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Abstract

APE1/Ref-1 is a main regulator of cellular response to oxidative stress via DNA-repair function and co-activating activity on
the NF-kB transcription factor. APE1 is central in controlling the oxidative stress-based inflammatory processes through
modulation of cytokines expression and its overexpression is responsible for the onset of chemoresistance in different
tumors including hepatic cancer. We examined the functional role of APE1 overexpression during hepatic cell damage
related to fatty acid accumulation and the role of the redox function of APE1 in the inflammatory process. HepG2 cells were
stably transfected with functional and non-functional APE1 encoding plasmids and the protective effect of APE1
overexpression toward genotoxic compounds or FAs accumulation, was tested. JHH6 cells were stimulated with TNF-a in
the presence or absence of E3330, an APE1 redox inhibitor. IL-8 promoter activity was assessed by a luciferase reporter
assay, gene expression by Real-Time PCR and cytokines (IL-6, IL-8, IL-12) levels measured by ELISA. APE1 over-expression did
not prevent cytotoxicity induced by lipid accumulation. E3330 treatment prevented the functional activation of NF-kB via
the alteration of APE1 subcellular trafficking and reduced IL-6 and IL-8 expression induced by TNF-a and FAs accumulation
through blockage of the redox-mediated activation of NF-kB. APE1 overexpression observed in hepatic cancer cells may
reflect an adaptive response to cell damage and may be responsible for further cell resistance to chemotherapy and for the
onset of inflammatory response. The efficacy of the inhibition of APE1 redox activity in blocking TNF-a and FAs induced
inflammatory response opens new perspectives for treatment of inflammatory-based liver diseases.

Citation: Cesaratto L, Codarin E, Vascotto C, Leonardi A, Kelley MR, et al. (2013) Specific Inhibition of the Redox Activity of Ape1/Ref-1 by E3330 Blocks Tnf-A-
Induced Activation of Il-8 Production in Liver Cancer Cell Lines. PLoS ONE 8(8): e70909. doi:10.1371/journal.pone.0070909
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Introduction

Non-alcoholic steatohepatitis (NASH) defines a distinct hepatic

disorder observed in patients without a history of alcohol abuse

that histologically resembles alcohol-induced liver damage and

includes cellular damage, inflammation and fibrosis [1] and may

evolve towards cirrhosis, liver failure and HCC [2]. The

mechanisms of this progression and the pathogenesis of NASH

are still poorly understood although oxidative stress, generated as a

consequence of mitochondrial impairment, seems to be directly

linked with the onset of the inflammatory circuits responsible for

the progression of this pathology. One of the key pro-inflamma-

tory cytokines that appears to be involved in modulating the

inflammatory response in several forms of liver injury is

interleukin-8 (IL-8) [3], a CXC chemokine, that recruits and

activates neutrophils, basophils and T cells [4]. Since patients with

NASH have significantly elevated serum levels of IL-8 compared

with healthy individuals, IL-8 may play a key role in the

pathogenesis of NASH [5]. In different hepatic in vitro models,

lipid accumulation can stimulate IL-8 production [6] through

activation of NF-kB [7]. In the rat liver, free Fatty Acids (FAs)

activate the NF-kB pathway and increase the expression of some

pro-inflammatory cytokines (TNF-a, IL-1b, IL-6) [8,9].

The Apurinic apyrimidinic Endonuclease/Redox effector factor

1 (APE1/Ref-1) is a multifunction protein that acts as a master

regulator of cellular response to oxidative stress conditions and

contributes to the maintenance of genome stability. APE1 is

involved in both the base excision repair (BER) pathways of DNA

lesions, acting as the major apurinic/apyrimidinic (AP) endonu-

clease, and in transcriptional regulation of gene expression as a
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redox co-activator of different transcription factors, such NF-kB

and others [10,11]. In gastric epithelial cells APE1 plays a leading

role in controlling the onset of oxidative stress-based inflammatory

processes through modulating NF-kB-mediated IL-8 gene expres-

sion [12]. APE1 expression is also up-regulated during hepatic

lipid accumulation in NASH patients [13], although it is still

unknown whether this upregulation has a causal role in the onset

of NASH or is associated to a protective function on lipid

accumulation cytotoxic effect.

