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Abstract

Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (?NO) production in muscles
and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-
terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a
previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2)
constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes
autophosphorylated at Ser916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially
enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation
could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the
functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in
transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization.
However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of
these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain
was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS
interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the
activatory residue Ser1412, and that this phosphorylation increases nNOS activity and ?NO production in living cells. In
conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ?NO, a
mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions such as ischemic
stroke or neurodegeneration.
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Introduction

Nitric oxide synthases (NOSs) are the enzymes responsible for

?NO production, a biological signaling molecule involved in the

control of cardiovascular, immune and nervous system physiology

[1]. Neuronal NOS (nNOS), is larger than both its endothelial

(eNOS) and inducible (iNOS) counterparts, mostly due to a ,300

amino acid N-terminal extension containing a PDZ domain

(residues 14-105) [2,3]. The association of this N-terminal

sequence with other neuronal proteins determines nNOS enrich-

ment at post-synaptic densities [4,5]. Peptide library as well as

yeast two-hybrid screens revealed that the PDZ module of nNOS

displays a clear binding preference for cellular proteins with C-

terminal acidic amino acids at -2 and -3 positions. In fact, proteins

with a -Gly-(Asp/Glu)-X-Val C-terminus were proposed as tight

binders of nNOS PDZ domain [6,7]. Soon afterwards, a protein

referred to as CAPON (C-terminal PDZ ligand of nNOS),

displaying a C-terminal -Glu-Ile-Ala-Val motif and highly

enriched in the brain was reported to bind to the PDZ domain

of nNOS [8]. In a similar fashion, the acidic C-terminus of other

neuronal proteins such as melatonin receptor (-Val-Asp-Ser-Val),

phosphofructokinase-M (-Glu-Ala-Ala-Val) and NIDD (-Glu-Asp-

Ile-Val) have been reported as ligands of the PDZ domain of

nNOS [9–11]. In addition, the nNOS beta hairpin that extends

the preformed PDZ domain mediates the formation of PDZ/PDZ

dimers of nNOS/PSD-95 and nNOS/a1-syntrophin in neuronal

cells [12,13]. The postsynaptic density protein PSD-95 binds to the

C-terminus of ionotropic N-Methyl-D-Aspartate (NMDA)-type of

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e95191

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0095191&domain=pdf


glutamate receptors (NMDARs) through PDZ1 and to nNOS

through PDZ2 hence forming a ternary complex in neurons

[14,15]. Therefore, nNOS activation is enhanced after physiolog-

ical or pathological NMDARs stimulation leading to ?NO

production [16–18]. We have previously reported that in cortical

neurons and brain, NMDARs also associate with kinase D

interacting substrate of 220-kDa (Kidins220) [19], a protein also

known as ankyrin-repeat rich membrane spanning (ARMS).

Kidins220/ARMS is a neuronal enriched transmembrane protein

identified as the first substrate of protein kinase D1 (PKD1) [20]

and as a downstream effector of neurotrophin receptors [21].

Protein kinase D1 (PKD1) belongs to a family of phorbol ester/

diacylglycerol-stimulated Ser/Thr kinases constituted by two

additional members, PKD2 and PKD3 [22]. PKDs play multiple

roles in different cell types and tissues, from primary cellular

functions such as protein traffic, adhesion, migration, proliferation,

survival and death, to complex processes such as immune

regulation, cardiac hypertrophy, angiogenesis and cancer [22].

In addition, PKD1 has been involved recently in specific neuronal

functions such as axon formation, sorting of dendritic proteins and

dendritic arborization [23–25]. All PKD isoforms bear a cysteine-

rich domain (CRD) that binds diacylglycerol and phorbol esters,

an autoinhibitory pleckstrin homology domain (PH), followed by

the catalytic domain [22]. Importantly, we discovered a unique

distinctive type I PDZ-binding sequence or PDZ-ligand at the very

C-terminal end of PKD1 and PKD2 that is absent in PKD3 [26].

In PKD1, kinase activation results in autophosphorylation of

Ser916 located at -2 position within its PDZ-binding motif (-Val915-

Ser916-Ile917-Leu918), which in turn controls Kidins220/ARMS

transport and localization at the neuronal plasma membrane

[26,27]. These previous results led us to propose a model where

the negative charge of the incorporated phosphate at this position

in active PKD1 could mimic an acidic residue that could change

the binding affinity of its PDZ-ligand for different PDZ proteins,

regulating this way Kidins220/ARMS traffic [26]. Knowing that

nNOS and PKD are spatially enriched in postsynaptic densities

and dendrites, and that nNOS PDZ domain binds preferentially

PDZ-ligands bearing acidic residues at -2 position, we hypothe-

sized that the phosphorylated PDZ-binding motif of active PKD1

could be a bona-fide binding partner for the PDZ domain of

nNOS. Herein, we have explored whether PKD1 activation could

result in a direct interaction with nNOS and also if nNOS could be

a substrate for PKD1, analyzing the functional consequences. Our

studies show that PKD1 activation enhances its association with

nNOS and favors their subcellular colocalization. However,

contrary to our initial hypothesis, this association is independent

of its PDZ-ligand but depends on the PH domain of PKD1. In

addition, we demonstrate that PKD1 activates nNOS by

phosphorylating the activatory residue Ser1412, leading to

increased ?NO production, hence establishing a novel role of

PKD in the regulation of ?NO synthesis.

Materials and Methods

Ethics Statement
Animal procedures were approved by ‘‘Consejo Superior de

Investigaciones Cientı́ficas’’ - CSIC Ethics Committee and

performed in compliance with European Directive 2010/63/

EU. Animals used were kept to a minimum, they were sacrificed

by deep anesthesia, and all efforts were made to minimize

suffering.

Cell Lines, Reagents and Antibodies
HEK293T, COS-7, and PC12 cells were obtained from

American Type Culture Collection ATCC (Manassas, VA,

USA). Phorbol-12, 13-dibutyrate (PDBu), 8-Br-cGMP, L-NG-

nitroarginine methyl ester (L-NAME), N-Methyl-D-aspartate

(NMDA), glycine, cytosine b-D-arabino furanoside (AraC), poly-

L-lysine, L-laminin, Protein A/G-Sepharose, 29,59-ADP–Sephar-

ose, adenosine 29(39)-monophosphate mixed isomers, DNA single

stranded from salmon testes for hybridization, and 5-Bromo-4-

chloro-3-indolyl b-D-galactopyranoside (X-Gal) and 4,5-Diamino-

fluorescein diacetate (DAF2-DA) were from Sigma Co. (St. Louis,

MO, USA). Nerve growth factor was from Alexis Corp. (San

Diego, CA, USA). Ni-NTA resin was from Qiagen (Chatsworth,

CA, USA). L-Arginine and Gö6976 were purchased from

Calbiochem (Merck Millipore, Darmstadt, Germany). [c32P]-

ATP (370 MBq/ml) was from PerkinElmer, Inc. (Boston, MA,

USA). Mouse monoclonal anti-Myc, anti-GST and rabbit

polyclonal antibodies recognizing total PKD1/2 and phospho-

Ser916 were from Cell Signaling Technology (Beverly, MA, USA).

Anti-b-tubulin I monoclonal antibody was purchased from Sigma

and rabbit polyclonal anti-neuronal specific enolase (NSE) from

ICN Biomedicals (Costa Mesa, CA, USA). We produced an

antibody against nNOS immunizing rabbits with purified rat

nNOS following standard procedures. Rabbit polyclonal anti-

nNOS-phospho-Ser1412 was purchased from Upstate-Merck

Millipore (EMD Millipore Corporation, Billerica, MA, USA).

Mouse monoclonal antibody recognizing total VASP and rabbit

polyclonal antibody anti-VASP-phospho-Ser239 were from Santa

Cruz Biotechnology (Santa Cruz, CA, USA). Rabbit polyclonal

anti-GFP was obtained from Invitrogen-Life Technologies (Carls-

bad, CA, USA). Horseradish peroxidase-conjugated anti-rabbit

and anti-mouse secondary antibodies were from General Electric

(Fairfield, CT, USA). Oligonucleotide primers were from Invitro-

gen-Life Technologies (Carlsbad, CA, USA). All other reagents

were from standard suppliers or as indicated in the text.

