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Abstract The anterior thalamic nucleus (ATN) is thought to play an important role in a brain 
network involving the hippocampus and neocortex, which enables human memories to be formed. 
However, its small size and location deep within the brain have impeded direct investigation in 
humans with non-invasive techniques. Here we provide direct evidence for a functional role for the 
ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram 
(EEG) recordings from eight volunteering patients receiving intrathalamic electrodes implanted for 
the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN 
during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local 
field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation 
of complex photographic scenes predicted later memory for the scenes, demonstrating a key role 
for the ATN in human memory encoding.
DOI: 10.7554/eLife.05352.001

Introduction
The anterior thalamic nuclei (ATN) are thought to play an important role in an extended hippocampal 
network central to memory formation (encoding) and novelty processing, which coordinates synaptic 
changes involving widespread neocortical areas, enabling life events to be recorded and later rein-
stated (Knight, 1996; Aggleton et al., 2010; Nyhus and Curran, 2011; Ritchey et al., 2013; Schott 
et al., 2013). While corticothalamic interactions are well-known to be crucial for adaptive behavior 
(Saalmann et al., 2012), the functional role of the ATN in humans has resisted investigation with non-
invasive techniques owing both to its depth and small size. Here we had the rare opportunity to record 
electrophysiological activity during memory encoding directly from the ATN and dorsomedial tha-
lamic nuclei (DMTN) of eight epileptic human volunteers with electrodes implanted for epilepsy treat-
ment, as well as from frontal (and in two cases, parietal) scalp electrodes, reflecting neocortical activity 
(Figure 1). The DMTN are thought to be involved in executive control during memory retrieval (Van 
der Werf et al., 2003) and were hypothesized to play a lesser role than the ATN during encoding.

Indication that the ATN has a role in memory processing comes from human lesion and animal 
studies. Damage to the human ATN results in amnesia for new episodes (Harding et al., 2000; 
Van der Werf et al., 2003; Aggleton et al., 2010), and reciprocal frontal and parietal connections 
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with the ATN (Aggleton, 2012) have led to the hypothesis that ATN-hippocampal connections play 
a regulatory role in encoding (Vertes et al., 2001; Aggleton et al., 2010). Notably, 75% of ATN oscil-
latory power in non-human animal studies is in the theta (4–8 Hz) range, the dominant hippocam-
pal rhythm (Vertes et al., 2001), which is also implicated in ATN-hippocampal communication (Vertes 
et al., 2001; Aggleton et al., 2010).

Neural communication and synaptic plasticity rely on long-range phase–phase and phase–
amplitude synchrony of neural oscillations (Lachaux et al., 1999; Lisman and Jensen, 2013). Fronto-
hippocampal theta synchrony accompanies memory formation (Benchenane et al., 2010; Nyhus and 
Curran, 2011). Furthermore, theta synchrony is reported to bind medial temporal (MT) and parietal 
areas during associative encoding (Crespo-Garcia et al., 2010), and MT with frontal and parietal cor-
tex during successful retrieval (Watrous et al., 2013). Neocortical and hippocampal gamma (>30 Hz) 
oscillations appear to reflect local processing related to activation and maintenance of neuronal 
object representations (Jensen et al., 2007), binding diverse perceptual and contextual information 
(Nyhus and Curran, 2011). Spatially separate gamma oscillations have been found to be locked to 
the phase of the theta oscillation, supporting binding of the coherent ensemble underlying a given 
memory trace (Mizuhara and Yamaguchi, 2011). Indeed such gamma-power-to-theta-phase cross-
frequency coupling (CFC) has been identified within human neocortex during word recognition (Canolty 
et al., 2006), working memory maintenance (Axmacher et al., 2010), and in successful long-term 
memory encoding (Friese et al., 2012), as well as within the rat hippocampus (Colgin et al., 2009), 
and has been proposed as a mechanism for transiently coupling distributed cortical activity (Canolty 
et al., 2006; Friese et al., 2012; Lisman and Jensen, 2013).

eLife digest Memories, both the mundane and the significant, play an integral role in our daily 
lives. Scientists have long sought to establish exactly how our memories are formed; how does an 
experience, with its sights, sounds and feelings, become a mental representation stored within our 
brain?

One way to investigate this question is to look at the activity of different parts of the brain. Brain 
imaging techniques have helped researchers identify two key brain regions that are involved in the 
process of memory formation: the neocortex and the hippocampus. The neocortex forms the outer 
layer of the brain, and performs complex tasks such as decision-making and language comprehension. 
The hippocampus, which sits deeper within the brain, deals primarily with memory and navigation. 
Research has shown that memory formation depends on communication between the neocortex 
and the hippocampus. However, scientists suspected that additional structures located beneath the 
neocortex—among them, the anterior thalamic nuclei (ATN)—are also crucial for forming memories. 
This has been difficult to confirm as the small size of the ATN, and their location deep within the 
brain, make their activity almost impossible to monitor using standard brain imaging techniques.

One way reliable data can be recorded from the ATN is by inserting electrodes into the brain. 
Brain surgery of course cannot be carried out on healthy human participants, but occasionally  
an opportunity arises to study the brain activity of patients who have electrodes inserted for 
therapeutic purposes. For example, in cases where a patient's epilepsy does not respond to 
conventional treatments, electrodes may be implanted to electrically stimulate the ATN in an 
attempt to improve their symptoms.

Sweeney-Reed et al. asked eight volunteers to perform a memory task, and monitored the 
activity of each volunteer's ATN via electrodes that had already been implanted in their brain to 
treat epilepsy. Simultaneously, electrodes attached to the scalps of the volunteers recorded the 
activity of the neocortex. When a memory was successfully stored in the brain, the activity of the 
two regions became synchronized. This suggests that successful memory formation depends upon 
communication between the ATN and the neocortex.

While the involvement of the ATN in human memory formation has long been a topic of 
speculation, Sweeney-Reed et al. now provide direct biological evidence for its crucial role in the 
process. Consequently, future research into memory formation should focus upon the ATN in 
addition to the more familiar structures of the neocortex and the hippocampus.
DOI: 10.7554/eLife.05352.002
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Together, these findings suggest that neocortical-ATN communication might be related to local 
ATN processing during encoding. We hypothesized that neocortical-ATN theta phase synchrony, 
and the relationship between theta phase and local ATN gamma amplitudes, would be critical for 
memory encoding.

Results
We assessed the role of the ATN in memory encoding by contrasting electrophysiological activity 
during successful compared with unsuccessful encoding of serially presented photographs of  
200 complex indoor and outdoor scenes. Participants judged whether each photograph depicted an 
indoor or an outdoor scene. Successful encoding was defined as correct recognition of a scene as old 
on a subsequent recognition memory test combining photographs of old and similar new scenes. All 
eight participants were able to discriminate old from new scenes (Table 1). Mean successful encoding 
across participants was 55%, and mean unsuccessful encoding was 45%, resulting in means of 101 and 
87 observations per category, respectively, for EEG analysis.