APE1 is upregulated in liver cancers [14], but the functional

role of this overexpression in tumor pathogenesis and progression

is not yet clear. APE1 redox function is exerted through a novel

redox-based mechanism involving three cysteine residues (i.e. C65,

C93 and C99) [15]. Recent in vitro studies demonstrated that APE1

adopts different unfolded conformations depending on the redox

state of its Cys residues [15]. The (E)-3-(2-[5,6-dimethoxy-3-

methyl-1,4-benzoquinonyl])-2-nonyl propenoic acid (E3330) has

been reported to directly bind APE1 protein and to inhibit its

redox activity, without interfering with its endonuclease activity,

by increasing the formation of disulfide bonds involving the redox-

active Cys65, altering the folding of APE1 protein and decreasing

the protein redox active population [16], thus impacting on APE1

subcellular trafficking [17]. E3330 holds clinical therapeutic

potential as a specific inhibitor of APE1 redox function [18].

The importance of this function is highlighted by results

demonstrating that NF-kB-mediated gene expression is regulated

by APE1 redox activity, without effects on IkBa degradation [19].

E3330 was also found to selectively inhibit growth/migration of

human pancreatic cancer cells [20], suggesting that the APE1

redox function could represent a good candidate for inhibition of

tumor invasion and metastasis. E3330 suppressed inflammatory

response in activated macrophages [21], suggesting the possible

use of E3330 to reduce the inflammatory processes in liver

diseases, such as those associated to NASH.

In this study, we used in vitro models of fat overloading obtained

by exposing hepatic cells to a mixture of long-chain FAs (palmitic

(C16:0) and oleic (C18:1) acids that are the most abundant FAs in

liver triglycerides [22,23]. Additionally, the present study was

aimed at examining the functional role of APE1 overexpression

during hepatic cell damage related to lipid accumulation and the

role of the redox function of APE1 in the inflammatory process

triggered by TNF-a and FAs accumulation. Our data demonstrate

that APE1 overexpression does not protect from FAs induced cell

damage and that APE1 and NF-kB play an essential role in TNF-

a-induced transcriptional activation of IL-8 gene expression in

hepatic cancer cell lines. Inhibition of APE1 redox activity by the

redox inhibitor E3330 is efficient in preventing both TNF-a or

lipid accumulation induced activation of IL-8 expression at the

transcriptional level through the blockage of the redox-mediated

activation of NF-kB.

Materials and Methods

Cell culture and treatments
In this study, we used the Huh-7 (differentiated hepatocyte

derived cellular carcinoma cell line) [24], the HepG2 (differenti-

ated hepatocellular carcinoma) [25] and the JHH6 (undifferenti-

ated hepatocellular carcinoma) [26] as models of the liver

tumorigenic process. Huh-7 and JHH6 were purchased from

Health Science Research Resources Bank (Osaka, Japan) while

HepG2 from ATCC. Huh-7 and HepG2 cells were cultured in

Dulbecco’s modified Eagle’s medium (EuroClone, Pero, IT),

JHH6 cells were cultured in William’s medium E (Sigma-Aldrich,

St Louis, MO), both supplemented with 10% fetal bovine serum,

2 mM L-glutamine, 100 U/ml penicillin and 100 mg/ml strepto-

mycin (Euroclone, Milan, IT).

HepG2 cell clones were cultured at a density of 70000 cells/cm2

and were treated with different doses of methyl methanesulfonate

(MMS) or 2.5 mM H2O2 (both reagents are distributed by Sigma-

Aldrich) for 2 h or 1 h respectively.

For etoposide treatment, HepG2 cell clones were trypsinized

and 400000 cells were seeded on glass coverslips in 6-wells culture

plates. After 24 h, medium was replaced by Dulbecco’s modified

Eagle’s medium (DMEM) with or without etoposide (Sigma, St

Louis, MO) 50 mM for 1 h. (2E)-3-[5-(2,3-dimethoxy-6-methyl

1,4-benzoquinoyl)] -2-nonyl-2-propenoic acid (E3330; custom

synthesized) [16] was solubilized in DMSO. Treatment with

E3330 was performed in serum-free William’s medium E in order

to prevent the serum albumin levels to affect E3330 final

concentration.

Treatment with recombinant human TNF-a (Peprotech Inc.,

Rocky Hill, NJ) was performed at 2000 U/ml in serum-free

William’s medium E to minimize serum-induced IL-8 release.