Identification of PKD1-phosphorylated residue in nNOS
by mass spectrometry or MALDI TOF/TOF

In vitro kinase reactions after phosphorylating nNOS by a

recombinant protein containing the active catalytic domain of

PKD1 fused to GST (GST-PKD1-cat) were digested with trypsin

and analyzed by HPLC followed by MALDI TOF/TOF and

peptide fragmentation and de novo sequencing in the Proteomic

Studies Unit (Unidad de Proteómica; Facultad de Farmacia

Parque Cientı́fico de Madrid, Universidad Complutense de

Madrid, Madrid, Spain) following standard procedures. MALDI-

TOF MS analysis was performed in a 4800 Proteomics Analyzer

MALDI-TOF/TOF mass spectrometer (Applied Biosystems,

MDS Sciex, Toronto, Canada). The MALDI-TOF/TOF operat-

ed in positive reflector mode with an accelerating voltage of

20000 V. Selected peptides, were subjected to MS/MS sequenc-

ing analyzes using the 4800 Proteomics Analyzer (Applied

Biosystems, Framingham, MA). Suitable precursors from the MS

spectra were selected for MS/MS analysis with CID on

(atmospheric gas was used) 1 Kv ion reflector mode and precursor

mass Windows 6 4 Da. The plate model and default calibration

were optimized for the MS/MS spectra processing. De novo

sequencing from fragmentation spectra of peptides was performed

using De novo tool software (Applied Biosystems), tentative

sequences were manually checked and validated.
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Yeast two hybrid screens
We used plasmids containing GAL4 binding domain that were

confronted with plasmids containing the GAL4 activation domain

as previously described [28]. Double transformants were plated in

Leu2/Trp2/His2SD plates in the presence of 12 mM 3-amino

triazole (TDO plates) as well as in Leu2/Trp2/His+. Interacting

proteins expressed within the same yeast resulted in colonies that

could rescue growth in the absence of His. These colonies were

subsequently screened in the X-Gal assay. Blue colonies corre-

sponded to a positive interaction whereas white colonies corre-

sponded to absence of interaction. The complete PKD1 active

catalytic domain (Gly-557 to Leu-918) or shorter C-terminal

sequences (Pro-591 to Leu-918) containing the PDZ-binding motif

of wild-type PKD1 or the phospho-mimetic mutant PKD1-

Ser916Glu (PKD1S916E, described in Sanchez-Ruiloba et al. [26])

were PCR-amplified using primers carrying NdeI/EcoRI sites and

subcloned into pGBKT7, in frame with the DNA-binding domain

of GAL4. PKD1 baits were used to perform one to one yeast two

hybrid assays against two nNOS constructs that were PCR-

amplified using primers carrying EcoRI/SalI sites and subcloned

into pGAD, in frame with the activation domain of GAL4: one

shorter including the nNOS PDZ domain (aa 1–102) and a longer

one (aa 1–131) that includes the C-terminal extension peptide of

the nNOS PDZ domain that represents a relatively independent

structural unit in mediating the interaction between nNOS and

PDZ domain-containing proteins including PSD-95 and a1-

syntrophin [12]. As controls both nNOS constructs were

confronted with a1-syntrophin: the long nNOS construct as

positive control and the short construct that lacks of the b-hairpin

‘‘finger’’ as a negative control. The C-terminus of rat CAPON

(sequence ELGDSLDDEIAV) was cloned in the pGBT9 plasmid

between the EcoRI and SalI sites.

Cell culture and transfection
HEK293T or COS-7 cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM; Invitrogen-Life Technologies;

Carlsbad, CA, USA), supplemented with 10% (v/v) foetal calf

serum, and 2 mM glutamine at 37uC in a humidified atmosphere

containing 5% CO2. HEK293T cells were seeded at 60%

confluence for transfection using Lipofectamine2000 reagent

(Invitrogen-Life Technologies; Carlsbad, CA, USA), according to

the manufacturer’s specifications, and collected for processing

48 h later. Cell were transfected with empty vector pEFBOS-GFP

or containing GFP fused to PKD1 wild-type (PKD1), kinase-

inactive (the single mutant Asp733Ala; PKD1ki), constitutively

active (the double mutant Ser744/748Glu; PKD1ca), PDZ-ligand

mutants (PKD1-Ser916Glu/PKD1S916E; PKD1-Ser916Ala/

PKD1S916A, or PKD1 lacking its PDZ-ligand/PKD1DSIL) and

deletion mutants lacking the PH-domain (PKD1DPH) or the CRD

domain (PKD1DCRD) that have been used previously [26,29,30].

Expression vectors for Myc-tagged wild-type rat nNOS (nNOS)

and the point mutant nNOS-Ser1412Ala (nNOSS1412A) were kindly

provided by Dr. G. A. Rameau and Dr. E. B. Ziff [31]. When

required, HEK293T cells were treated with PDBu (200 nM) for

15 min, 8-Br-cGMP (100 mM) for 30 min or L-NAME (100 mM)

for 24 h, as specified in the text. PC12 cells were cultured at 37uC
in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen-Life

Technologies; Carlsbad, CA, USA) supplemented with 7.5% fetal

calf serum, 7.5% horse serum, and 2 mM glutamine in a

humidified atmosphere containing 5% CO2. Cells were treated

with nerve growth factor (75 ng/ml) for 2 days post-transfection.

For transfection and immunofluorescence, HEK293T and PC12

cells were seeded at 50–60% confluence on poly-L-lysine (10 mg/

ml)-coated glass coverslips. Cells were transfected as above and

48 h later cells were treated with PDBu (200 nM) for 15 min, fixed

and processed for immunofluorescence.

Cultures of primary cortical neurons
Cultures of dissociated E19 rat cortical neurons were prepared

from the cerebral cortex of 19-day-old Wistar rat embryos as

described [26]. Rats were obtained from the animal care facility at

the Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-

UAM, Madrid, Spain). Briefly, meninges were removed from the

embryonic brains, and cortices were dissected. Tissue was

resuspended in minimal essential medium (MEM; Invitrogen-Life

Technologies; Carlsbad, CA, USA) complemented with 10% fetal

calf serum, 10% horse serum, 0.6% glucose, 16 mg/ml gentamicin,

and 2 mM glutamine. Cells were counted and seeded on laminin

(4 mg/ml) and poly-L-lysine (10 mg/ml)-covered dishes at a final

concentration of 56105 and incubated at 37uC in an atmosphere

of 5% CO2. Neurons grown in vitro for 14 days (DIV14) were

pretreated with Gö6976 (5 mM) for 1 h and left unstimulated or

stimulated with the NMDAR agonist NMDA (50 mM) and its

coagonist glycine (10 mM) for 5 min.

Immunofluorescence and Confocal Microscopy
For immunofluorescence cells grown on coverslips were fixed

for 10 min in 4% paraformaldehyde in phosphate-buffered saline

at room temperature. After blocking (5% bovine serum albumin

for 30 min) cells were incubated with the corresponding primary

antibodies for 1 h at room temperature, and immunoreactivity

was detected with the suitable fluorophore-conjugated secondary

antibody before mounting in slides with ProLong (Invitrogen-Life

Technologies; Carlsbad, CA, USA). Images are single sections of

z-series acquiring each channel in a sequential mode using an

inverted Zeiss LSM710 confocal microscope with a 63X/1.40

Plan-Apochromatic objective. Pictures were processed with ZEN

2009 light Edition (Carl Zeiss MicroImaging) and Adobe CS3

Extended (Adobe Systems Inc., CA) software.

Protein extracts, immunoprecipitation and immunoblot
analysis

Preparation of lysates and immunoprecipitation assays were

performed as described previously [26]. Briefly, rat brain or cells

were lysed in radioimmunoprecipitation assay buffer (25 mM Tris-

HCl, pH 7.6, 1% Triton X-100, 1% sodium deoxycholate, 0.1%

SDS, 150 mM NaCl, 2 mM EDTA, 2 mM dithiothreitol) with

protease and phosphatase inhibitors for 30 min at 4uC, and lysates

were then centrifuged for 20 min at 14,000 rpm. When needed,

Myc-nNOS or Myc-nNOSS1412A were immunoprecipitated with

anti-Myc antibody during 4 h at 4uC. Equal amounts of total

lysates or equivalent volumes of immunocomplexes were analyzed

by SDS-PAGE followed by transfer to nitrocellulose filters and

immunoblot. Membranes were blocked in TBST (20 mM Tris-

HCl, pH 7.6, 137 mM NaCl, 0.05% Tween 20) plus 5% low-fat

milk powder and incubated with the different primary and

secondary antibodies in blocking solution and immunoreactive

bands were visualized by enhanced chemiluminescence (ECL;

PerkinElmer, Inc., Boston, MA, USA).