All significance tests reported here were two-tailed. Response times for the indoor/outdoor judg-
ment at encoding were compared between successfully (group mean = 1.04 s) and unsuccessfully 
(group mean = 1.14 s) encoded scenes for the seven participants for whom the paradigm was iden-
tical (see ‘Materials and methods’), and no difference was detected (paired T-test: T = 1.81, p = 0.12, 
with 6° of freedom, DF). For each participant, the difference between their expected probability of 
sequential successful encoding, calculated according to their overall rate of successful encoding, and 
their observed probability of sequential successful encoding, was calculated. The mean difference 
between these probabilities across the group did not significantly differ from zero (one-sample T-test: 
T = 1.35, p = 0.22, with 7 DF). Both these behavioral findings suggest that the neural findings to be 
reported did not reflect simple global attentional fluctuations (see ‘Discussion’).

We contrasted key oscillatory features of the EEG (512 Hz sampling frequency) during suc-
cessful compared with unsuccessful encoding. To assess long-range communication, we calculated an 

Figure 1. Intracranial electrode location in Participant 1. Left: Reconstruction of intrathalamic contact location using 
intraoperative X-ray image coordinates, superimposed on preoperative MRI scan. Dorsomedial thalamic nucleus 
(DMTN): blue (localized using masks from Wake Forest University Pick Atlas [http://fmri.wfubmc.edu/software/
PickAtlas (Maldjian et al., 2003)] warped into participant's brain space). Anterior thalamic nucleus (ATN) contacts: 
green (left), red (right). Middle: Most superficial contacts (upper panel) clearly lie in the ATN, by reference to 
Schaltenbrand atlas (Schaltenbrand and Wahren, 1977) (lower panel: A. pr. = nucleus anterior principalis). Right: 
Scalp electrode locations for this participant. Lower panel reproduced from G Schaltenbrand and W Wahren, Atlas 
for Stereotaxy of the Human Brain (1977), published by Thieme Medical. The image is used here with permission 
from the copyright holders, who retain the copyright. All rights reserved. Please refer to the original.
DOI: 10.7554/eLife.05352.003
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amplitude-independent measure of phase synchrony (Lachaux et al., 1999) of oscillations in local field 
potentials recorded from thalamus and neocortex. We then employed CFC to assess the relationship 
between long-range communication and local neural processing, and Granger causality (GC) to assess 
likely direction of influence.

Mean fronto-thalamic phase-locking values (PLVs) across all eight participants during encoding 
are plotted against time and frequency in Figure 2. Corticothalamic theta synchrony differences in a 
late (0.5–1.5 s) time window were predicted, given the theoretical importance of theta oscillations 
in memory, and the typical late timing of encoding-related differences in frontal and parietal event-
related potentials (ERPs) (Schott et al., 2002) and in post-stimulus MT theta oscillatory power 
(Hanslmayr and Staudigl, 2014). Frontal-right-ATN (RATN) theta synchrony was indeed greater during 
successful than unsuccessful encoding at 5–6 Hz between 0.5 and 1.5 s after picture presentation 
(permutation tests, PT: p = 0.001; paired T-tests, TT: T = 9.9, p = 0.000022; Figure 2, Figure 2—figure 
supplement 1). Conservative false discovery rate correction (PT; 57 frequencies, 0–100 Hz; 1024 data-
points, 0–2 s) yielded a threshold of p = 0.0019 (overall criterion p = 0.05). Cluster-size PT (CSPT) on 
binary TT outcomes (significant/nonsignificant at p = 0.05) showed the second cluster of this late theta 
synchrony to be significant (∼1.0–1.5 s; p = 0.016; observed contiguous cluster 437 pixels; criterial cluster 
285 pixels for overall p = 0.05). Synchrony at 5.2 Hz, averaged from 0.5 to 1.5 s for each participant, 
was greater during successful than unsuccessful encoding in seven of eight participants (Figure 2E), 
yielding a group difference in median synchrony (Wilcoxon test: p = 0.038). Participant 4 (Figure 2E) 
also showed the difference from 1 to 1.5 s (Figure 2F, Figure 2—figure supplement 2), so that all 
eight participants showed a difference in this time-window. The time course of theta synchrony is 
shown in Figure 2—figure supplement 3. Compared with surrogate data (Theiler et al., 1992), the 
PLV was significant (criterion p = 0.05) for 230 ms, which is more than a complete theta cycle at 5 Hz. 
The timescale is of the order of that over which synchrony is commonly detected (Varela et al., 2001). 
Note from Figure 2F and Figure 2—supplement 2 that theta synchrony was greater during successful 
than unsuccessful encoding in all eight participants from 1.25–1.5 s post-stimulus, and the appearance 
of two separate episodes at the group level is likely to have arisen due to inter-participant differences 
in the timing of the synchrony episode over the 1 s time window from 0.5–1.5 s post-stimulus.

To further test frequency-specificity, a two-way repeated measures analysis of variance was applied 
to frontal-RATN PLVs obtained using theta (5.2 Hz) and beta (17.5 Hz) wavelets averaged from 0.5 to 
1.5 s for each participant during successful and unsuccessful encoding. The mean PLVs showed a sig-
nificant interaction between frequency and encoding success (p < 0.001). This interaction remained 
significant when taking adjacent theta (4.9 Hz and 5.5 Hz) and beta (16.5 Hz and 18.6 Hz) wavelets, 
and taking theta (5.2 Hz) and alpha (11.7 Hz) wavelets (all ps < 0.002). In all cases the advantage for 
successful over unsuccessful encoding for theta was greater than for alpha or beta, which showed 
negligible differences. The interaction was not significant when taking two theta wavelets (4.9 Hz and 

Table 1. Behavioral results

Pt SE % (NE) SE-C % UE % (NE) FA % (NE) FA-C% CR % (NE) SE-FA % SE-C–FA-C %

1 74 (74) 74 26 (26) 29 (29) 25 71 (71) 45 49

2 66 (132) 39.5 34 (68) 36 (72) 6.5 64 (128) 30 33

3 42.5 (85) 35.5 57.5 (115) 5 (10) 1.5 95 (190) 37.5 34

4 36.5 (73) 27.5 63.5 (127) 21 (42) 6.5 79 (158) 15.5 21

5 57.5 (115) 38 42.5 (85) 47 (94) 13.5 53 (106) 10.5 24.5

6 38.5 (77) 36.5 61.5 (123) 10 (20) 4 90 (180) 28.5 32.5

7 81.5 (163) 75.5 18.5 (37) 63 (126) 28.5 37 (74) 18.5 47

8 43.5 (87) 41.5 56.5 (113) 25 (50) 10 75 (150) 18.5 31.5

Mean 55 (101) 46 45 (87) 29.5 11.9 70.5 25.5 34.1

SD 17.3 18.2 17.3 19.1 9.9 19.1 11.8 9.3

Pt = Participant. SE = successful encoding (hits). NE = number of epochs. SE-C = correctly judged ‘old’ with high confidence. UE = unsuccessful encoding 
(misses). FA = false alarms. FA-C = incorrectly judged ‘old’ with high confidence. CR = correct rejections. SD = standard deviation. SE-FA = index of 
ability to discriminate between old and new test items (i.e., hits minus false alarms). SE-C–FA-C = discrimination index for items confidently judged old.
DOI: 10.7554/eLife.05352.004
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5.2 Hz: p > 0.30; 5.2 Hz and 5.5 Hz: p > 0.60). No significant difference was observed between delta 
(2–4 Hz) phase synchrony during successful compared with unsuccessful encoding.

