. org/ autdb/ Welco me. do

Schizophrenia https:// ega- archi ve. org/ studi es/ EGAS0 00010 01960

Developmental Delay https:// www. ncbi. nlm. nih. gov/ dbvar/? term= nstd1 00

DECIPHER https:// www. decip herge nomics. org/

FANTOM https:// fantom. gsc. riken. jp/ data/

Webgestalt http:// www. webge stalt. org/

Mouse Genome Informatics http:// www. infor matics. jax. org/

Plink https:// zzz. bwh. harva rd. edu/ plink/

SNATCNV https:// github. com/ hamid rokny/ SNATC NV

6 http:// www. infor matics. jax. org/ mp/ annot ations/ MP: 00036 32
7 http:// www. infor matics. jax. org/ vocab/ mp_ ontol ogy/ MP: 00036 33
8 http:// www. infor matics. jax. org/ downl oads/ repor ts/ HGNC_ homol ogene. rpt

http://autism.mindspec.org/autdb/Welcome.do
https://ega-archive.org/studies/EGAS00001001960
https://www.ncbi.nlm.nih.gov/dbvar/?term=nstd100
https://www.deciphergenomics.org/
https://fantom.gsc.riken.jp/data/
http://www.webgestalt.org/
http://www.informatics.jax.org/
https://zzz.bwh.harvard.edu/plink/
https://github.com/hamidrokny/SNATCNV
http://www.informatics.jax.org/mp/annotations/MP:0003632
http://www.informatics.jax.org/vocab/mp_ontology/MP:0003633
http://www.informatics.jax.org/downloads/reports/HGNC_homologene.rpt
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variance). As a result, we standardize variables based on the sample mean and standard 
deviation. In this way, the solution will be independent of the measurement scale.

Method

We use a deep learning model to evaluate the association between CNVs and the target 
disease. It can be said that a region does not influence the occurrence of disease when all 
weights emanating from it are zero. The neural network uses regularization to identify 
the regions that cause the disorder. Consequently, regions are defined as input variables, 
and the neural network selects causative regions based on the regularization term. The 
model consists of a multi-layer perceptron (MLP); some terms were added. Our model 
training includes two phases: pretraining and fine-tuning. Pretraining uses all the data 
for the three brain disorders. Fine-tuning involves the regularized MLP with the data for 
the target disease. The regularization we used in this model is Group LASSO (also called 
 L2,1 norm):

where the groups (wg) are weights from a single neuron in the input layer (the blue ovals 
in Fig. 11), and G is the number of groups. The outer sum is on all the neurons of the 
input layer. The group LASSO penalty will choose a sparse set of groups. In other words, 
outgoing weights correspond to one group. We can remove the corresponding region if 
all the weights are zero.

If the formulation removes a group, all the weights outgoing from the neuron will be zero. 
The loss function used is the binary cross entropy (since the main problem is binary clas-
sification). The activation function in the last layer is sigmoid.

(5)ϕ(W ) =

G
∑

g=1

||wg ||2,

Fig. 11 A Schematic View of the group of outgoing connections; those weights in each blue oval form a 
single group
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The popular solution is proximal gradient descent [25, 26]. This operator is sometimes 
called block soft thresholding (for group LASSO). It acts as a soft thresholding operator 
(Sλ(wg)) for each group. For the group wg[26], we have:

where � is the regularization parameter that balances loss and regularization terms. A 
large λ value delivers results where regularization is more important; thus, there are 
more zeros among the coefficients [26].

The optimization problem is as follows:

where ŷ is the predicted label, for the actual label y, 
⌣

W 1 is the vector of weights for the 
first layer, which is the solution to the unconstrained problem:

The proximal operator solves the optimization:

such that:

where θ̈ = θ(i) − δi∇θL(θ
(i)).

The solution of (7) is:

(6)S�(wg ) =







wg − �
wg

||wg ||2
, ||wg ||2 > �

0, ||wg ||2 ≤ �

(7)θ̂ ∈ arg min
θ

L(θ)+ �ϕ(W1)

(8)L(θ) = −1
/

n

n
∑

i=1

yi log ŷi + (1− yi) log(1− ŷi)

(9)ϕ(W1) =

G
∑

g=1

1/||
⌣

W 1[g , :]||||W1[g , :]||2

(10)
⌣

θ ∈ arg min
θ

L(θ)

(11)θ(i+1) = proxδiϕ[θ
(i) − δi∇θL(θ

(i))]

(12)proxδiϕ(θ̈) = arg min
θ

ϕ(W1)+
1

2δi
||θ − θ̈ ||22

(13)W
(i+1)
1 [k , :] = max(0, ||Ẅ1[k , :]|| −

�δi

||
⌣

W 1[k , :]||2
)

Ẅ1[k , :]

||Ẅ1[k , :]||
, for k = 1, ..,G

(14)W
(i+1)
l = Ẅl , for l = 2, .., L

(15)b
(i+1)
l = b̈l , for l = 1, .., L
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The complete algorithm is shown in Fig. 12. We have two hidden layers for the MLP, 
and the size of each one is the square root of the last layer. The optimization algo-
rithm is Adam [27].

Fig. 12 Complete algorithm used in two phases for training the network. The output of the second phase is 
the set of nodes whose outgoing weights are nonzero [26]

Table 14 Resource Table

Resource Source Identifier

Autistic Samples mindspec http:// autism. minds pec. org/ autdb

Schizophrenia samples European Genome-Phe-
nome Archive

https:// www. ebi. ac. uk/ ega/ studi es/
EGAS00001001960

Developmental Delay samples National Center for Biotech-
nology Information

https:// www. ncbi. nlm. nih. gov/ 
dbvar/ studi es/ nstd1 00/

http://autism.mindspec.org/autdb
https://www.ebi.ac.uk/ega/studies/
https://www.ncbi.nlm.nih.gov/dbvar/studies/nstd100/
https://www.ncbi.nlm.nih.gov/dbvar/studies/nstd100/
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