Cloning and expression of full-length nNOS and the two
independent heme-oxygenase and reductase domains

Using rat nNOS as a template, the N-terminal half of nNOS

comprising the heme-oxygenase domain (residues 1 to 759) or the

C-terminal half of nNOS comprising the reductase domain

(residues 715 to 1429) were amplified and NdeI and XbaI sites

were introduced at the 59and 39end respectively. The PCR bands

Protein Kinase D Activates nNOS
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were digested with NdeI/XbaI and ligated in the corresponding

sites of 6His-pCWori [32] and verified by automated DNA

sequencing. Each of the two halves of nNOS included the

calmodulin binding sequence, since calmodulin binding assists

protein folding and total yield [33]. Full-length nNOS expression

and purification in this vector has been already described [34]. In

general, protein expression and purification was performed in

BL21 cells in coexpression with a calmodulin chloramphenicol-

resistant pACYC plasmid as previously described [32]. Full-length

nNOS and its reductase domain were purified using a Ni-NTA

affinity resin followed by a 29,59-ADP sepharose whereas the

heme-oxygenase was purified using only the Ni-NTA resin as

previously described [32,33].

Cloning and expression of recombinant active catalytic
domain of PKD1 fused to GST

The C-terminal region of PKD1 (Ser558-Leu918; PKD1cat)

containing the full-length catalytic domain was amplified using as

template pBS-PKD1 using oligonucleotides 59 (59-AAA AAG

CAG GCT CCG GAT CCA ACT CAC ACA AAG ATA-39) and

39 (59-AGA AAG CTG GGT TTT TGA CAG ATT AGA GGG

GAT GGA-39). The PCR product was cloned in pDONR201 by a

recombination reaction with BP clonase (GATEWAY system,

Invitrogen-Life Technologies; Carlsbad, CA, USA), to generate

the construct pENTR-PKD1cat. After automated sequencing,

PKD1cat was subcloned in pDEST15 using LR clonase. This

vector for procaryotic expression generates PKD1cat fused to

glutathione S-transferase (GST; GST-PKD1-cat) of approximate

molecular weight of 65 kDa that was purified following standard

methods and stored at 220uC. This protein is constitutively active

since it lacks the regulatory autoinhibitory domain.

Pull-down assays using recombinant pleckstrin
homology domain of PKD1 fused to GST

Preparation of GST-PH domain of PKD and pull-down assays

has been described previously [35]. Brain extracts or purified

nNOS were incubated for 2 h at 4uC with either GST (control) or

GST-PH fusion proteins pre-adsorbed onto glutathione-agarose

beads and the presence of nNOS was analyzed by Western blot.

In Vitro Kinase Assay
PKD or nNOS were immunoprecipitated from cultures of

primary rat cortical neurons DIV14, and PKD phosphorylation

activity was determined performing similar in vitro kinase assays as

described previously [26]. nNOS phosphorylation by active

catalytic domain of PKD1 (GST-PKD1-cat) was also analyzed

using this type of assays. Briefly, PKD or nNOS immune-

complexes or purified full-length nNOS or heme-oxygenase and

reductase domains mixed with GST-PKD1-cat were resuspended

in kinase buffer (30 mM Tris-HCl, pH 7.6, 10 mM MgCl2, and

2 mM dithiothreitol), and subjected to an in vitro kinase assay for

30 min at 30uC in the presence of 100 mM final concentration of

[c32P] ATP or non-radioactive ATP. Samples were analyzed by

SDS-PAGE and Ponceau staining, autoradiography or immuno-

blot as indicated in the text.

Results

PKD1 interacts with nNOS through its PH domain but not
its PDZ-ligand

Proteins known to bind to nNOS PDZ domain must present a

hydrophobic amino acid such as Val, Leu or Ile at the final

position together with an acidic residue at position -2 or - 3 [6,7].

The C-terminus of PKD1 possesses a -VSIL motif in which the Ser

residue (Ser916) becomes autophosphorylated in the active enzyme

[26,27]. Therefore, we reasoned that the negative charge of the

phosphate incorporated at Ser916 in active PKD1 could convert

this domain in a bona-fide PDZ-binding motif for the PDZ

domain of nNOS. To check this idea, and given that nNOS and

PKD are spatially enriched in postsynaptic densities and dendrites,

we first examined the possible association of both enzymes in

mature neurons performing co-immunoprecipitation assays. Cul-

tured primary rat cortical neurons grown in vitro for 14 days

(DIV14) were lysated and PKD and nNOS were immunoprecip-

itated using specific antibodies (Figure 1A). These immunoprecip-

itates were used to perform an in vitro kinase assay (IVK) in the

presence of [c-32P]-ATP before being resolved in SDS-PAGE gels

and transferred to a nitrocellulose membrane. This filter was first

subjected to Western blot analysis to examine the presence of PKD

or nNOS in the immunoprecipitates. As shown in figure 1A,

nNOS was not present in PKD immunoprecipitates while a band

that could correspond to PKD was detected in nNOS immuno-

precipitates. It is noticeable that immunoprecipitated PKD

subjected to IVK migrated more slowly, indicating its hyperpho-

sphorylated state compared to its signal in neuronal total lysates.

Next, this membrane was exposed to obtain an autoradiography

image (Figure 1A, IVK, bottom panel). We clearly observed a

radioactive band corresponding to autophosphorylated PKD in

both immunoprecipitates. Importantly, nNOS immunoprecipi-

tates showed an additional radioactive band of an apparent

molecular weight similar to that of nNOS (160 kDa). When this

autoradiography was overlapped with immunoblots developed

with PKD or nNOS antibodies we could observe that both signals

matched completely. This result demonstrates that endogenous

nNOS is able to co-immunoprecipitate endogenous PKD from

mature neuronal lysates and suggests that nNOS could be a PKD

substrate.

To further support PKD-nNOS association, we analyzed if we

could detect the association of PKD and nNOS by co-

immumoprecipitation and Western blot using epitope-tagged

versions of both proteins transfected into mammalian cells. Here,

we also examined how PKD1 activation could affect their

association. HEK293T cells were transfected with Myc-nNOS

together with GFP-PKD1 wild-type (PKD1wt) and 48 h later were

left untreated or treated with the phorbol ester PDBu in order to

activate PKD (Figure 1B). After immunoprecipitating nNOS using

an anti-Myc antibody, the presence of GFP-PKD1 in the

immunocomplexes was assessed detecting GFP signal by immu-

noblot. These experiments showed that PKD1wt was present in

nNOS immunoprecipitates and that this result was clearly

enhanced after PDBu treatment (Figure 1B). This result confirmed

the association of these two enzymes and indicated that PKD1

activation potentiates the formation of PKD1/nNOS complexes.