We did not observe corresponding significant synchrony differences for DMTN or left ATN 
(Figure 2—figure supplement 4). Indeed, on direct comparison, the difference in theta (5.2 Hz) PLVs 
between successful and unsuccessful encoding in the RATN 0.5–1.5 s post-stimulus was greater than 
the difference in the right DMTN (Wilcoxon test: p = 0.018), supporting nucleus specificity. A direct 
comparison of the relevant difference in theta PLVs between RATN and LATN only approached 
significance (Wilcoxon test: p = 0.130). While we do not wish to make strong claims about laterality, 

Figure 2. Frontal-right anterior thalamic nucleus (RATN) phase synchrony. PLV = phase-locking value. (A) Successful encoding. (B) Unsuccessful encod-
ing. (C) Successful minus unsuccessful encoding. (D) Permutation tests: Successful minus unsuccessful encoding. (E) Mean theta (5.2 Hz) PLVs for 
successful encoding and unsuccessful encoding averaged from 0.5 to 1.5 s for the eight individual participants. (F) Number of participants showing 
greater theta synchrony during successful compared with unsuccessful encoding in four sub-time-windows from 0.5 to 1.5 s.
DOI: 10.7554/eLife.05352.005
The following figure supplements are available for figure 2:

Figure supplement 1. Significance of phase synchrony between frontal neocortex and right anterior thalamic nucleus (RATN). 
DOI: 10.7554/eLife.05352.006

Figure supplement 2. Mean theta (5.2 Hz) phase-locking value (PLV) between frontal neocortex and right anterior thalamic nucleus (RATN) over four 
consecutive time windows from 0.5 to 1.5 s. 
DOI: 10.7554/eLife.05352.007

Figure supplement 3. Time course of theta phase synchrony. 
DOI: 10.7554/eLife.05352.008

Figure supplement 4. Frontothalamic synchrony involving other thalamic nuclei. 
DOI: 10.7554/eLife.05352.009

Figure supplement 5. Synchrony using 1-cycle wavelets to enhance time resolution. 
DOI: 10.7554/eLife.05352.010

Figure supplement 6. Corticothalamic phase synchrony in Participant 1. 
DOI: 10.7554/eLife.05352.011

Figure supplement 7. Corticothalamic phase synchrony in Participant 2. 
DOI: 10.7554/eLife.05352.012

Figure supplement 8. Power difference between successful and unsuccessful encoding. 
DOI: 10.7554/eLife.05352.013

Figure supplement 9. Synchrony with differing cortical sites. 
DOI: 10.7554/eLife.05352.014
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the finding that the synchrony difference in RATN was significant, whereas that in LATN was not 
(Figure 2—figure supplement 4), accords well with the non-verbal scene stimuli used (Maillard et al., 
2011) (see also ‘Discussion’).

There was additional early upper theta and alpha synchrony during successful compared with 
unsuccessful encoding (∼8–12 Hz; 0–0.2 s; PT: p = 0.002; TT: T = 5.6, p = 0.00085; CSPT: p = 0.029; 
observed contiguous cluster 342 pixels; Figure 2, Figure 2—figure supplement 1), which might 
reflect enhanced item-specific attention and perception during successful encoding (Düzel et al., 
2005). All synchrony patterns were post-stimulus (Figure 2—figure supplement 5). There was a 
significantly greater synchrony difference between successful and unsuccessful encoding in upper 
theta/alpha post-stimulus (0–0.2 s) than in the same frequency range during the 1 s pre-stimulus period 
(Wilcoxon test: p = 0.039). Furthermore, the difference between pre-stimulus theta synchrony preced-
ing successful compared with unsuccessful encoding was not significant (Wilcoxon test: p = 0.46), 
whereas post-stimulus, the synchrony difference between successful and unsuccessful encoding was 
significant (Wilcoxon test: p = 0.039).

Because parietal scalp signals could be recorded from only two participants due to post-operative 
dressing placement, these were also analyzed as individual cases (Figure 2—figure supplements 6–7). 
Parietal-RATN and frontal-RATN (consistent with the group data) theta synchrony 0.5–1.5 s post-
stimulus were significantly enhanced individually during successful compared with unsuccessful encod-
ing (permutation tests on individual epochs within participants: ps < 0.05).

Because the main synchrony findings occurred in theta between 0.5 and 1.5 s, further analyses 
focussed on this time-frequency range. CFC was greater during successful than unsuccessful encoding 
between frontal theta phase-troughs and RATN gamma (∼40–50 Hz) amplitude-peaks (TT, T = 4.9, 
p = 0.0018; CSPT: p = 0.038; observed contiguous cluster 14 pixels; criterial cluster 12 pixels for 
overall p = 0.05; Figure 3). The difference was absent for thalamic high gamma (up to 256 Hz) (Canolty 
et al., 2006).

In contrast to the frontal-RATN findings, within the RATN, theta phase-peaks were coupled with 
gamma amplitude-peaks. Of note is that the gamma range was narrower (∼40–50 Hz compared with 
∼40–70 Hz) during successful than during unsuccessful encoding, resulting in significantly greater 
within-RATN CFC involving higher gamma-frequency amplitudes during unsuccessful compared with 
during successful encoding (paired T-test, TT, T = 3.6, p = 0.0086; cluster-size permutation test, 
CSPT: p = 0.045; observed contiguous cluster 15 pixels; criterial cluster 14 pixels for overall p = 0.05; 
Figure 3—figure supplement 1A–C). The CFC patterns during successful and unsuccessful encoding 
were then compared directly. Within-RATN CFC during successful encoding was compared with a 
distribution of 1000 phase-scattered surrogates, and the theta-gamma (3.8–8.1 Hz, 30.5–64.6 Hz) 
cross-frequency points at which CFC during successful encoding exceeded a threshold with criterion 
p = 0.05 were identified. The same analysis was performed for unsuccessful encoding. The two result-
ing CFC patterns differed significantly (two-dimensional Kolmogorov–Smirnov test—2-D KS test: 
d = 0.81, p = 0.048), with a wider gamma range during unsuccessful encoding. Assuming that an 
assembly of synchronously firing neurons is associated with a particular memory trace, the narrower 
RATN gamma range coupled with theta phase during successful memory formation could be inter-
preted as reflecting firing of only relevant neural assemblies, thus reflecting neural specificity during 
encoding (Desimone, 1996; Düzel et al., 2005; Schott et al., 2006). We correspondingly postulate 
that the corticothalamic coupling may coordinate the firing of particular thalamic neural assemblies 
underpinning the memory to be encoded, facilitating synaptic strengthening and relevant memory 
formation. Indeed, ongoing CFC has been detected in the centromedian thalamic nucleus during 
cognitive task performance (Fitzgerald et al., 2013). Again, there was no encoding-related CFC dif-
ference apparent for thalamic high gamma (Canolty et al., 2006).

