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Extracellular vesicles (EVs) — including exosomes, microvesicles and apoptotic
bodies — have received much scientific attention last decade as mediators of a newly
discovered cell-to-cell communication system, acting at short and long distances. EVs
carry biologically active molecules, thus providing signals that influence a spectrum
of functions in recipient cells during various physiological and pathological processes.
Recent findings point to EVs as very attractive immunomodulatory therapeutic agents,
vehicles for drug delivery and diagnostic and prognostic biomarkers in liquid biopsies.
In addition, EVs interact with and regulate the synthesis of extracellular matrix (ECM)
components, which is crucial for organ development and wound healing, as well as bone
and cardiovascular calcification. EVs carrying matrix metalloproteinases (MMPs) are
involved in ECM remodeling, thus modifying tumor microenvironment and contributing
to premetastatic niche formation and angiogenesis. Here we review the role of
EVs in control of cell function, with emphasis on their interaction with ECM and
microenvironment in health and disease.

Keywords: extracellular vesicles, exosomes, extracellular matrix, microenvironment, cell function

INTRODUCTION

Most cell types secrete different types of EVs that can be found in all body fluids, as well as in
cell culture supernatant. These vesicles are composed of a lipid bilayer that encloses molecules —
lipids, proteins, DNA, mRNA and miRNA — derived from the donor cell. These molecules retain
their biological function (Valadi et al., 2007) and may affect the function of recipient cells at a long
distance, since they can travel in circulation encapsulated by the lipid bilayer. This concept sheds
new light on fundamental process of intercellular communication, beyond the need for direct cell-
to-cell contact or secretion of soluble factors that act only on neighboring cells. In addition, this
feature puts EVs in focus of biomarker research, since mutation-bearing EVs originating from rare
or inaccessible tumor cells can be detected in a liquid biopsy in a non-invasive manner (Garcia-
Romero et al., 2017).

There are various types of EVs that can form either at the plasma membrane or at the lumen of
intracellular compartment. Large membrane vesicles (1000–5000 nm) are released during the late

Abbreviations: ECM, extracellular matrix; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; EVs,
extracellular vesicles; FGF, fibroblast growth factor; MMPs, matrix metalloproteinases; MVs, matrix vesices; PD-L1,
programmed death ligand 1; TGF-β, transforming growth factor beta; TNFα, tumor necrosis factor alpha; VEGF, vascular
endothelial growth factor.
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stages of cell death in the form of apoptotic bodies. Microvesicles,
also referred to as microparticles, range between 100 and 1000 nm
and arise by outward budding and shedding directly from
the plasma membrane. Exosomes, between 30 and 100 nm in
diameter, form by inward budding of the endosomal membrane,
giving rise to multivesicular bodies, which are subsequently
released to extracellular space by fusion of late endosome with
the plasma membrane. As a consequence of this mechanism,
exosome transmembrane proteins retain the same orientation
as that of the donor cell plasma membrane (Chaput et al.,
2005), which allows their interaction with recipient cell receptors.
These surface proteins include tetraspanins (CD9, CD63, and
CD81), integrins, ICAM1 (intercellular adhesion molecule 1)
and phosphatidylserine, which is also found on the surface of
microvesicles and apoptotic bodies (Théry et al., 2009). Following
their recognition by cellular receptors, exosomes can directly
fuse with the recipient cell membrane, thus incorporating their
membrane proteins to the plasma membrane and delivering
their cargo to the cytoplasm of the recipient cell. In addition,
exosomes derived from infected macrophages, tumor cells, or
antigen-presenting cells, contain antigen-bearing MHC classes
I and II molecules, as well as co-stimulatory molecules, that
can activate T cells and trigger the immune response (Wolfers
et al., 2001; Thery et al., 2002; Giri and Schorey, 2008). EVs thus
emerged as important mediators of intercellular communication
and became subject of increasing scientific interest in the past
decade.

Different EV populations can be separated based on their
density, centrifugation speed, or markers expressed on their
surface; however, the isolation of pure EV subtypes remains a
major challenge (Momen-Heravi et al., 2013; Witwer et al., 2013).
In addition, their quantification and characterization mostly rely
on markers that can be found in different types of EVs, or may not
be expressed by all EVs of the particular type (Théry et al., 2006).
It is thus difficult to compare between the results of different
laboratories and future studies need to be undertaken to improve
and standardize EV isolation and characterization techniques.