Because PKD activation leads to Ser916 autophosphorylation

within its PDZ-binding motif, we further examined the contribu-

tion of this phosphorylation to the association of PKD1 with

nNOS. To this end, HEK293T cells were cotransfected with Myc-

nNOS together with a phospho-mimetic mutant GFP-PKD1-

Ser916Glu (PKD1S916E) or a non-phosphorylatable mutant GFP-

PKD1-Ser916Ala (PKD1S916A). Co-immunoprecipitation analysis

performed as above showed that mutation of this residue did not

alter the association of PKD1 with nNOS under basal conditions

and in the absence of PDBu (Figure 1C). Importantly, the

association of these two PKD1 mutants to nNOS was comparable

to that of their wt counterpart under resting non-stimulated

conditions, indicating that mutations mimicking or abolishing

phosphorylation of Ser916 were not regulating this process.
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Figure 1. PKD1 association with nNOS is enhanced by kinase activation in a PDZ-ligand independent manner. (A) PKD and nNOS were
immunoprecipitated from cultured primary rat cortical neurons DIV14. These immunoprecipitates were used to perform an in vitro kinase assay (IVK)
in the presence of [c-32P]-ATP before being resolved in SDS-PAGE gels together with neuronal total lysates (TL) and transferred to a nitrocellulose
membrane. Filter was first incubated with specific antibodies to determine the presence of PKD or nNOS in the immunoprecipitates by Western blot
analysis (WB). This method detected a signal that could correspond to PKD in nNOS immunoprecipitates. Note that PKD showed a slower migration
after IVK compared to total lysates (TL) indicative of its hyperphosphorylated state. This membrane was then exposed to obtain an autoradiography
image of the IVK. Autophosphorylated PKD was present both in PKD and nNOS immunoprecipitates (32P-PKD) and an additional radioactive band
corresponding to nNOS was also detected. Radioactive bands and immunoblot signals matched completely after overlapping autoradiography and
ECL films, indicative of the association of endogenous PKD with endogenous nNOS in primary cortical neurons DIV14. (B) HEK293T cells were
transfected with Myc-nNOS (nNOS) and wild-type GFP-PKD1 (PKD1wt). Before lysis and 48 h after transfection, cells were untreated (2) or treated (+)
with 200 nM PDBu for 15 min as indicated. Total lysates were subjected to immunoprecipitation with Myc antibody (Ip: Myc). Immunocomplexes
were separated by SDS-PAGE and PKD1 and nNOS presence was analyzed by immunoblot using anti-GFP and anti-Myc antibodies, respectively.
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Additional cotransfection experiments using a PKD1 mutant

lacking its PDZ-ligand (PKD1DSIL) rendered a similar result in

which PKD1 was able to co-immunoprecipitate with nNOS

preferentially after kinase activation by PDBu treatment

(Figure 1D). These results suggested that the PDZ-binding motif

of PKD1 was dispensable for the formation of a complex with

nNOS.

In order to complement these studies, and to definitely rule out

the possible participation of PKD PDZ-ligand on its association

with nNOS, we tested the putative interaction between the

autophosphorylated C-terminus of PKD1 and nNOS PDZ

domain performing a yeast two-hybrid assay. Initially, we

employed the complete active catalytic domain of PKD1 (aa

557–918), presenting the autophosphorylated PDZ-stretch (-

ERVpS916IL) at its very C-terminal end, and used it as bait to

screen its binding to the PDZ domain of nNOS (Figure 1E).

Contrary to our initial prediction, we found that this PKD1

construct failed to form a complex with either nNOS PDZ domain

(residues 1–102) or an nNOS construct that included also the beta-

hairpin motif (residues 1–131) (Figure 1E). We obtained a similar

result using two shorter constructs of PKD1 displaying a wild-type

non-phosphorylated motif (-ERVSIL) or a phospho-mimetic

sequence (-ERVEIL) (Figure 1E). Control experiments showed

that both nNOS constructs bound tightly to the PDZ-ligand of

CAPON (Figure 1E), a protein with an acidic residue at the -3

position known to bind nNOS PDZ domain [8]. In addition, full-

length a-syntrophin could associate only to the nNOS construct

that included the beta-hairpin extension (Figure 1E), in agreement

with the PDZ/PDZ domain interaction of these two molecules/

proteins previously reported [12]. These results reflect that, albeit

nNOS PDZ domain constructs used in this assay are functional,

the presence of a negative charge on Ser916 at -2 position within

PKD1 PDZ-ligand could not convey on this kinase the ability to

bind to PDZ domain of nNOS. These data are also in agreement

with immunoprecipitation experiments and further demonstrate

that, contrary to our initial hypothesis, the PDZ-binding motif of

PKD1 was dispensable for the association of the kinase with

nNOS, even though there was a clear association between these

two enzymes.

We continued examining the participation of other PKD1

domains that could be mediating PKD and nNOS association

transfecting into mammalian cells GFP-PKD1 mutants where the

PH or CRD domains had been deleted (PKD1DPH and

PKD1DCRD, respectively). HEK293T cells transfected with these

mutants together with nNOS for 48 h were untreated or treated

with PDBu for 15 min to activate PKD1. Cellular lysates were

immunoprecipitated with an anti-Myc antibody to detect PKD1

and nNOS co-immunoprecipitation. As shown in figure 2A,

PKD1 without the CRD domain still associated to nNOS,

however, nNOS/PKD1 complexes formation was absolutely

hampered when PKD1 lacked its PH domain. This result is

particularly important because we have shown that PKD1DPH

mutant is constitutively active and autophosphorylates at the PDZ-

ligand Ser916 [36], and further supports the data obtained so far in

yeast and mammalian cells, indicating again that phosphorylation

of the PDZ binding motif is not involved in nNOS/PKD1

association. Given that PKD2 and PKD3 isoforms contain

conserved PH domains, we also checked their possible association

with nNOS performing transient transfections in HEK293T cells

and coimmunoprecipitation analysis. Results showed that full-

length PKD2 weakly interacted with nNOS (see Figure S1),

whereas PKD3 did not (not shown), suggesting a higher preference

of nNOS for binding to PKD1. Globally, from these experiments

we can conclude that the presence of the PH domain of PKD1,

but not its PDZ-ligand (phosphorylated or not), is absolutely

required for the association of this kinase with nNOS.

Finally, in order to test whether PKD1 PH domain could be

mediating a direct interaction with nNOS, we performed pull-

down assays using recombinant GST-PH protein. Figure 2B shows

that the PH domain of PKD1 alone was able to interact with

purified nNOS. Furthermore, this domain also pulled-down

nNOS from brain extracts (Figure 2C). These data indicate that

PKD1 and nNOS interact directly through the PH domain of the

kinase.

PKD1 activation potentiates its colocalization with nNOS
Depending on cell context and stimulation conditions PKD can

be targeted to different intracellular locations such as the cytosol,

plasma membrane, Golgi apparatus, or nucleus (for review, see

[22]). In many cell types, including neural PC12 cells, PKD is

mainly cytosolic and treatment with phorbol esters or receptor

stimulation provokes a rapid recruitment of the enzyme to specific

plasma membrane domains [29,30,37]. In addition, subcellular

targeting of nNOS is also critical for the regulation of its function

[4]. Given that PKD1 activation enhances its association with

nNOS, we examined whether it could also promote their

intracellular colocalization. To this aim, Myc-nNOS together

with GFP-PKD1wt were transfected into HEK293T and nerve

growth factor-treated PC12 cells. Two days after transfection cells

were left untreated or stimulated with PDBu for 15 min to activate

PKD1, then fixed and immunostained using an anti-Myc

antibody, and analyzed by confocal microscopy. Immunofluores-

cence images from both cell types showed that under resting

conditions PKD1 and nNOS presented a major cytoplasmic

distribution and low colocalization (Figure 3). However, after

phorbol ester stimulation PKD1 translocated to certain subdo-

mains of the plasma membrane where it significantly co-localized

with nNOS (Figure 3). This result reinforces that PKD1 activation

Expression levels of nNOS and PKD1wt in total lysates are also shown. Note that PDBu treatment enhances the formation of nNOS/PKD1 complexes.
(C) A phospho-mimetic mutant GFP-PKD1-Ser916Glu (PKD1S916E) and a non-phosphorylatable mutant GFP-PKD1-Ser916Ala (PKD1S916A) within PKD1
PDZ-binding motif were transfected alone (-) or together with Myc-nNOS (nNOS). Total lysates were subjected to immunoprecipitation with Myc
antibody (Ip: Myc). Immunocomplexes were separated by SDS-PAGE and PKD1 and nNOS presence was analyzed by immunoblot using anti-GFP and
anti-Myc antibodies, respectively. Expression levels of nNOS and PKD1 mutants in total lysates are also shown. Note mutants in the PDZ-ligand of
PKD1 are able to associate with nNOS similarly to PKDwt under non-stimulated conditions shown in panel B (D) Myc-nNOS (nNOS) was cotransfected
into HEK293T cells together with wild-type GFP-PKD1 (PKD1wt) or a mutant where the PDZ-ligand had been deleted (PKD1DSIL), and 48 h after
transfection cells were untreated (2) or treated (+) with PDBu as in panel B. Analysis of nNOS immunoprecipitates showed that PKD1/nNOS
complexes are still formed after deletion of PKD1 PDZ-ligand. Representative images from three independent experiments are shown in panels A, B, C
and D. (E) Active catalytic domain of PKD1 (aa 557–918), presenting phosphorylated Ser916 in its PDZ-ligand (ERVpSIL), or two shorter C-terminal
fragments containing the non-phosphorylated PDZ-binding motif of wild-type PKD1 (ERVSIL) or a phospho-mimetic mutant PKD1-Ser916Glu (ERVEIL)
were cloned in pGBKT7 and used as baits in a yeast two hybrid assay using as prey the PDZ domain of nNOS (without or with the b-hairpin ‘‘finger’’
extension) cloned in pGAD. A positive interaction was detected by the ability of the yeasts to grow in the absence of histidine and to metabolize the
X-Gal substrate. No direct interaction between any of PKD1 baits tested was found. The C-terminus of CAPON was used as a positive control of
binding to both nNOS constructs whereas a-syntrophin was used as a control of protein known to bind to nNOS only in the presence of the b-hairpin.
doi:10.1371/journal.pone.0095191.g001
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potentiates its association and subcellular colocalization with

nNOS.