CFC findings within the frontal cortex (Figure 3—figure supplement 1D–F) were consistent with 
the literature. Theta-to-gamma CFC was peak-to-peak at higher theta frequencies, and occurred for 
both successful and unsuccessful encoding (phase-scattered surrogate-data tests for successful and 
for unsuccessful encoding: p = 0.001). There was no significant relationship to encoding success (TT, 
p > 0.05; CSPT: p > 0.05; Figure 3—figure supplement 1D–F), consistent with hippocampal CFC 
patterns during working memory (Axmacher et al., 2010). By contrast, theta-to-gamma CFC was 
trough-to-peak at lower theta frequencies, and was greater during successful than unsuccessful 
encoding (TT, T = 3.6, p = 0.0087; CSPT: p = 0.017; observed contiguous cluster 19 pixels; criterial 
cluster 11 pixels for overall p = 0.05), consistent with (Canolty et al., 2006).

http://dx.doi.org/10.7554/eLife.05352
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Theta-gamma CFC patterns within RATN and within frontal neocortex differed from the frontal-
RATN pattern (Figure 3—figure supplements 1–2). Frontal-RATN theta-gamma (3.8–8.1 Hz, 30.5–
64.6 Hz) coupling during successful vs unsuccessful encoding was compared using the above paired 
T-tests, to provide the cross-frequency pattern, and the same was performed for within-RATN CFC. 
These CFC patterns differed significantly (2-D KS test: d = 0.83, p = 0.024). Frontal-RATN and within-
frontal CFC patterns also differed significantly (2-D KS test: d = 0.98, p = 0.011).

GC revealed that frontal theta better predicted RATN theta than vice-versa (Figure 4). In GC 
analyses, the peak model order provides an indication of how far into the past one signal provides 
information about another, and may thus be interpreted as indicating the approximate delay in trans-
fer of information (Staudigl et al., 2012). We found that frontal theta prediction of RATN theta peaked 
at a model-order of 32, which corresponds to 63 ms, or one third of a theta cycle phase-lag between 
frontal and RATN theta. Such a delay is broadly consistent with frontal-RATN theta-to-gamma CFC being 
trough-to-peak (Figure 3), and intra-RATN theta-to-gamma CFC being peak-to-peak (Figure 3—
figure supplement 1A–C), illustrated in Figure 3—figure supplement 2. Together, the CFC and GC 
findings suggest that frontal theta modulates RATN gamma via frontal-ATN theta synchrony during 
successful encoding.

Discussion
We demonstrate increased corticothalamic synchrony during successful memory encoding, recording 
directly from the two most memory-relevant thalamic nuclei (ATN and DMTN). Our amplitude-
independent phase synchrony measurements (Lachaux et al., 1999) show that timing of post-stimulus 
ATN theta activity alone (see also Figure 2—figure supplement 8), and its relation to local ATN pro-
cessing as indexed by gamma amplitudes, is critical in successful memory encoding, providing the first 
electrophysiological evidence concerning the role of ATN in human memory formation. The absence of 
neocortical-DMTN synchrony differences, together with their recent detection during verbal memory 
retrieval (Staudigl et al., 2012), fits with evidence suggesting ATN specialization for encoding (Harding 
et al., 2000; Van der Werf et al., 2003), and DMTN for retrieval (Harding et al., 2000; Van der Werf 
et al., 2003; Aggleton et al., 2010; Aggleton, 2012). RATN involvement is moreover consistent with 
the non-verbal scene stimuli employed (Maillard et al., 2011), and with evidence that left thalamus 
lesions produce more severe memory deficits for verbal than non-verbal material (Squire et al., 1989). 
The late theta synchrony is in accord with the timing of differences in ERPs (Schott et al., 2002) 
and post-stimulus MT theta power (Hanslmayr and Staudigl, 2014) during successful compared 

Figure 3. Frontal-right anterior thalamic nucleus (RATN) cross-frequency coupling (CFC). (A) Successful encoding. (B) Unsuccessful encoding. (C) Paired 
T-tests: Successful minus unsuccessful encoding.
DOI: 10.7554/eLife.05352.015
The following figure supplements are available for figure 3:

Figure supplement 1. Cross-frequency coupling (CFC) within right anterior thalamic nucleus (RATN) and within frontal neocortex. 
DOI: 10.7554/eLife.05352.016

Figure supplement 2. Cross frequency coupling (CFC) during successful encoding in Participant 7. 
DOI: 10.7554/eLife.05352.017

Figure supplement 3. Cross-frequency coupling (CFC) with differing frontal cortical sites. 
DOI: 10.7554/eLife.05352.018
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with unsuccessful encoding of episodic memories. 
While oscillations in the delta frequency range 
have recently been found to show a memory-
related difference in the hippocampus (Watrous 
et al., 2011; Lega et al., 2014), we did not detect 
a significant difference between corticothalamic 
delta phase synchrony during successful compared 
with unsuccessful encoding.

While we provide here novel evidence that 
the coordination of theta and gamma oscilla-
tions involving the ATN plays a critical role in trial-
by-trial memory ability, it should be noted that 
memory encoding is recognized to include not 
only content processing and information storage, 
but also attention (reviewed by Kim, 2011). Item-
specific attention indeed has a well-recognized 
effect on whether an item is successfully encoded 
(Raz and Buhle, 2006; Muzzio et al., 2009; Kim, 
2011; Burke et al., 2014). Attention is not only 
necessary for optimal memory encoding, but mul-
tiple brain structures involved in memory forma-
tion may be subject to attentional modulation, 
including the hippocampus itself (Muzzio et al., 
2009). There are several indicators, however, 
that our findings reflect memory encoding pro-
cesses beyond simply global arousal or attention 
fluctuations.

Firstly, the timing of the key memory differ-
ences here at around 1 s post-stimulus is strongly 
suggestive of a memory-related difference. Neural 

encoding differences related to later memory have been identified using ERPs and cortical theta/
gamma oscillations, generally peaking at around 1 s after stimulus presentation, continuing up to 1.5 
s post-stimulus (Paller et al., 1987; Schott et al., 2002; Sederberg et al., 2003; Osipova et al., 2006; 
Lega et al., 2012; Hanslmayr and Staudigl, 2014; Long et al., 2014). Secondly, whereas oscillatory 
dynamics between the pulvinar thalamic nucleus and the parietal cortex support visual attention in 
macaques, consistent with attention deficits following focal pulvinar lesions (Saalmann et al., 2012), 
our main findings pertain to the ATN, for which lesion and animal studies suggest a role in memory. 
Moreover, based on current knowledge about the ATN and the DMTN (Van der Werf et al., 2003) 
one would rather expect attentional differences to be reflected in DMTN activity, which we did not 
find. Most critically, if global attentional fluctuations were responsible for our theta synchrony findings, 
one would expect longer response times during the encoding phase for later forgotten compared with 
later remembered scenes, due to lack of attention to the encoding task. However, response times did 
not differ. Finally, global attentional fluctuations over time would also imply a dependency between 
the probability of successful encoding on successive trials during the study phase of the experiment, 
and we found no dependency.