The ECM functions as a reservoir of growth factors,
which can be released during ECM remodeling and can
regulate cell proliferation, migration and organ morphogenesis.
Dysregulation of ECM components or aberrant ECM remodeling
can lead to various pathologies, including cancer. Recent reports
have found growth factors and other soluble mediators, such
as TNF-α, EGF, FGF, as well as their receptors, associated with
the exosome membrane, suggesting their physiological role in
disseminating these soluble factors (Zhang et al., 2006; Sanderson
et al., 2008; Seelenmeyer et al., 2008). In addition, EVs carry
MMPs with proteolytic activity, which can alter EV content,
contribute to ECM degradation and actively participate in tumor
progression.

Here, we review the recent advances in our understanding
of how EVs mediate cell-to-cell communication and their
interaction with ECM components. We also discuss the
role of EVs in RNA and protein transfer between cells,
influencing the invasion of tumor cells, immune evasion,
dissemination of developmental signals during organogenesis
and tissue repair, and calcification during bone development and

pathological conditions, such arterial plaque and kidney stone
formation.

THE ROLE OF EVs IN DEVELOPMENT
AND ORGANOGENESIS

During development and organogenesis, great coordination
needs to be achieved between the cells, ECM and the signaling
mechanisms. Developmental signals, including Wnt, Hedgehog,
bone morphogenetic proteins, and Notch ligands can be soluble,
bound to the ECM or associated to the membrane. Some of
these signaling proteins are modified by the addition of a
lipid during their biogenesis, hence their solubility and long-
range diffusion might be compromised. It has been suggested
that EVs could act as vehicles for these signals, allowing
cell-to-cell communication and coordinated growth during
development. Indeed, recent advances in our understanding
of EV biogenesis and function reveal that they are essential
mediators of intercellular communication, and thus their role
in developmental programming, embryonic induction and
organogenesis needs to be highlighted (Valadi et al., 2007;
McGough and Vincent, 2016).

The formation of organs, such as salivary glands, teeth,
lung, kidney, and mammary glands, is marked by branching
morphogenesis processes, in which the interaction between
epithelium and mesenchyme needs to be tightly coordinated. The
epithelial-mesenchymal interactions occur in both directions,
and are primarily regulated by ECM and soluble growth factors,
as well as EVs (Puthiyaveetil et al., 2016).

The formation of submandibular glands is a good model to
study the communication between mesenchymal and epithelial
cells, as well as their interaction with the basal membrane, since it
reflects the importance of ECM as a dynamic medium necessary
for cell proliferation, apoptosis, differentiation, and migration
(Patel et al., 2006; Tucker, 2007). Exosomes derived from
mesenchymal cells can pass through the basement membrane
and deliver mature forms of miR-133b-3p to epithelial cells,
which do not express the primary miRNA. In this manner,
miRNA-containing exosomes induce the reduction of Dip2b
(Disk-interacting protein 2 homolog B) and DNA methylation
in KIT+ progenitors, leading to their proliferation (Figure 1A)
(Hayashi et al., 2017).

During the formation of teeth, exosomes have an
indispensable role, since their reciprocal endocytic uptake
by epithelial and mesenchymal cells, directly mediates the
regulation of cell differentiation and matrix synthesis. Exosomes
derived from epithelial cells are able to induce mesenchymal cells
to produce dentin sialoprotein and trigger the mineralization
processes (Jiang et al., 2017). This occurs through exosomal miR-
135a, which leads to activation of Wnt/β-catenin in mesenchymal
cells, a critical signaling pathway for matrix synthesis and
dentinogenesis (O’Connell et al., 2012). On the other hand,
exosomes derived from mesenchymal cells induce epithelial
cells to produce collagen type IV and laminin, components
of the basement membrane, and scaffolding proteins, such as
ameloblastin and amelogenin (Jiang et al., 2017). Therefore,
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FIGURE 1 | The role of EVs in epithelial-mesenchyme interaction during submandibular gland (A), tooth (B), and kidney (C) development. EVs diffuse through the
basal membrane and participate in intercellular communication between epithelial and mesenchymal cells, carrying proteins and miRNAs that regulate key events for
organogenesis, such as cell proliferation, differentiation and ECM synthesis.

exosomes are essential mediators of the epithelial–mesenchyme
interaction that occurs through the basement membrane, and
their regulation, including their release and cargo incorporation,
are not yet completely understood (Figure 1B).