PKD1 phosphorylates nNOS at activatory Ser1412 in vitro
and in live cells

Our initial in vitro kinase and immunoblot analysis suggested

that immunoprecipitated nNOS from neuronal extracts could be

phosphorylated by PKD (Figure 1A, IVK). Sequence analysis of

nNOS revealed that the heme-oxygenase domain displays one

consensus site for PKD1 phosphorylation (IKRFG-pS374-K) [38].

Therefore, we further investigated whether nNOS was a PKD

substrate performing in vitro kinase assays using radioactive [c32P]-

ATP and purified enzymes. As shown in figure 4A, recombinant

full-length nNOS incubated with the purified active catalytic

domain of PKD1 (PKD1-cat) rendered a clear radioactive band at

160 kDa, indicative of nNOS phosphorylation. Autophosphory-

lated PKD1 catalytic domain was also detected as a radioactive

band of 65 kDa (Figure 4A).

In order to identify the residues phosphorylated by PKD1

within nNOS, a similar in vitro kinase reaction, performed with

non-radioactive ATP, was digested with trypsin and subsequently

subjected to HPLC and peptide fragmentation by MALDI TOF/

TOF (Figure 4B). Of the several hundred nNOS-derived peptides

that were obtained, the only significant phosphopeptide that was

clearly identified corresponded to LRSESIAFIEESKK (residues

L1408-K1421 of rat nNOS - Accession number P29476; 1429 aa).

De novo sequencing of an eluted tryptic peptide with a mass of

1715,85 Da revealed that it corresponded to sequence LRSE(p-

S)IAFIEESKK and the phosphorylated residue was unambigu-

ously assigned to the Ser residue present at the fifth position (pS; b5

in Figure 4B). This analysis allowed us to identify accurately

nNOS Ser1412 (Rat LRSE-pS1412-IAFIEESKK, residue that in

human sequence corresponds to Ser1417) as the serine phosphor-

ylated by PKD1 (Figure 4B). In this context, it must be mentioned

that according to crystallographic data, Ser1412 is located within

the nNOS C-terminal a-helix and its phosphorylation is known to

activate the enzyme, inducing a conformational change that

increases the NADPH-derived electrons from the reductase

towards the heme-oxygenase domain [39].

Since in silico analysis of nNOS sequence did not predict this

serine was in a consensus context for PKD1 phosphorylation, we

compared the amino acid sequences of known phosphorylation

sites within several other PKD1 substrates and searched for

homologies with the one we had just identified (Figure 4C). PKD1

substrates typically present a hydrophobic residue such as Leu or

Ile at -5 position, together with a basic residue such as Lys or Arg

at -3 position [38]. Interestingly, C-termini of both PKD1 and

nNOS partially fail to fully meet this requirement, since an acidic

Glu residue is present at -3 position in PKD1 while a basic Arg

residue is present at -5 position in nNOS. However, these C-

terminal sequences are indeed bona fide PKD1 substrates. In the

case of PKD1, C-terminal Ser916 can be not only autopho-

sphorylated but also trans-phosphorylated by other active PKD1

molecules [26]. In the case of nNOS C-terminus, PKD1

phosphorylates Ser1412 both in vitro and in living cells as we

demonstrate herein (see data below). Furthermore, various amino

acids present at nNOS PKD1 phosphorylation sequence are

identical to those present in other known PKD1 substrates. In

addition to the conserved Arg residue at position -3, nNOS

phosphorylation sequence displays a Ser at -2 position (as in the

case of slingshot-SSH1 [40]) and a Glu at -1 position (as in the case

of cortactin [41]) (Figure 4C).

In order to corroborate that Ser1412 was phosphorylated by

PKD1 in nNOS we used a commercially available phospho-

Figure 2. PKD1 PH domain mediates nNOS interaction. (A)
HEK293T cells were transfected with Myc-nNOS (nNOS) together with
wild-type GFP-PKD1 (PKD1wt) or mutants lacking the PH domain
(PKD1DPH) or the cysteine-rich domain (PKD1DCRD), and treated (+) or
not (2) with PDBu 48 h later. Total lysates were subjected to
immunoprecipitation with Myc antibody (Ip: Myc) to immunoprecipi-
tate nNOS. The presence of PKD1 and nNOS in immunocomplexes and
total lysates was analyzed by immunoblot using anti-GFP and anti-Myc
antibodies, respectively. Note that deletion of the PH domain in PKD1
hampers the formation of nNOS/PKD1 complexes. (B) Different
concentrations of purified nNOS (0.5, 1 and 5 mg) were incubated with
8 mg of immobilized GST or GST-PKD-PH (GST-PH) proteins. Pull-down
complexes were run together with 0.1 mg of purified nNOS in SDS-PAGE
gels and nNOS was detected by Western blot. (C) Rat brain extracts
(500 mg) were incubated with GST or GST-PH and the presence of nNOS
in pull-down samples and in brain total lysates (TL) was determined by
Western blot as above. Loading of proteins is shown by Ponceau
staining. Results are representative of three independent experiments.
doi:10.1371/journal.pone.0095191.g002
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specific antibody recognizing this phospho-site (nNOS-pSer1412).

We performed in vitro kinase assays as above followed by

immunoblot analysis. The nNOS-pSer1412 antibody only detected

purified nNOS when it had been pre-incubated with active PKD1

catalytic domain in the presence of ATP (Figure 5A). In addition

we carried out a similar assay using the two independent domains

to show that PKD1 was able to phosphorylate Ser1412 in the full-

length protein and in the reductase domain (Figure 5B). To further

validate our in vitro data and to test whether nNOS was also a

substrate of PKD1 in vivo we transfected HEK293T cells with

Myc-tagged wild-type nNOS (nNOS) or the non-phosphorylatable

mutant nNOS-Ser1412Ala (nNOSSA) together with a constitutively

active mutant of PKD1 fused to GFP (PKD1ca). Levels of

ectopically expressed GFP-PKD1ca or mutated or wild-type Myc-

nNOS were similar in all cellular total lysates. In agreement with

our mass spectrometry results, after immunoprecipitating nNOS

with anti-Myc antibodies we detected that Ser1412 was phosphor-

ylated in vivo only in cells that had been cotransfected with

constitutively active PKD1 (Figure 5C). Accordingly, no signal was

detected when nNOS-Ser1412Ala mutant was used (Figure 5C).

Given that glutamate stimulation of NMDAR in primary cultured

cortical neurons results in nNOS Ser1412 phosphorylation [31] we

finally examined whether PKD1 activation could occur down-

stream the activation of these type of glutamate receptors and

control nNOS phosphorylation in this particular site (Figure 5D).

Cortical neurons DIV14 were incubated with the NMDAR

agonist NMDA and its co-agonist glycine for 5 min (named from

now on as treatment with NMDA). Some neurons were pretreated

for 1 h with Gö6976, an inhibitor that is frequently used to inhibit

PKD [42,43]. Importantly, immunoblot analysis of neuronal

lysates showed increased levels of both active PKD phospho-Ser916

and nNOS phospho-Ser1412 after NMDAR stimulation, an effect

that was significantly blocked by preincubation with the inhibitor

(Figure 5D). Altogether our data show that PKD1 specifically

phosphorylates Ser1412 in nNOS both in vitro and in vivo.