We note, however, that variability in factors such as attention and the emotional valence of stimuli 
are fundamental to the study design in subsequent memory paradigms, affecting the probability of 
successfully encoding each item and thus enabling comparison of successful with unsuccessful encod-
ing. Indeed, the early upper theta and alpha synchrony immediately following stimulus presentation 
during successful memory encoding is likely to reflect enhanced item-specific attention and percep-
tion (Düzel et al., 2005), with the later theta synchrony timing fitting well with previous findings relat-
ing to memory encoding (Schott et al., 2002; Hanslmayr and Staudigl, 2014).

The ATN is the target of stimulation in the treatment of focal epilepsy on the basis that seizure 
activity starting focally is propagated through this site to widespread cortical areas (Lega et al., 2010). 
Regional cortical specificity in frontal-RATN synchrony would support our argument that the differ-
ences that we have identified are memory-specific. While the phase synchrony pattern we report is 

Figure 4. Granger causality (GC) in the theta frequency 
range. (A) During successful encoding, frontal theta 
activity predicted right anterior thalamic nucleus (RATN) 
activity, peaking at model order 32, corresponding  
with a 63 ms phase lag (i.e., one third of a theta cycle). 
(B) During successful encoding, RATN activity was 
significantly (paired T-tests: T = 3.2, p = 0.014) less 
predictive of frontal activity. (C) During unsuccessful 
encoding, frontal theta activity predicted RATN activity. 
(D) During unsuccessful encoding, RATN was signifi-
cantly (paired T-tests: T = 3.0, p = 0.018) less predictive 
of frontal activity.
DOI: 10.7554/eLife.05352.019
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discernible in all three electrode placements (frontopolar, other frontal, and parietal), it is indeed 
not identical across regions (Figure 2—figure supplement 9). We also show the difference between 
fronto-RATN theta-gamma CFC involving the different frontal electrode placements (Figure 3—figure 
supplement 3). Again, the patterns are similar but not identical. The limited available scalp electrode 
coverage in our participants, however, precludes drawing strong conclusions in this regard. We note 
also, though, that both frontal and parietal cortices are well-recognized as being involved in memory 
processing (Weiss and Rappelsberger, 2000; Otten et al., 2002; Sauseng et al., 2005; Uncapher 
and Wagner, 2009; Friese et al., 2012; Sweeney-Reed et al., 2012).

The encoding and retrieval tasks were chosen for their simplicity, because recording was only 
possible at the bedside in the few days following intracranial surgery, and because we did not wish 
to lose data owing to failure of these rare participants to succeed at the tasks. Under these circum-
stances, we were able to achieve large and comparable behavioral trial numbers for successful and 
unsuccessful encoding, which could then be submitted to oscillatory analysis. Pilot testing revealed 
that one participant (not included in the current cohort) could not adequately perform an objective 
source-memory task under these post-operative conditions, and we thus additionally judged it 
unlikely that the participants could properly implement the more complex ‘remember/know/guess’ 
instructions (Gardiner and Richardson-Klavehn, 2000) necessary to obtain reports of subjective rec-
ollection and familiarity during recognition. Moreover, given the nature of the data ultimately obtained 
from our eight participants, we elected to collapse the data across the levels of response certainty 
to maximize trial numbers in each category for electrophysiological synchrony analysis, in a prag-
matic trade-off between the power of the electrophysiological analyses and behavioral/psychological 
resolution.

Thus, a limitation of the study is that we cannot conclusively link our results to recollection, and 
therefore episodic memory formation, separately from familiarity. Our findings concerning ATN elec-
trophysiological involvement in human memory formation are, however, consistent with the theo-
retical proposal that the ATN is a part of an extended hippocampal system supporting episodic 
recollection (Aggleton, 2012), whether during encoding or retrieval, and with the competing theoret-
ical proposal that the ATN is specialized for encoding rather than retrieval, whether the information 
involved is episodic (recollection) or semantic (Van der Werf et al., 2003). The latter proposal is con-
sistent with human lesion data, showing that sufferers from Korsakoff's syndrome with lesions to the 
ATN fail to acquire new semantic as well as new episodic information (for example, Harding et al., 
2000) and is thus particularly consistent with our new data. We note, furthermore, that whether recol-
lection and familiarity are separate processes (Eichenbaum et al., 2008), or reflect a single process, 
with familiarity and recollection reflecting different degrees of memory strength (Wixted and Squire, 
2008), is an area of continuing debate (see also Gardiner and Richardson-Klavehn, 2000 and Yonelinas, 
2002) for relevant information regarding humans. Despite this lack of behavioral/psychological resolu-
tion, our data nevertheless provide novel evidence concerning the real-time role of the human ATN in 
memory formation.

It should also be noted that memory processing may be divided into different subsystems, with 
different components of memory processing involving different thalamic nuclei (Mennemeier et al., 
1992). For example, whereas human lesion and animal studies suggest a regulatory role for the ATN 
in memory encoding (Harding et al., 2000; Vertes et al., 2001; Van der Werf et al., 2003; Aggleton 
et al., 2010; Aggleton, 2012) and for the DMTN in retrieval (Van der Werf et al., 2003; Staudigl 
et al., 2012), other thalamic nuclei have also been found to be involved in different aspects of 
memory processing. For example, evidence supports a role for the nucleus reuniens in fear condi-
tioning and memory generalization (Vertes et al., 2007; Xu and Südhof, 2013), as well as spatial 
processing (Jankowski et al., 2014), for the pulvinar nucleus in attention (Saalmann et al., 2012) and 
nonverbal memory processing (Johnson and Ojemann, 2000), and for the left ventro-lateral thalamus 
in verbal memory encoding (Johnson and Ojemann, 2000). Our focus on the ATN and DMTN is based 
on the rare availability of human electrophysiological data from these sites, which was determined 
by clinical requirements, and is consistent with extant data concerning the amnesic effects of lesions 
in these thalamic areas in humans (Harding et al., 2000; Van der Werf et al., 2003).

In summary, our findings shed new light on real-time interaction between the ATN and the neo-
cortex, thus broadening understanding of the brain structures involved in memory formation from a 
focus on the hippocampus and neocortex to recognition of a pivotal role for the ATN. More gener-
ally, the CFC theta-gamma findings, together with the amnesic effects of lesions to the human ATN, 
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provide evidence that the ATN plays an active role in encoding, instead of simply relaying cortical or 
hippocampal signals (Aggleton et al., 2010).