Kidney organogenesis is mediated by the sequential and
reciprocal interactions between the epithelial-derived ureteric
bud (UB) and metanephric mesenchyme (MM). One of the
key players in these interactions is Wnt pathway, by which
epithelial UB induces MM transformation and the development
of nephrons (Kispert et al., 1998; Pietilä and Vainio, 2014). Very
recently, it has been shown that UB-derived exosomes can be
taken up by MM cells and transfer their cargo, including miRNAs
that play a role in Wnt pathway, as well as proteins involved in
ECM organization and tissue homeostasis (Krause et al., 2018).
Exosomes thus emerge as an important mechanism of embryonic
signaling during kidney development and organogenesis in
general, although their content and the mechanism by which they
selectively influence different cellular populations, remains to be
investigated (Figure 1C).

THE ROLE OF EVs IN TISSUE REPAIR

Wound repair is a process of re-establishing tissue homeostasis
after injury, and it relies on signaling pathways that also
act during development. In general, wound repair involves
different cell types — including epithelial, immune and
endothelial cells — as well as the components of ECM, mostly
resulting in scar formation. EVs facilitate coordinating this
process, as carriers of pro-resolving mediators. During chronic
inflammation, as seen in inflammatory bowel disease, tissue
integrity is compromised and epithelial barrier function needs
to be re-established. In response to injury, epithelial cells of
the intestine secrete EVs that contain a pro-resolving mediator
Annexin A1, and thus control wound repair (Leoni et al.,
2015).

Cellular therapies, together with the development of
biomaterials for the generation of scaffolds, represent the main
strategies used in regenerative medicine. Many ongoing studies
are directed to elucidate the possible reparative function of
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EVs and, therefore, evaluate their potential as mediators of cell
regeneration.

Diabetes patients commonly present renal disease,
characterized by podocyte loss, hypertrophy of mesangial
cells (MCs), increase in the ECM protein production and tubulo-
interstitial fibrosis (Forbes and Cooper, 2013). Key molecules
implicated in this processes are TGF-β and miR-21, which induce
collagen and fibronectin production, as well as the up-regulation
of matrix protein expression activators, like mTOR (Dey et al.,
2012). EVs derived from bone-marrow and human liver stem
cells, were shown to transfer miR-222 to MCs and downregulate
TGF-β and miR21 in an in vitro model of MCs hyperglycaemia,
thus serving as potential therapeutic agents to protect MCs from
hyperglycaemia-induced damage and collagen production (Gallo
et al., 2016).

Osteoporosis treatment is currently limited to approaches
stimulating bone formation and anti-resorptive agents (Cheng
et al., 2013), thus new studies focused on local transplantation
therapies need to be developed. Currently, regenerative strategies
for osteoporosis treatment are based on three fundamental lines:
mesenchymal stem cells (MSCs), the use of biomaterials for the
generation of scaffolds, or the combination of both approaches
to achieve a greater regenerative effect (Weinand et al., 2006).
However, there are numerous disadvantages when using MSCs
as therapy, including the high invasiveness of the procedures
needed for harvesting them from donors, possible alteration
during cell culture and the presence of MHC proteins that can
induce rejection (Izadpanah et al., 2008; Robey, 2011). Advances
in the study of cell reprogramming allow the generation of MSCs
from induced pluripotent stem cells (iPSCs), which facilitates
their management and their use in osteogenesis, although it may
also increase the risk of tumorigenesis (Villa-Diaz et al., 2012;
Zou et al., 2013). Recently, the osteogenic potential of exosomes
derived from hiPSC-MSC (hiPSC-MSC-Exos) has been evaluated
in order to overcome the drawbacks related to cell therapy.
It was shown that hiPSC-MSC-Exos induce angiogenesis and
osteogenesis in ovariectomized rat model, and promote bone
regeneration when incorporated on a classical porous β-TCP
scaffold (Qi et al., 2016).

Neovascularization is crucial for restoring tissue function after
ischemia, although this process is not completely understood.
Tissue repair requires the recruitment of proangiogenic
mediators and microvesicles, as well as stem and progenitor cells.
Many studies focus on endothelial progenitor cell (EPC)-based
therapy, since these cells are involved in revascularization
processes (Rafii and Lyden, 2003) and may drastically improve
regeneration and patients’ outcome (Lara-Hernandez et al.,
2010). These cells, nonetheless, require ex vivo expansion (Kalka
et al., 2000) and may generate HLA incompatibility (Basak
et al., 2009). For this reason, the use of EPC-derived EVs
emerged as an alternative possibility. During EPC-mediated
revascularization, the released EVs induce reprogramming of
mature quiescent endothelial cells through horizontal transfer of
mRNA, which activates major pathways involved in angiogenesis
and leads to endothelial cell proliferation and tissue repair
(Deregibus et al., 2007). In addition, EPCs release microvesicles
containing angiogenic miRNA-126 and miRNA-296 and thus

trigger neoangiogenesis in a murine model of hindlimb ischemia,
suggesting the use of EPC-derived microvesicles for treatment of
peripheral arterial disease (Ranghino et al., 2012).