In figure 1A, we have already shown that endogenous PKD and

nNOS specifically co-immunoprecipitated in lysates from mature

cortical neurons in culture DIV14. Since PKD activation by PDBu

increased its association with nNOS in transfected cells, we next

examined whether this interaction could be also enhanced by

Figure 3. Activation of PKD1 increases its colocalization with nNOS. HEK293T and nerve growth factor treated PC12 cells were cotransfected
with Myc-nNOS and wild-type GFP-PKD1 (GFP-PKD1wt). To activate PKD1, cells were left untreated or stimulated with PDBu for 15 min,
immunostained using an anti-Myc antibody and analyzed by confocal microscopy. See that PKD1 activation enhances its colocalization with nNOS in
both cell types. Results are representative of three independent experiments. Confocal microscopy images correspond to single sections. A magnified
detail of the merge images in PDBu treated cells is depicted. Scale bar, 20 mM.
doi:10.1371/journal.pone.0095191.g003
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NMDAR stimulation in neurons. We therefore analyzed PKD and

nNOS co-immunoprecipitation under basal conditions or after

stimulation with NMDA and found that NMDA treatment only

slightly enhanced the association of both enzymes (Figure 5E).

This result could be in part due to the basal activity presented by

PKD in neurons in culture as detected by the kinase autophos-

phorylation signal phospho-Ser916.

PKD1 activity controls nNOS activation and NO synthesis
So far our data show that PKD1 activation enhances the

formation of a complex with nNOS and PKD1 phosphorylates

nNOS at Ser1412. It has been reported previously that nNOS

activity is regulated through the concerted action of several protein

kinases and phosphatases [4,44,45]. In fact, various signaling

pathways result in the activation of protein kinases (such as Akt/

PKB or PKA) that converge in the phosphorylation of Ser1412,

activation of nNOS and increased ?NO synthesis [31,46,47].

Figure 4. Identification of Ser1412 in nNOS as the unique site targeted by PKD1 phosphorylation. (A) Purified full-length rat nNOS (1429
amino acids, accession number P29476) was phosphorylated by purified active catalytic domain of PKD1 (PKD1-cat) in an in vitro kinase assay (IVK)
using [c-32P]-ATP. The image shows a representative IVK autoradiography out of three independent assays performed. (B) nNOS phosphorylated in
vitro by PKD1 as in (A), but using non-radioactive ATP, was digested with trypsin, and the resulting peptides analyzed by HPLC coupled to MALDI-
TOF/TOF. The MS/MS spectra of the tryptic nNOS peptide 1408LRSEpSIAFIEESKK1421 (Mass, 1715,851 Da) is shown. The ‘‘y-ion fragment series’’ and the
‘‘b-ion fragment series’’ are indicated on the top. Fragmentation of the precursor reveals unambiguously that Ser1412 is the phosphorylation site. No
other phosphopeptides could be detected among the over 200 peptides resolved by HPLC coupled to MALDI-TOF/TOF analysis. (C) Consensus motif
for PKD phosphorylation and sites of phosphorylation in several PKD substrates (Kidins220; Slingshot-SSH1; Cortactin) and PKD1 C-terminal
autophosphorylation motif. The phosphorylatable Ser (pS) is at position P(0), residue at P(-3) is typically occupied by a basic residue (Arg/Lys) and a
hydrophobic amino acid is characteristic of P(-5) (preferentially Leu/Val/Ile). Although nNOS Ser374 fulfilled the criteria of putative PKD consensus
phosphorylation motif, it was not found to be phosphorylated by the kinase. Instead C-terminal nNOS Ser1412 was identified as a phosphorylated site
by mass spectrometry and represents an atypical consensus sequence for PKD since residue at P(-5) is occupied by an Arg.
doi:10.1371/journal.pone.0095191.g004

Protein Kinase D Activates nNOS

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e95191



Hence, our findings indicate that PKD1 might be a newly

identified activatory partner of nNOS. Our next goal was to

demonstrate that active PKD1 was in fact stimulating nNOS

enzymatic activity and inducing the production of ?NO. As a first

approach we used DAF2-DA (4,5-Diaminofluorescein diacetate), a

reagent that is used to detect and quantify low concentrations of

nitric oxide when loaded into cells [48]. Transfection of COS-7

cells with wild-type nNOS resulted in a modest increase in ?NO

synthesis and DAF2-DA fluorescence levels, probably due to the

absence of any added calcium ionophores (Figure 6A, quantifica-

tion graph represented on the right). However, ?NO production

increased significantly in cells where nNOS had been cotrans-

Figure 5. nNOS is phosphorylated by PKD1 at the activatory residue Ser1412 within the reductase domain. (A) Purified wild-type full-
length nNOS was phosphorylated by purified active catalytic domain of PKD1 fused to GST (PKD1-cat active) by in vitro kinase assays (IVK) using non-
radioactive ATP. nNOS phosphorylation by PKD1 at Ser1412 was detected by immunoblot using a phospho-specific antibody recognizing phospho-
Ser1412 within nNOS reductase domain (nNOS-pSer1412). (B) In vitro phosphorylation of PKD1-cat occurs specifically at Ser1412 both when full-length
nNOS or its reductase domain are used as substrates, but not when the heme-oxygenase domain is used as substrate. Phosphorylation was
determined using anti phospho-Ser1412 antibodies. Loading of the different recombinant nNOS (full-length, or FL, heme-oxygenase or reductase
domains) is shown by Ponceau staining. (C) HEK293T cells were cotransfected with either pEFBOS-GFP vector alone (2) or mutant active PKD1
(PKD1ca) and Myc-tagged nNOS or its phosphorylation deficient mutant Myc-nNOS-Ser1412Ala (nNOSSA). Two days later cells were lysed and total
lysates were incubated with an anti-Myc antibody (IP: Myc). Detection of phosphorylated nNOS at Ser1412 or total nNOS in the immunocomplexes was
determined by immunoblot analysis using a phosphospecific antibody (nNOS-pSer1412) or a total nNOS antibody. Levels of nNOS and GFP-PKD1ca in
total lysates are also shown. (D) Primary cultures of rat cortical neurons grown in vitro for 14 days were untreated or treated with 50 mM NMDA plus
10 mM glycine (NMDA) for 5 min, pre-incubated or not for 1 h with the inhibitor Gö6976 (5 mM). Detection of active PKD (PKD-pSer916), total PKD,
phosphorylated nNOS at Ser1412 or total nNOS in the lysates was determined by immunoblot analysis. Signal for the neuronal specific enolase (NSE)
was used as loading control. Representative blots from three independent experiments are shown. (E) Primary cultures of rat cortical neurons grown
in vitro for 14 days were untreated or treated with 50 mM NMDA plus 10 mM glycine (NMDA) for 5 min, pre-incubated or not for 1 h with the inhibitor
Gö6976 (5 mM). Detection of active PKD (PKD-pSer916), total PKD, phosphorylated nNOS at Ser1412 or total nNOS in the lysates was determined by
immunoblot analysis. Signal for the neuronal specific enolase (NSE) was used as loading control. (E) Endogenous nNOS was immunoprecipitated from
cultured primary rat cortical neurons DIV14 untreated or treated with NMDA as above. These immunoprecipitates were analyzed for the presence of
PKD and nNOS by Western blot. Total lysates from these neurons were run in parallel and the corresponding proteins were detected by the indicated
antibodies.
doi:10.1371/journal.pone.0095191.g005
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Figure 6. PKD1 activity controls ?NO production and downstream cGMP/PKG signaling. (A) COS-7 cells were transfected with full-length
wild-type nNOS in the absence or presence of PKD1ca. In a different well, iNOS was also transfected and served as a control of large amounts of
released ?NO. 48 h after transfection cells were washed with medium and incubated with 25 mM of the fluorescent ?NO sensor DAF2-DA. Cell-released
?NO was allowed to react with DAF2-DA for at least 4 hours. Subsequently, the monolayer was extensively washed with medium and the
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fected with a constitutively active mutant of PKD1 (PKD1ca). As a

positive control, we transfected COS-7 cells with iNOS, an

isoform that binds Ca2+/calmodulin irreversibly and induces the

release of high amounts of ?NO (Figure 6A). In addition, we also

examined the effects of PKD inhibition in ?NO synthesis by co-

expressing wild-type nNOS and PKD1 in COS-7 cells. DAF2-DA

fluorescence signal obtained in untreated cells or after PDBu

stimulation was blocked when cells were pretreated with Gö6976

(Figure 6B, quantification graph represented on the right). These

results clearly show that PKD1 activity increases the synthesis of

?NO by nNOS in living cells.