Materials and methods
Participants, and intracranial and scalp recording
Intrathalamic data were recorded from 1.5 mm platinum-iridium electrodes implanted bilaterally (four 
contacts each) in the thalamus for stimulation therapy for multiple pharmacoresistant focal epilepsy in 
eight adult participants, all of whom were not suitable candidates for resective surgery. A minimum 
sample size was not set, because memory-dependent phase synchrony has been detected on an indi-
vidual level in intracranial recordings (Fell and Axmacher, 2011; Staudigl et al., 2012) (see also 
Figure 2, Figure 2—figure supplements 6–7). The final number of participants was determined by 
the number of patients available in the days just following implantation during the approximately 2 
years of the relevant therapeutic program, and also willing to participate in the study. This sample size 
was considerably greater than that usually available for intracranial studies in humans (Canolty et al., 
2006; Fitzgerald et al., 2013; Bonini et al., 2014), and in non-human primates (Saalmann et al., 2012). 
The mean age of the participants was 37.5 years (range 28–52 years, standard deviation 8.2 years), and 
four participants were female. Stimulation via intracranial electrodes did not occur during the data 
recording. The measurements were approved by the Ethics Commission of the Medical Faculty of 
the Otto-von-Guericke University, Magdeburg (application number 0308), and all participants gave 
written informed consent in accordance with the Helsinki Declaration of 1975, as revised in 2000 and 
2008. Consent to participate in our study, as well as for publication of results in an anonymized for-
mat, was obtained by the neurosurgeon at the same time as consent was obtained for the surgical 
procedure.

Contacts were located in the ATN for all eight participants and in the DMTN for seven of the 
participants (with Participant 5 not having DMTN contacts). Placement of the thalamic electrodes 
was performed stereotactically. The angle of entry through the skull and the depth of each electrode 
was calculated based on MRI images of each patient's brain pre-operatively. An intra-operative X-ray 
and postoperative CT-scans were carried out in order to confirm correct localization of each elec-
trode, by reference to the Schaltenbrand and Pick Atlases (Schaltenbrand and Wahren, 1977; 
Maldjian et al., 2003). Scalp EEG data were simultaneously collected from frontal electrodes (Fz, AFz, 
or Fpz) in all eight participants, and from parietal electrodes only in Participant 1 (P3, Pz, P4; Figure 1, 
Figure 2—figure supplement 6) and Participant 2 (Pz only; Figure 2—figure supplement 7). 
Positioning of post-operative dressings meant that parietal electrodes could not be placed for the 
other six participants. Frontal electrodes were centered over Fz (frontal), AFz (anterior frontal), and 
Fpz (frontopolar), with the data from the most frontal available electrode from each participant 
included in the group analyses. These scalp sites reflect underlying cortical activity from midline 
frontal cortices (Paller et al., 1987). Data from the two participants with parietal electrodes were 
analyzed as single cases (Figure 2—figure supplements 6–7), as well as contributing to the group 
analyses for frontal electrodes.

Nose-referenced voltages were amplified with a Walter Graphtek (Lübeck, Germany) EEG ampli-
fier and recorded with a 512 Hz sampling frequency. Offline re-referencing of thalamic voltages to the 
next deepest contact rendered six bipolar channels. Radiological intracranial electrode localization 
was performed for all participants intra- and postoperatively by the neurosurgeons and a physicist. 
Electrode location is provided in detail for Participant 1 for illustration purposes (Figure 1). The deep-
est two thalamic contacts were located in the DMTN, and the most superficial in the ATN. The second 
most superficial was at the ATN/DMTN border. The critical results from this participant (Figure 2—
figure supplement 6) were obtained from a bipolar recording from the two most superficial right-
sided thalamic contacts. We confirmed that the synchrony patterns were not observed when the 
second most superficial contact was referenced to either of the two deeper contacts, suggesting that 
the critical signals originated from the most superficial contact, which was clearly located in ATN, and 
not from its reference contact.

Note that no measureable temporal phase-shifts that simply reflect the physical (e.g., capacitative) 
properties of the brain-to-scalp-electrode interface have been detected at typical EEG frequencies 
(Nunez and Srinivasan, 2006). Any phase-lags between the scalp and intrathalamic recordings should, 
therefore, reflect genuine neural conduction delays between neocortex and thalamus. Such phase-lags 
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should not in any case affect the corticothalamic phase synchrony measurements detailed below, 
which were independent of phase-lag as well as amplitude, but were taken into account in the Granger 
causality calculations detailed below.

Experimental paradigm
During encoding, the participants viewed a series of 200 (100 for Participant 1) photographs of unfa-
miliar real-world scenes on a computer screen. Each scene was shown for 2.4 s, followed by a fixa-
tion cross for 1.4 s, and the participant judged whether the depicted scene was indoors or outdoors 
(average response time around 1 s after scene presentation). The responses were made using left and 
right index fingers, and the response hand was counterbalanced across participants. Recognition 
testing occurred after a short distraction break to ensure retrieval based on long-term memory. Each 
participant viewed all 200 scenes from the encoding phase in a different random order, randomly 
interspersed with 100 similar but new scenes. The total pool of 300 scenes was randomly assigned into 
3 groups of 100. Which of these 3 groups formed the old and new scenes for a particular participant 
was systematically counterbalanced across participants by rotation.

A short practice session with both encoding and recognition test phases was provided for each 
participant, rendering the experiment itself an intentional encoding paradigm, because participants 
knew during encoding that they would later be tested. Nevertheless, the focus of the encoding task 
was on deciding whether each depicted scene was indoors or outdoors.

In the recognition test, each scene was first shown for 1.25 s, then a 6-point scale was superim-
posed on the scene for 2.8 s, along which a marker was moved by pressing one of two keyboard 
buttons, with the index finger of each hand, to indicate degrees of confidence as to whether the scene 
was old or new (direction and response hand counterbalanced across participants). A fixation cross 
then appeared, jittered between 0.75 and 1.25 s. Behavioral data from the test phase are shown in 
Table 1. The data presented here were collapsed across the three scale points indicating ‘old’, and the 
three scale points indicating ‘new’ at test, to obtain binary ‘old’/‘new’ judgments. All eight participants 
showed a greater percentage of hits (correct ‘old’ responses to old scenes) than of false alarms (incor-
rect ‘old’ responses to new scenes), demonstrating that they had formed memories for scenes from 
the encoding phase. The encoding data (electrophysiological data and response times) were then 
sorted, according to test phase responses, into epochs with successful encoding (later correct ‘old’ 
judgments to old scenes at test, hits) and epochs with unsuccessful encoding (later incorrect ‘new’ 
judgments to old scenes at test, misses) (Paller and Wagner, 2002).

Data pre-processing
The electrophysiological encoding data were segmented into epochs 1 s pre-stimulus (i.e., scene pres-
entation at encoding) to 2 s post-stimulus, because work on memory encoding measuring ERPs 
and theta/gamma oscillations has demonstrated differences in electrophysiological activity related to 
later memory up to 1.5 s post-stimulus, generally peaking at around 1 s after stimulus presentation 
(Paller et al., 1987; Fell et al., 2001; Schott et al., 2002; Sederberg et al., 2003; Osipova et al., 
2006; Lega et al., 2012; Long et al., 2014). Data were also recorded during retrieval, but we focus on 
the encoding data here. Note that the time axes in all figures (except in Figure 3—figure supplement 
2, where time is arbitrary) are set such that the stimulus was shown at time = 0 s.