Cardiac repair requires endothelial activation, which may
be achieved through a proangiogenic factor-inducing therapy.
Exosomes contain proteins, such as EMMPRIN (Vrijsen
et al., 2010), highlighting the possibility of using EVs as
carriers of angiogenesis-stimulating factors for treatment of
cardiac ischemia. Indeed, exosomes derived from cardiomyocyte
progenitor cells (CMPC) and MSC were shown to carry high
levels of EMMPRIN, and may thus regulate VEGF signaling,
endothelial cell migration and capillary formation (Vrijsen et al.,
2016).

Liver regeneration involves several complex mechanisms,
including the mature liver cell reprogramming and proliferation,
directed by stem cell populations (Alison et al., 2000;
Michalopoulos, 2007). Therefore, obtaining therapies to
reduce the recovery time of liver function became a major
challenge in this field. In this sense, Dr. Herreras’s group used
microvesicles isolated from human liver stem cells (HLSC) as a
new approach to improve the degree of regeneration (Herrera
et al., 2006). Indeed, in a classical model of 70% hepatectomy
in rats, treatment with microvesicles led to increased liver
cell proliferation and decreased apoptosis, overall significantly
decreasing the liver regeneration time (Herrera et al., 2010).

Extracellular vesicles, as vehicles for proteins and nucleic
acids, are thus key mediators of intercellular communication
during organogenesis and tissue repair, and their use in
regenerative medicine drastically improves current cellular
therapies. In addition, the specificity of the uptake by the
recipient cells needs to be considered since it increases the
potential of EVs as therapeutic vectors.

THE ROLE OF EVs IN BONE
CALCIFICATION

Matrix vesicles (MVs) are particles secreted by a mineralizing
tissue to the ECM, and their main function is to promote
mineralization. Their in vitro and in vivo reported size ranges
between 0.1 and 2 µm. Furthermore, such MVs may be generated
by shedding from plasma membrane or by the endosomal
pathway. In this sense, MVs share typical exosomal protein
markers, such as the GTPase-Ras family, tetraspanins CD9 and
CD63, annexins, integrin receptors and Hsp70 (Shapiro et al.,
2015).

Although it is still not clear whether the initial process of
mineral formation occurs inside the cell or later in the ECM,
several studies point that MVs carry the pre-nucleation complex
of calcium phosphate, and that their binding to the ECM attracts
other MVs, thus initiating the nucleation phase followed by the
apatite formation (Gebauer et al., 2014). Apart from that, MVs
also contribute to pathological calcification as found in calcific
valvular stenosis, dental plaque, atherosclerosis and calculus renal
formation (Anderson et al., 2010).

Bones are formed by collagen fibrils type I, platelets
of carbonated hydroxyapatite and calcium phosphate
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(Mahamid et al., 2011). During osteogenic differentiation
most cells die, releasing calcium, MVs, and apoptotic bodies,
which become nucleation sites of the hydroxyapatite crystals.
Afterwards, the osteoblasts attach to the ECM and differentiate
to osteocytes (Grzesiak et al., 2017).

The formation of hydroxyapatite crystals may occur following
two main steps. Firstly, when mineral concentrations are
imbalanced, calcium and phosphate accumulate and enter the
MVs. Secondly, the mineral propagation step occurs when
hydroxyapatite crystals are exposed in MV membrane, acting as
loci to promote the generation of new crystals (New and Aikawa,
2013). Moreover, it has been reported that the enzyme alkaline
phosphatase present in the MVs could help the calcification
process (Ali and Griffiths, 1983).

The released MVs could play three different roles in matrix
mineralization. The MVs derived by osteoblasts could regulate
the ion concentrations, causing the mineralization of the fibrillar
collagen ECM (Golub and Boesze-Battaglia, 2007). Another
proposed mechanism involves the accumulation of phosphate
and calcium within MVs, whose release allow the interaction
between MVs and collagen fibrils (Golub, 2009). Finally, the
formation of apatite crystals may take place within MVs, which
are deposited into collagen fibrils (Harmey et al., 2004).