As a read out of ?NO synthesis we also decided to determine the

levels of vasodilator-stimulated phosphoprotein (VASP) phosphor-

ylated at Ser239 (VASP-pSer239), which has been suggested to

represent a biochemical marker of ?NO levels in intact cells [49].

Released ?NO is able to induce cGMP production and protein

kinase G activation that ultimately phosphorylates this residue in

VASP, an effect prevented by preincubation with NOS inhibitors.

Protein kinase G activation promotes VASP phosphorylation

mainly in Ser239, but also in other two residues [50,51].

Unphosphorylated VASP and VASP-pSer239 migrate in SDS-

PAGE gels with an apparent molecular weight of 45 kDa and

additional phosphorylations in either one or both of the other

residues produces a shift up to 50 kDa. Therefore, depending on

the activation of this signaling cascade, the antibody recognizing

VASP-pSer239 will detect a double band in immunoblot analysis.

Importantly, if the phosphorylation of the protein decreases

significantly, total VASP will mainly be detected as a single band

of 45 kDa. Changes in the intensity of VASP-pSer239 band or in

the mobility of the protein correlate with the degree of

phosphorylation and consequently of the activation/inactivation

of this pathway by ?NO. To determine the influence of PKD1

activity on this parameter, we transfected HEK293T cells with

Myc-nNOS and kinase inactive GFP-PKD1ki (PKD1ki)

(Figure 6C). Before preparing cellular extracts, cells were pre-

treated or not with the nNOS inhibitor L-NG-nitroarginine methyl

ester (L-NAME; 100 mM) for the last 24 h. As a positive control,

we triggered VASP-pSer239 phosphorylation by incubating the

cultures with the cGMP homologue 8-Br-cGMP (100 mM) for

30 min. The immunoblot image and its quantification analysis

showed that VASP-pSer239 levels were almost undetectable in

untreated and that the doublet signal only appeared after 8-Br-

cGMP treatment (Figure 6C). Regarding total VASP, in 8-Br-

cGMP stimulated cells a doublet was clearly visible which upper

band was hardly detectable in unstimulated cells. When nNOS

was expressed VASP-pSer239 signal was clearly potentiated, an

effect that was partially blocked by the inhibitor L-NAME.

Transfection of kinase inactive PKD1 had no effect on VASP-

pSer239 or total VASP, being their signal very similar to control

cells (Figure 6C). Noteworthy, when inactive PKD1ki was co-

expressed with nNOS, VASP phosphorylation at Ser239 was

significantly decreased compared with that of cells expressing

nNOS alone (Figure 6C, quantification graph represented on the

right) and similar to that obtained in cells pretreated with L-

NAME. The reduction in the signal of VASP-pSer239 and the lack

fluorescence was detected between 505 and 525 nm using an excitation wavelength of 488 nm. A minimum of three large monolayer fields of over
400 cells were captured. A representative field is shown for each of the four conditions (left panels). Fluorescence was quantified through pixel to
pixel intensity determination and signal corresponding to cells transfected with the empty vector was subtracted from each condition to represent
the plot on the right. Data are mean 6 S.D. for three determinations. *, p,0.05 in relation to non-transfected cells. (B) COS-7 cells were transfected
with full-length wild-type nNOS and wild-type PKD1. In a different well, iNOS was also transfected as a positive control. Two days after transfection
cells were incubated with DAF2-DA as before, then preincubated or not with Gö6976 (5 mM) and treated or not with PDBu (200 nM) for 15 min. A
representative field for each of the six conditions is shown (left panels) and fluorescence was quantified as above (right panel). (C) HEK293T cells were
cotransfected with either pEFBOS-GFP vector alone (2) or kinase inactive GFP-PKD1 (PKD1ki) and Myc-nNOS. Cells were pre-treated or not with the
nNOS inhibitor L-NG-nitroarginine methyl ester (L-NAME; 100 mM) for the last 24 h and 24 h after transfection. Two days after transfection cells were
lysed and total lysates were analyzed by immunoblot. Detection of phosphorylated VASP (VASP-pSer239) as a doublet of 45 kDa and 50 kDa was used
as a measurement of downstream signaling activated by ?NO production. As a positive control, VASP-pSer239 phosphorylation was triggered by
incubating the cultures with the cGMP homologue 8-Br-cGMP (100 mM) for 30 min. Levels of total VASP, nNOS, GFP and GFP-PKD1ca expression in
total lysates are also shown. Note that total VASP appears as a doublet which upper band is absent in unstimulated cells. Signal for a-tubulin was
used as loading control. Graph on the right represents the quantification of the immunoblot signals corresponding to the two VASP-pSer239 bands
(45 kDa plus 50 kDa) normalized to a-tubulin levels and expressed relative to the values obtained in cells expressing nNOS in the absence of L-NAME
(arbitrarily assigned a value of 100%). Representative results from three independent experiments are shown. Note that co-transfection of inactive
PKD1 abrogates nNOS-induced phosphorylation of VASP-pSer239 levels to the same extent as L-NAME inhibitor, indicating that nNOS activation,
production of ?NO and stimulation of cGMP/PKG signaling pathway is under the control of PKD activity.
doi:10.1371/journal.pone.0095191.g006

Figure 7. Scheme model of PKD1/nNOS complex formation,
nNOS activatory phosphorylarion and NO synthesis. Activation
of PKD1 enhances the association of PKD1 with nNOS. The PH domain
of PKD1 mediates a direct interaction with nNOS that is independent of
PKD1 PDZ-ligand. Active PKD1 autophosphorylates at Ser916 and
phosphorylates the activatory residue Ser1412 within nNOS C-terminal
a-helix, leading to the stimulation of nNOS activity and enhancement of
?NO production. CRD, cysteine rich domain; PH, pleckstrin homology
domain; C, catalytic domain; PDZ-L, PDZ-ligand.
doi:10.1371/journal.pone.0095191.g007
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of effect of nNOS inhibitor L-NAME that confers kinase inactive

PKD1 demonstrates that the stimulation of this pathway is greatly

hampered when PKD1 activity is compromised. Importantly, we

also detected an increase in VASP-pSer239 signal as readout of

?NO release and signaling in mature neuronal cultures after

NMDAR stimulation, an effect blocked by inhibiting PKD with

Gö6976 (Figure 5D). In summary, our data demonstrate that there

is a direct correlation between PKD1 activity, nNOS phosphor-

ylation and activation, and ?NO production (see model in

Figure 7).

Discussion

Among the three enzymes involved in ?NO synthesis (eNOS,

nNOS and iNOS), the neuronal isoform nNOS is the only one

bearing a PDZ domain. It is widely accepted that PDZ domains

present selective interaction with specific PDZ-ligands. Particular-

ly, the PDZ domain of nNOS was proposed long time ago to

display a preference for PDZ-binding motifs bearing acidic

residues at -2 or -3 position [6,7]. The discovery by our group

of a PDZ-ligand autophosphorylated in Ser916 at -2 position in

active PKD1, therefore presenting a negatively charged phos-

phorylated residue at this site [26], prompted us to hypothesize

that this motif could be interacting directly with the PDZ domain

of nNOS. We demonstrate here there is a spatial and physical

association of PKD1 and nNOS that is potentiated by activation of

the kinase. Unexpectedly, our experiments performed in yeast and

mammalian cells, show that the association of these two enzymes

occurs independently of the PDZ-ligand of PKD1 and the

phosphorylation state of Ser916 within this motif. Instead, the

PH domain of PKD1 is absolutely required for its association with

nNOS, mediating a direct interaction of both enzymes. Several

years ago we discovered that the PH domain of PKD1 is

autoinhibitory since point mutations or complete deletion of this

domain render a constitutively active kinase [36]. Despite of its

highly active state, and the consequent autophosphorylation at

Ser916 within the PDZ-ligand, PKD1 mutant lacking the PH

domain (PKD1DPH) is unable to associate with nNOS. Impor-

tantly, a-syntrophin, which interaction with nNOS through its

PDZ domain was first identified [14], bears a PH domain needed

to target nNOS to the sarcolemma in vivo, in addition to its PDZ

domain [52,53]. These observations suggest that there might be a

common molecular mechanism by which PH domains may play a

critical role in the regulation of nNOS associations with protein

complexes and/or subcellular compartments.