Recording of intracranial signals was performed at the bedside in the few days following elec-
trode implantation, before the electrodes were attached to a stimulator under the skin over the chest 
wall for epilepsy treatment, in a second operation approximately 1 week later. No seizures took place 
during the testing sessions, and all patients were fully alert and cooperative throughout. Epochs were 
individually visually inspected and cleaned of ocular and other artifacts using temporal-decorrelation-
separation independent component analysis (Sweeney-Reed et al., 2012). Spikes and spike-waves 
were also removed using this approach, to maximize the number of epochs for analysis. We deemed 
the differences in electrophysiological activity detected between epochs recorded during successful 
compared with unsuccessful encoding in our simple task to be unlikely to result from global attentional 
fluctuations due to epileptiform activity for several reasons. Firstly, accuracy was close to ceiling for 
the indoor vs outdoor judgment during encoding. Secondly, there was no difference in response times 
during encoding for successful compared with unsuccessful memory formation. Thirdly, successful 
and unsuccessful encoding of successive scenes in the series showed no sequential dependency. 
Furthermore, while the cortical site of the epileptic focus differed across participants (Table 2), the 
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reported results were highly consistent across the group (Figure 2E–F, Figure 2—figure supple-
ments 2, 6–7). Spikes or spike-waves were visible in the data from three of the eight participants 
(Participant 2: 10.3% during successful and 7.3% during unsuccessful encoding; Participant 6: 29.9% 
and 24.7% respectively; Participant 7: 2.7% and 5.4% respectively). Across these three participants, 
the mean difference in these percentages between successful and unsuccessful encoding was only 
1.83% (i.e., slightly greater for successful encoding), suggesting that concerns about spikes and spike-
waves being confounded with the two data categories of interest are minimal. Nevertheless, the analy-
ses were also performed excluding epochs with spikes and spike-waves, and the findings reported 
remained statistically significant.

Phase synchrony
Corticothalamic phase synchrony was calculated following wavelet time-frequency decomposition of 
each epoch, using 6-cycle Morlet wavelets, yielding 57 logarithmically spaced frequencies between 1 
and 100 Hz. A logarithmic scale was used to take account of the frequency resolution of the Morlet 
wavelet (Düzel et al., 2005), such that wavelet spacing became sparser as frequency increased. After 
wavelet transformation, a phase series was extracted for each epoch, and the phase differences 
between scalp and thalamic channels were calculated (for details of this well known method (see 
Lachaux et al., 1999 and Sweeney-Reed et al., 2012). Phase-locking values (PLVs) could vary between 
0 (no PL) and 1 (complete PL). In order to enhance time resolution (at the expense of frequency reso-
lution), we also applied 1-cycle wavelets, confirming that the synchrony that we report (Figure 2, 
Figure 2—figure supplement 1) took place post-stimulus (Figure 2—figure supplement 5). Statistical 
analysis thus focused on the 2 s post-stimulus period of 1024 time-points. It should be noted that the 
calculation of PLVs may be influenced by a common reference (Vinck et al., 2011), and we addressed 
this issue by using bipolar referencing in our thalamic recordings (see also Staudigl et al., 2012). 
Volume conduction may also influence PLVs (Vinck et al., 2011), but in the present study, phase syn-
chrony is calculated between the frontal cortex and the RATN, whose spatial separation should exclude 
this influence.

Table 2. Clinical information

Pt M/F Age at surgery Age at first seizure Epilepsy syndrome Seizure origin
Current 
medication

1 F 42 13 PLE bilateral LTG 200 mg

LCM 400 mg

2 F 52 33 TLE bilateral LCM 400 mg

LTG 200 mg

3 M 34 26 TLE right LEV 4000 mg

ESL 1200 mg

4 F 29 16 TLE bilateral LTG 400 mg

RTG 600 mg

5 M 39 9 TLE left LTG 400 mg

LCM 400 mg

6 M 32 1 TLE frontal and  
right temporal

STP 4500 mg

OXC 900 mg

CLB 5 mg

7 M 41 29 FLE bilateral LTG 400 mg

ZNS 400 mg

8 F 44 14 TLE left CBZ 1200 
mg

Pt = participant. M/F = male/female. PLE = parietal lobe epilepsy. TLE = temporal lobe epilepsy. FLE = frontal lobe 
epilepsy. LTG = lamotrigine. LCM = lacosamide. LEV = levetiracetam. ESL = esilcarbazepine. RTG = retigabine. 
STP = striripentol. OXC = oxcarbazepine. CLB = clobazepam. ZNS = zonegran. CBZ = carbamazepine.
DOI: 10.7554/eLife.05352.020
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Statistical analysis
All statistical tests were two-tailed. After PLVs were calculated for each epoch in each category (suc-
cessful encoding and unsuccessful encoding), permutation tests, which are conservative in that they 
do not make parametric assumptions, were initially used to evaluate the significance of differences 
between successful and unsuccessful encoding for each pixel within the 2-dimensional time-frequency 
space of 57 frequencies (0–100 Hz) and 1024 post-stimulus time-points (0–2 s). A mean PLV was calcu-
lated for successful and for unsuccessful encoding for each of the eight participants, and the 16 PLVs 
were pooled, reassigned to two artificial categories 1000 times, and a PLV difference between catego-
ries calculated, in order to obtain a two-tailed error distribution of differences against which the 
observed mean difference between successful and unsuccessful encoding was tested. A statistical 
comparison of mean PLVs across successful and unsuccessful encoding necessitates an equal number 
of epochs per category, so that, prior to calculating the mean PLVs for each participant, epochs were 
randomly selected from the larger category to match the size of the smaller (Table 1). Figure 2A–C 
shows the mean PLVs calculated from the equal number of epochs per category that were included in 
the statistical analysis. Figure 2D shows the results of the group permutation tests.

We also confirmed the key corticothalamic synchrony findings with paired T-tests (with mean PLVs 
calculated for each participant as just described for permutation testing). The assumptions of paired 
T-tests were satisfied (i.e., an approximately normal distribution of the differences between PLVs for 
successful and unsuccessful encoding across participants, and a positive correlation between PLVs for 
successful and unsuccessful encoding across participants). Mean PLVs differed significantly, in a pat-
tern similar to that found using the permutation tests (Figure 2—figure supplement 1). All paired 
T-tests had 7° of freedom except where otherwise noted.

The electrophysiological literature on memory formation clearly suggests a focus on theta (4–8 Hz) 
oscillations, a range covered by 14 frequencies (i.e., wavelets). However, in view of the scarcity and 
novelty of memory-related intrathalamic data in humans, a highly conservative approach to evaluating 
these observed uncorrected p values was taken. For the permutation tests, a false discovery rate cor-
rection (Canolty et al., 2006) was applied for the 57 frequency (0–100 Hz) and 1024 time-point (0–2 s) 
comparisons, which was especially conservative given the dependency between adjacent time and 
frequency points (Figure 2—figure supplement 1). For the T-tests, a cluster-size permutation test 
(Maris and Oostenveld, 2007) was performed, in which a cluster was defined as adjacent significant 
(criterion: p = 0.05 by paired T-test) time-frequency points. Mean PLV matrices for each participant 
for each condition were randomly assigned to two groups 1000 times, and T-tests were performed 
across time and frequency for each permutation. T-test outcomes were rendered binary (1 = signifi-
cant, 0 = nonsignificant) for each of the 57 frequencies and 1024 time-points, and the maximum cluster 
size (as defined above) emerging randomly in each iteration was calculated in order to provide a dis-
tribution against which to determine the significance of the observed cluster size. The same approach 
was taken for cluster-size significance in the cross-frequency coupling analysis described below. Finally, 
we evaluated the consistency of the results across the eight participants by applying a nonparametric 
(and thus conservative) Wilcoxon test of the differences between theta (5.2 Hz) PLVs for successful and 
unsuccessful encoding in the 0.5 to 1.5 s time-window in which theta differences had been revealed by 
the above-described conservative methods (see also Figure 2, Figure 2—figure supplement 2).