The degeneration of articular cartilage, also known as
osteoarthritis, is characterized by the abnormal calcification in
the cartilage matrix. Unfortunately, there is no cure for this
disease, and current treatment is only palliative. For that reason,
new therapies are being investigated. The injection of MSCs
seems like a promising tool, since it shows chondroprotective
effect in vitro and in mice models. Additionally, it has been
suggested that these effects are due to MSC-derived exosomes
and microvesicles, which inhibit macrophage activation and
chondrocyte apoptosis (Cosenza et al., 2017). Similarly, in a rat
model with osteochondral defects, exosome injection promoted
cartilage repair, suggesting their possible use as cell-free MSC
therapy (Zhang et al., 2016).

Several studies revealed higher amount of MVs in patients
compared with healthy controls, suggesting that the presence
of these MVs increases extracellular calcium levels and induces
hypermineralization (Anderson et al., 2010).

Altogether, we are still far from understanding the precise
process of matrix mineralization; therefore, further studies are
required to address the function of MVs in those mechanisms.

THE ROLE OF EVs IN
CARDIOVASCULAR CALCIFICATION

Cardiovascular diseases are the main cause of death in
the world, and vascular calcification is one of the most
common complications. In this sense, the lipid accumulation
and inflammation of the medium and large arteries precede
atherosclerosis, the principal condition leading to heart attacks
(Falk, 2006).

The calcification process mediated by the release of MVs
appears as an adaptive response to the inflammation process
(Anderson et al., 2010). An important variety of MVs, derived

from arterial endothelial cells, vascular smooth muscle cells
(VSMCs) and macrophages are being associated with the
calcification process (Badimon et al., 2017).

In this sense, it is known that in chronic kidney disease
macrophage-derived MVs trigger the calcification of
atherosclerotic plaques through high concentration of the
calcium binding protein S100A9 and annexin V. In addition, after
adding Ca2+/P to macrophage cell culture, phosphatidylserine
translocates to MV external membrane and binds to S100A9-
Annexin V complex, promoting hydroxyapatite nucleation.
Typical exosomal markers, such as CD9, CD63, and TSG101, are
also expressed in this MV population (New et al., 2013).

In these patients, VSMCs increase the secretion of calcifying
EVs, decreasing the concentration of extracellular mineralization
inhibitors, such as matrix Gla protein or fetuin-A. In addition,
elevated levels of TNAP and annexins are found in VSMC-
derived EVs, which form microcalcifications when they are
delivered into the ECM. This annexin might increase the influx of
Ca2+ inside MVs and could mediate the interaction of collagen
with the ECM (Chen et al., 2008). Afterwards, the calcification
propagation is mediated by the collagen fibrils (Bakhshian Nik
et al., 2017). Other studies suggest that VSMCs secrete Ca2+

and P crystals in the intimal layer of arteries (Kapustin et al.,
2017). The mechanism of protein package seems to be highly
selective, as cargo of non-calcifying EVs significantly differs from
the one seen in calcifying EVs (Shanahan et al., 2012). In addition,
under non-calcifying conditions EVs carry miRNAs and inhibitor
factors that prevent the calcification pathway (Krohn et al.,
2016).

Atherosclerotic plaques display regions with apoptotic cell
death, which may be an early event preceding the plaque
calcification. In this sense, it has been reported that MVs derived
from apoptotic VSMCs contain proapoptotic protein BAX and
may initiate the calcification process (Kockx et al., 1998).
Furthermore, apoptotic bodies derived from VSMCs undergoing
cell death are similar to MVs and could also act as nucleation sites
for vascular calcification (Proudfoot et al., 2000).

Other vesicles secreted by devitalized connective tissue
cells were also found in calcific valvular stenosis and in the
calcification of artificial heart valves (Anderson et al., 2010).
Similarly, in the calcific aortic valve disease, valvular interstitial
cells secrete pro-calcific EVs that remodel the ECM through the
interaction with endothelial cells (Bakhshian Nik et al., 2017).

THE ROLE OF EVs IN RENAL
CALCIFICATION

Kidney stones or renal calculi, also referred to as nephrolithiasis,
are formed by the nucleation and growth of calcium oxalate
(CaOx), calcium phosphate (CaP) or urate crystals (Aggarwal
et al., 2013). The incidence of kidney stones is twice as greater
in men than in women, and stones submitted by men are more
likely to have calcium oxalate crystals, while the stones submitted
by women are more likely to have hydroxyapatite (Lieske et al.,
2014; Jayachandran et al., 2015). Interestingly, EVs isolated from
urine reveal different distribution and protein profile in men and
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women, which could be related with the above-mentioned gender
differences (Jayachandran et al., 2015).