The PH domain of PKD1 was first identified to mediate direct

interactions preferentially with protein kinase C (PKC) novel

isoforms, PKCg and PKCe [35]. These PKCs participate in the

classical pathway of PKD1 activation (induced by phorbol esters

or diacylglycerol production - downstream membrane receptor’s

activation) by phosphorylating activation loop Ser744 and Ser748

[54], which in turn results in a release of autoinhibition by the PH

domain [55]. PKCd, another member of the novel PKC

subfamily, participates in oxidative stress-induced PKD activation

by molecular mechanisms that involve an initial activation of Abl

and Src tyrosine kinases [56,57]. In this alternative pathway, Src-

mediated Abl activation leads to Tyr463 phosphorylation within

PKD1 autoinhibitory PH domain and provokes a molecular

switch that allows Src-mediated Tyr95 phosphorylation, the

formation of a complex with PKCd facilitating activation loop

phosphorylation and correlated PKD1 activation [56,57]. Despite

the pathway involved, a conformational change and a relief of PH

domain autoinhibition accompany PKD activation. This novel

open conformation may present a more accessible PH domain and

favor the association of active PKD with different protein

complexes, as we show here to occur with nNOS. Similarly to

nNOS, the kinase activity and the PH domain of PKD are critical

for apoptosis signal regulating kinase 1 (ASK1) interaction and

activation [58]. However, we show here that PKD directly

phosphorylates and activates nNOS whereas there are no

evidences for ASK1 being a PKD substrate or of stimulation of

ASK1 activity by direct PKD phosphorylation.

Despite the list of PKD substrates is increasing, very little is

known about the biological significance of their association to the

kinase. For most PKD substrates, like Hsp27 [59], troponin [60],

snail [61], slingshot [62], RIN1 [63,64], CERT [65], oxysterol

binding protein [66] or sphingosine kinase [67], there are not

association studies available. In the case of rhotekin [68] and

phosphatidylinositol-4 kinase III-b [69] the association studies

gave negative results. Interestingly, some PKD substrates have

been shown to associate with the kinase, such as Kidins220 [20],

HDAC5 [70], E-cadherin [71], b-catenin [72], CREB [73] and

cortactin [41]. However, the effect of PKD activation on substrate

association was only specifically addressed before for Kidins220

[20] and HDAC5 [70] that form complexes with the kinase

independently of its activation state. Therefore, nNOS is the first

identified substrate which interaction with PKD is clearly

enhanced after activation of the kinase.

In addition, we demonstrate here that active PKD1 phosphor-

ylates nNOS in the activatory Ser1412 in vitro and in vivo in living

cells, stimulating its enzymatic activity and increasing ?NO

production. In this context, it must be mentioned that this is an

atypical site for PKD phosphorylation. This kinase usually

recognizes a consensus motif presenting a hydrophobic residue

such as Leu/Val/Ile at -5 position and Arg/Lys at -3 position

referred to the phosphorylatable Ser residue [38]. Remarkably,

nNOS displays Arg residues at both positions (RLRSES1412).

Regardless of this fact, our data show that PKD1 is an activatory

partner of this isoform by phosphorylating Ser1412. This residue is

part of a motif positioned at the very C-terminal end of the

reductase module and recent crystallographic data indicate that it

adopts a helical conformation [39]. This a-helix is known to

function as a physical ‘‘lid’’ in the reductase domain that impedes

proper electron transfer [74,75]. The phosphorylatable oxygen

atom of Ser1412 is directed toward the negatively charged flavin

mononucleotide-binding domain residues Glu916 and Asp918 [39].

It has been suggested that this arrangement thus rationalizes a

mechanism for phosphorylation-induced NOS activation. The

electrostatically-induced conformational change would be then

mediated by the repulsion of the negative charge of the newly

added phosphate group. Hence, phosphorylation of nNOS at

Ser1412 activates electron transfer from the reductase domain

towards the oxygenase domain of nNOS thus augmenting ?NO

synthesis and cGMP formation [39].

Similarly, it has been reported that nNOS is also phosphory-

lated on Ser1412 by Akt/PKB [31,76], cyclic AMP-dependent

protein kinase (PKA) [46] and AMP-activated protein kinase

(AMPK) [47] in neurons and in skeletal muscle. Not only in

nNOS, but also in eNOS, the equivalent serine residue (Ser1179

and Ser1177 in bovine and human eNOS, respectively), located at

the C-terminus (presumably an a-helix as well), was early

recognized as a phosphorylation site. This serine residue is

immersed within a consensus Akt/PKB-dependent phosphoryla-

tion consensus sequence (RXRXX(S/T)X, herein RLRSESI in

nNOS and RIRTQSF in eNOS). We and other authors reported

the phosphorylation of eNOS by Akt/PKB [77–79] and AMPK

[80] both in vitro and in a cellular environment. Furthermore, the

activity of at least six protein kinases (Akt/PKB, AMPK, PKA,
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cGK-I/PKG, Chk1 and CaMKII converge on the same eNOS

activatory Ser1179, and in all cases protein phosphorylation

correlates with activation and increased ?NO synthesis (for a

recent review see Dudzinski and Michel [81]). In the case of

eNOS, mimicking the phosphorylation of Ser1179 by introducing

an acidic residue in recombinant purified enzymes directly

enhances enzyme activity and alters the sensitivity of the enzyme

to Ca2+, rendering its activity maximal at sub-physiological

concentrations of this cation [82]. Importantly, we have also

identified that PKD1 induces eNOS phosphorylation on Ser1179 in

vitro and in endothelial cells stimulated with vascular endothelial

growth factor (unpublished data).

Our data also show that activated PKD1 and substrate nNOS

colocalize and are able to co-immunoprecipitate. This is not

unprecedented, since the homologous eNOS can be co-immuno-

precipitated with several protein kinases, such as Akt/PKB [83],

AMPK [84] and Chk1 [85], known to phosphorylate the

equivalent serine at the activatory C-terminus upon activation.

The proximity of activated PKD1 and nNOS observed in

transfected neural PC12 cells differentiated with nerve growth

factor suggests that these two enzymes might be together at

neuronal post-synaptic densities. Supporting this possibility, we

also show that the stimulation of glutamate NMDAR with the

specific agonist NMDA in primary cortical neurons in culture

results in an activation of PKD1 that parallels nNOS phosphor-

ylation at Ser1412 which is blocked after pharmacological

inhibition of PKD. Other authors have reported previously that

protein kinase Akt/PKB activation in response to NMDARs

stimulation also results in nNOS phosphorylation at Ser1412 and

increases its enzymatic activity [31]. It would be of high interest to

follow this line of research in the future in order to establish the

role of PKD1 activation downstream NMDAR stimulation and its

relation to ?NO production both under physiological and

pathological conditions. It is well established that whereas the

small quantities of nitric oxide formed during synaptic transmis-

sion modulate neuronal signaling, excess of nitric oxide mediates

neurotoxicity in pathological situations, such as ischemic stroke or

neurodegeneration. Hence, since little is known about the various

kinases that regulate nNOS function in vivo, PKD inhibitors might

be useful drugs in cases of nitric oxide associated neurotoxicity.

In conclusion, herein we reveal that PKD1 interacts with nNOS

and phosphorylates Ser1412 enhancing this way nNOS activity and

?NO production. Considering that the corresponding serine in

eNOS is subjected to similar mechanisms of phosphorylation-

dependent activation, PKD emerges as a common regulator of the

enzymatic activity of constitutive NOS isoforms and ?NO

synthesis. These novel findings add to the list of biological relevant

roles of PKD a crucial one in the regulation of ?NO synthesis and

the plethora of physiological and pathological processes where this

mediator is involved.
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