The significance of the difference between PLVs for successful vs unsuccessful encoding was addi-
tionally calculated on an individual case basis for Participants 1 and 2, because they were the only 
participants with parietal electrodes. Participant 1 had only 26 unsuccessful encoding epochs, so 26 
successful encoding epochs were randomly selected from the 74 available and the mean PLV calcu-
lated. In order to use all available data to calculate the PLV difference between successful and unsuc-
cessful encoding, this selection of 26 epochs and mean PLV calculation was carried out 200 times and 
an overall observed mean PLV was then calculated for successful encoding. For significance testing by 
permutation tests, this difference was compared to an error distribution, which was obtained by ran-
domly assigning 52 epochs, irrespective of encoding success, to two artificial categories 1000 times 
(each time randomly selecting 26 of the 74 successful encoding epochs, and using all 26 unsuccessful 
encoding epochs) and calculating the mean PLV difference each time. The observed mean PLV differ-
ence was compared to this error distribution. A test with criterion p = 0.05 was applied (Figure 2— 
figure supplement 6, right). For descriptive purposes, the mean PLV across all 74 epochs of successful 
encoding is shown (Figure 2—figure supplement 6, left). Permutation of epochs was also performed 
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for Participant 2, with all 68 unsuccessful encoding epochs being used, and 68 encoding epochs being 
randomly selected from the 132 successful encoding epochs. The same procedure was then followed, 
except that given the larger number of trials in the smaller category compared with Participant 1, the 
observed mean PLV for successful encoding was calculated only once. For descriptive purposes, the mean 
PLV across all 132 epochs of successful encoding is shown (Figure 2—figure supplement 7, left).

Cross-frequency coupling
Cross-frequency coupling (CFC) was calculated as per the work of Canolty et al. (2006) and Axmacher 
et al. (2010). The frontal and RATN signals were wavelet transformed, then the theta phase and the 
gamma amplitude time series were extracted from the frontal and thalamic signals for each epoch. 
New complex signals were created by combining phases (ranging from 4–16 Hz, to include frequen-
cies in the theta and alpha range) with gamma amplitudes (30–256 Hz) from the channels between 
which coupling was assessed, and the complex signals were averaged over time for each epoch. The 
phase was then extracted from the new complex value for each epoch by taking the arctangent of the 
imaginary divided by the real part. The average complex value across epochs was then also calculated, 
and from this value, the modulatory phase was determined by taking the arctangent of the imaginary 
over real parts, thus quantifying the average phase of the lower frequency oscillation at which the 
amplitude of the high frequency oscillation was highest. The theta amplitudes were then shifted by 
minus modulatory phase, and the correlation coefficient (CC) between the shifted theta oscillations 
and the gamma amplitudes was found. The CC was Fisher-Z transformed, then a mean was taken over 
epochs for each participant to provide the modulation index, separately for successful and unsuc-
cessful encoding. Paired T-tests comparing successful with unsuccessful encoding were then per-
formed for each pixel within the 37 theta-phase frequency by 21 gamma-amplitude frequency matrix, 
comparing the degree of theta-phase with gamma-amplitude coupling. The resulting p values, as 
shown in Figure 3, were then subjected to a cluster-based correction via permutation testing as 
described above for synchrony differences.

To illustrate the coupling in a single participant, the frontal and RATN theta phases and RATN 
gamma power are shown for Participant 7 in Figure 3—figure supplement 2, averaged across epochs 
during successful encoding. Note that to enable comparison across frequencies, the temporal mean 
was subtracted from the power values, and they were then divided by the temporal standard deviation 
of power (Canolty et al., 2006). Gamma power and theta troughs were aligned to the first theta 
trough in the 0.5 to 1.5 s post-stimulus window for each epoch (Staudigl et al., 2012).

The absence of an encoding-related difference in frontal CFC between upper theta peaks and gamma 
amplitudes is consistent with working memory findings (Axmacher et al., 2010). In order to confirm 
the presence of this CFC for both successful and unsuccessful encoding, levels of CFC were also com-
pared with a distribution of CFC indices generated from 1000 phase-scattered surrogate data sets.

Granger causality
Granger causality (GC) was used to investigate information flow direction (Seth, 2010; Staudigl et al., 
2012) at time-frequency locations (4–12 Hz; 0.5–1.5 s) encompassing the significantly greater theta 
phase synchrony during successful compared with unsuccessful encoding. GC uses multivariate autore-
gressive modeling to ascertain whether time series A may be more accurately predicted from time 
series B, with a certain time lag, than B from A. If incorporating values from B in the regression of A 
allows better prediction of A than vice versa, B is said to influence A. The data were first detrended and 
rendered zero mean across epochs to remove nonstationarity. The variances of the prediction errors of 
the autoregressive models were then used to assess likely information flow direction. The Akaike and 
Bayesian information criteria (AIC, BIC) were employed to calculate a model order balancing overpa-
rameterization and adequate spectral resolution (Seth, 2010; Staudigl et al., 2012). When a minimum 
is not reached and the BIC/AIC does not show substantial decreases at higher orders, as here, model 
orders for EEG are usually chosen over a range (Brovelli et al., 2004; Staudigl et al., 2012). We applied 
model orders from 26 to 36, identifying a peak GC corresponding to a third of a theta cycle. Model 
coefficients were interpreted in the frequency domain. Significance of the difference between frontal-
RATN and RATN-frontal GC in successful and in unsuccessful encoding was assessed by paired T-tests.

The flow of time is commonly used to make inferences from time series data regarding directional 
causal influences (Bollimunta et al., 2008), and indeed GC is commonly equated with directions of 
information flow in neural circuits (Ding et al., 2006; Bollimunta et al., 2008; Anderson et al., 2010). 

http://dx.doi.org/10.7554/eLife.05352
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The model order specifies the number of time lagged observations made (Bressler and Seth, 2011), and 
the order at which GC peaks provides an indication of how long into the past one signal provides informa-
tion about subsequent activity in the other signal. We interpreted the model order corresponding with 
peak causality as providing an indication of the delay in transfer of information (Staudigl et al., 2012), 
which has been measured directly between the frontal cortex and hippocampus in rats and found to be 
consistent with the delays suggested by the present data (Siapas et al., 2005; Benchenane et al., 2010).
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