Renal, vascular and bone calcification follow similar pathways,
although little is known about the precise mechanism of
calcification and matrix synthesis. Similarly to the observations in
vascular and bone calcification, renal calcification begins with the
release of renal tubular epithelial cell-derived MVs, which serve
as nucleation sites in the tubular basement membrane (Anderson
et al., 2010). In addition, recent high-resolution microscopy
studies have revealed important phenotypic differences between
calcifying EVs and MVs in the bone (Bakhshian Nik et al., 2017),
reflecting their different cellular origin, biogenesis mechanism
and type of mineral they form. Further studies are thus needed to
focus on the specific MV subpopulations, as well as the technical
methodology to separate and enrich them, for which the different
density between calcifying and non-calcifying EVs may play an
important role (Hutcheson et al., 2014).

THE ROLE OF EVs IN CANCER AND
IMMUNITY

The EVs play an important role in supporting tumor
development (Figure 2). Most cancer cells release increased
amounts of EVs compared to their non-malignant counterparts
(Martins et al., 2013). These EVs carry tumor-specific proteins
or DNA mutations that can be used as biomarkers in a liquid
biopsy (Garcia-Romero et al., 2017). In addition, tumor-derived
EVs carry bioactive molecules, such as functional mRNA, which
can get transferred to other cells, altering their behavior and
contributing to tumor heterogeneity. In this manner, highly
malignant cells can change the phenotype of benign tumor cells,
increasing their migratory behavior and metastatic capacity
(Zomer et al., 2015). In brain tumor, the oncogenic form of
epidermal growth factor receptor (EGFRvIII) can be included
as EV cargo and transferred between tumor cells, leading
to propagation of transforming activity in cells which lack
the primary genetic mutation (Al-Nedawi et al., 2008). This
non-genetic horizontal transfer mediated by EVs is particularly
important for acquiring resistance to chemotherapy. Functional
plasma membrane multidrug efflux transporters, such as
P-glycoprotein (P-gp) or Multidrug Resistance-Associated
Protein 1 (MRP-1), can be shed from resistant cancer cells
as cargo of membrane microvesicles and transferred to drug-
sensitive recipient cells (Bebawy et al., 2009; Lu et al., 2013).
Apart from directly transferring the effector molecules, EVs can
also carry intermediary regulators, such as miRNAs or kinases,
which then control gene expression and downstream signaling
pathways in recipients cells (Gong et al., 2014).

Tumor microenvironment plays a major role in tumor
development. It consists of cells, ECM scaffold, tumor-associated
vasculature and soluble factors such as growth factors (Joyce
and Pollard, 2009). During wound healing and scar formation,
TGF-β-activated fibroblasts upregulate the expression of
alpha-smooth muscle actin (α-SMA) and differentiate into
myofibroblasts, which are responsible for altering tissue
architecture. In TGF-β-rich tumor microenvironment, the

exaggerated myofibroblast activity leads to fibrosis, ultimately
supporting tumor growth, vascularization and metastasis
(Tomasek et al., 2002). Prostate cancer-derived exosomes
are loaded with functional TGF-β tethered by betaglycan on
exosome surface, and can thus induce α-SMA overexpression
and persistent fibroblast-to-myofibroblast differentiation
(Webber et al., 2010). Highly invasive breast cancer cells secrete
exosomes containing molecular chaperone heat shock protein
90a (hsp 90a), which activates extracellular proteases such as
MMP-2 and plasmin, thus promoting tumor cell motility and
invasion (McCready et al., 2010). Non-tumor cells in tumor
microenvironment — such as fibroblasts or activated immune
cells — also secrete EVs, which can promote angiogenesis,
tumor cell migration and metastasis. EVs derived from tumor-
associated fibroblasts cause increased motility and metastatic
potential of breast cancer cells (Luga et al., 2012), by stimulating
the non-canonical Wnt planar cell polarity (PCP) signaling —
a pathway related with rearranging tissue during development
(Gray et al., 2011). Platelet-derived exosomes carry integrins,
such as CD41 which can increase the adhesion properties in lung
and breast cancer cells, thus increasing their metastatic potential
(Janowska-Wieczorek et al., 2005). Exosome-mediated transfer
of macrophage-derived antigens such as CD163 and DAP12
increases matrix remodeling and migration potential in breast
and rectal cancer cells and associates with advanced tumor grade
and high rates of metastases (Shabo and Svanvik, 2011). Mast
cells are mayor players in IgE-mediated allergic responses, but
they also accumulate in tumor microenvironment and secrete
MMPs, pro-angiogenic and growth factors, as well as pro- and
anti- inflammatory signals, that modify tumor cell proliferation
and invasiveness (Stockmann et al., 2014; Maciel et al., 2015).
Mast cell-derived exosomes contain TNF-α, angiotensinogen,
factor V and prothrombin, which all induce the expression of
plasminogen activator inhibitor type 1 (PAI-1) in endothelial
cells, causing procoagulant activity and endothelial dysfunction
(Al-Nedawi et al., 2005). Acidic pH and hypoxia, hallmarks of
tumor microenvironment, have also been reported to modify
tumor-derived exosome release and uptake. In acidic conditions,
the fluidity and lipid composition of exosomal membrane are
changed due to increased sphingomyelin/ganglioside GM3
content, which leads to increased exosome fusion capacity of
melanoma exosomes, particularly in metastatic cells (Parolini
et al., 2009). Under hypoxia, tumor cells exhibit reduced
adhesive properties and increased production of MMPs and
invasiveness, accompanied by increased secretion of proteins
involved in angiogenesis and immune cell recruitment, all of
which found to be enriched in tumor-derived exosomes (Park
et al., 2010).

Tumor-derived EVs carry MHC molecules loaded with tumor
antigens, as well as co-stimulatory molecules that stimulate
antigen-specific T cell responses. In addition, exosomal heat
shock proteins (HSP) function as endogenous danger signals that
can stimulate NK cell responses (Khalil et al., 2011). Tumor-
derived EVs thus have the potential to boost immune responses,
providing a promising strategy for anticancer immunotherapy.
Indeed, tumor-derived exosomes can serve as antigen source
for dendritic cells (DCs), resulting in production of DC-derived
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FIGURE 2 | The complexity of cell-to-cell interactions in tumor microenvironment mediated by EVs. During tumor progression, different cell types found in tumor
microenvironment — including tumor, stromal, immune and vascular cells — interact reciprocally with each other, as well as with the ECM components, through EVs.
These interactions result in immune cell activation or deactivation, which can either hamper or promote tumor growth, depending on the availability of soluble factors,
which modulate the microenvironment status. In addition, tumor cell-derived EVs can spread drug resistance and invasive characteristics to other tumor cells, thus
boosting tumor growth and the ability to form pre-metastatic niche.

exosomes that are able to present antigens and activate T cell-
mediated antitumor responses (Pitt et al., 2014; Gu et al., 2015).

However, the cargo of tumor-derived EVs and their
immunomodulatory effects seems to depend on tumor
microenvironment and the functional status of the immune
cells. In most cases, tumors develop different strategies to
evade the immune system, and these are reflected in their EV
content. Tumor-derived EVs directly participate in immune
evasion, for example by generation of suppressive myeloid
cells (Valenti et al., 2006), by expressing FasL and inducing T
cell death (Andreola et al., 2002; Kim et al., 2005), as well as
other suppressive molecules, such as PD-L1, TRAIL, IL-10, and
TGF-β, which induce regulatory T cells (Tregs). Tumor-derived
exosomes carry NKG2D ligands, which lead to suppression
of NK cell function and correlate with poor clinical outcome
in patients (Ashiru et al., 2010). The uptake of tumor-derived

exosomes blocks DC maturation (Yu et al., 2007), and induces
myeloid-derived suppressor cell (MDSC) differentiation through
PGE2 (prostaglandin E2) and TGF-β (Xiang et al., 2009).

A number of studies have demonstrated a role for tumor-
derived EVs in promoting angiogenesis in vitro and in vivo
(Kim et al., 2002). As mentioned earlier, glioma cells shed EVs
containing an oncogenic form of EGF receptor, which increases
VEGF expression and contributes to angiogenic signaling in
recipient tumor cells (Al-Nedawi et al., 2008). In response
to VEGF stimulation, endothelial cells increase motility and
proliferation, while simultaneously increasing the expression of
Notch ligand Delta-like 4 (Dll4), to inhibit the proliferation of
adjacent cells (Phng and Gerhardt, 2009). While this is a well-
known mechanism of juxtacrine cell-to-cell inhibition during
developmental angiogenesis, VEGF-dependent Dll4 expression
in tumor cells promotes tumor growth by enhancing blood
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vessel diameter and perfusion, which renders these tumors
responsive to anti-VEGF therapy with bevacizumab (Li et al.,
2007). Interestingly, it has recently been discovered that tumor-
derived exosomes contain Dll4 and can thus modulate vessel
development in distant recipient cells, providing a new aspect to
Notch signaling that does not require direct cell-to-cell contact
(Sheldon et al., 2010). The response of endothelial cells to
Dll4-containing exosomes seems to differ in a 2D cell culture
from a chemically controlled 3D microenvironment with a
VEGF concentration gradient (Sharghi-Namini et al., 2014),
suggesting that, in vitro, just as in vivo, tissue microenvironment
represents an important factor in the exosome-mediated
control of cell function. In another 3D culture model, it
was shown that melanoma exosomes can move between
endothelial cells by tunneling nanotube networks that contain
actin cytoskeleton, similarly as HIV particles or endosomal
organelles travel from one cell to another (Rustom et al., 2004;
Sowinski et al., 2008; Hood et al., 2009). These exosomes
are able to induce tubule branching and the production of
endothelial spheroids and sprouts in dose-dependent manner,
thus influencing angiogenesis (Hood et al., 2009). Tumor-
derived exosomes can also induce endothelial cell activation,
proliferation and branching through tetraspanin 8 (formerly
known as D6.1A/CO-029), which is associated with poor
prognosis in patients with gastrointestinal cancer (Gesierich
et al., 2006; Nazarenko et al., 2010). In glioblastoma, one of
the most angiogenic solid tumors, several microRNAs (miR-
21, miR-29a, and miR-30e) that promote tube formation
and angiogenesis are increased within cancer stem cell-
derived exosomes, while miR-1, which has a suppressive
role, is downregulated (Bronisz et al., 2014; Sun et al.,
2017).

Tumor vesicles contain proteinases that are able to degrade
ECM and promote tumor invasiveness in vitro (Ginestra
et al., 1998). Increased tissue factor activity in tumor EVs
causes blood coagulation (Zhou et al., 2014), which facilitates
tumor cells to adhere to blood vessels and promotes tissue
invasion (Dvorak et al., 1981). In addition to endothelial cell
proliferation, the tumor induces a distinct blood vessel phenotype
characterized by increased permeability that allows tumor cells
to enter the circulation and colonize and proliferate at a distant
site (Jain, 2005). This vascular leakiness can be induced by
melanoma-derived exosomes and represents an early event in
pre-metastatic niche formation (Peinado et al., 2012). Bone
marrow-derived cells are crucial for this process, and their
pro-metastatic phenotype is induced by horizontal transfer of
tumor-derived exosomes containing MET oncoprotein (Peinado
et al., 2012). Melanoma-derived exosomes are also involved
in lymphangiogenesis and lymphatic dissemination, since they
carry the metastatic factors that lead to the induction of ECM
factors necessary for trapping the metastatic cells in the lymph
nodes (Hood et al., 2011). Tumor infiltration and invasion
relies mainly on activation of signaling pathways that promote
cell migration, ECM remodeling and the expression of MMPs.
In addition, this process is accompanied by the production
of inflammatory triggers, such as cytokines, chemokines, and

reactive oxygen species, which attract bone marrow-derived
cells. Alveolar epithelial cells, forming part of the lung stroma
microenvironment, express toll-like receptor 3, which recognizes
the endogenous small nuclear RNAs carried by tumor-derived
exosomes (Liu et al., 2016). As a consequence, alveolar epithelial
cells start secreting chemokines, which attracts neutrophils and
initiates pro-metastatic inflammatory responses in the lung (Liu
et al., 2016).

CONCLUDING REMARKS

Here we reviewed recent research on the role of EVs in
intercellular communication and control of cell function,
with special emphasis on their interaction with ECM and
cell microenvironment. It is becoming evident that EVs can
substitute the classical communication through cell–cell contact
or protein–receptor interaction, since they carry a greater
spectrum of bioactive molecules. In 3D cell culture systems or
biological scaffold materials used in regenerative medicine, ECM-
bound EVs can influence cell behavior, including cell growth,
proliferation, survival, migration and differentiation. These EV
properties can be used for tissue repair and regeneration;
however, further studies are needed to finely define their
cargo signature and functional roles. In addition, current cell
therapies impose several disadvantages, such as immunogenicity
and tumorigenicity, which may be overcome with the use of
EVs for clinical applications. In cancer, therapeutic strategy
to inhibit EV secretion might decrease metastatic potential,
drug resistance, immune suppression and cancer-associated
coagulation disorder. EV-related research is currently flourishing
and there is a great interest in deciphering the mechanisms of
EV cargo selective packaging and targeting of recipient cells, as
well as profiling EV content for biomarker research. However,
EV isolation and quantification techniques must be completely
standardized before reaching their full potential for clinical
applications.
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