To induce fat-overloading of cells, JHH6 or HepG2 cell clones

were seeded at a density of 14000 and 57000 cells/cm2

respectively and after 24 h cells were exposed to a mixture of

long-chain FAs (oleate and palmitate) at 2:1 ratio. Stock solutions

of 100 mM oleic acid (Sigma-Aldrich) and 100 mM palmitic acid

(Sigma-Aldrich), prepared in DMSO, were conveniently diluted in

William’s medium E or DMEM high glucose containing 60 mM

albumin from bovine serum (Sigma-Aldrich) to obtain the desired

final concentrations. With mixtures of FAs and albumin, the

uptake is a function of free fatty acid (FAs), which is the

monomeric form in equilibrium with albumin-bound FAs [27].

Generation of APE1 overexpressing hepatic cell lines
For generation of APE1 overexpressing cell lines, an APE1

expression vector was generated by cloning an EcoRI-BamHI

fragment from pFLAG-CMV-5.1/APE1 (Sigma, Milan, IT) into

p3XFLAG-CMV-14 vector (Sigma). The APE1ND33 deletion

mutant was generated by PCR and subcloning from the full-

length cDNA sequence. Correctness of the cloning procedure was

confirmed by DNA sequencing. Then, HepG2 cells were

transfected with p3XFLAG-CMV/APE1, the wild-type APE1

(APE1WT) and the deletion mutant (APE1ND33), previously

digested with ScaI (Fermentas, St. Leon Rot, UK); 48 h after

transfection, the cells were subjected to selection with G418

(Invitrogen, Milan, Italy) for 14 days and selected for the acquired

resistance. Individual clones were isolated by using cell cloning

cylinders (Sigma), transferred and grown stepwise into 24-well, 12-

well, and 6-well plates for expansion to 107 cells in the presence of

selective antibiotic. As a control, we used cell clones transfected

with the p3XFLAG-CMV-14 empty vector. Geneticin (G418)

(PAA Laboratories GmbH, Pasching, AT) was added to the cell

culture medium at the final concentration of 300 mg/ml during

cell growth. Total cellular extracts were analysed for APE1

expression by immunoblotting, thus revealing the expression of the

ectopic flagged WT and the mutant form of the protein.

MTT and cell growth assays
To determine the viability of HepG2 cells over-expressing APE1

protein, a 3(4,5-dimethylthiazolyl-2)-2,5 diphenyl tetrazolium

(MTT) assay was performed [28]. HepG2 control and over-

expressing APE1 clones were seeded onto 96 multi-well plates at a

density of 70000 cells/cm2 for each well. The day after, cells were

incubated with MMS or H2O2 as indicated. After treatments, in

each well 1/10 volume of MTT solution (4 mg/ml in PBS) was

added and incubated for 2 h at 37uC. Then, the supernatant was
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removed and an equal volume of DMSO was added to the cells

and the MTT formazan was dissolved by pipetting. The

absorbance was measured on an ELISA plate reader (EL808

Ultra Microplate Reader Bio-tek Instruments, Winooski, VT) with

a test and reference wavelength of 570 and 630 nm, respectively.

For trypan blue exclusion experiments, cells were trypsinized,

resuspended in 0.08% w/v trypan blue (Sigma) in complete

medium, and counted after 3–5 min of incubation.

Data were expressed as percentage of surviving cells compared

with the untreated control.

MTS assay
The day before treatment, JHH6 cells were seeded at a density

of 26000 cells/cm2. To evaluate the effect of treatment in terms of

cell viability, the CellTiter 96H AQueous One Solution Cell

Proliferation Assay (Promega Corporation, Madison, WI) was

used according to the manufacturer’s instructions. This assay

contains a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,

inner salt; MTS] that is bioreduced by cells into a colored

formazan product that is soluble in cell culture medium and can be

quantified by reading the absorbance at 490 nm.

Nile Red staining
The lipid content in cultured cells was determined fluorome-

trically by using Nile Red staining (Sigma-Aldrich, Milan, IT), a

vital lipophilic and selective fluorescent stain for intracellular lipid

droplets accumulation [29].

Stock solutions of Nile Red (100 or 1000 mg/ml) in acetone

were prepared and stored protected from light. Staining has been

carried out on fixed cells (1.5% glutaraldehyde, 5 min). Cell

monolayers were washed twice with PBS, treated for 5 min with

0,1% Triton X-100 in PBS and incubated for 1 h with Nile Red

solution to effect a 1:100 dilution in PBS. After Nile Red

treatment, nuclei were stained by 5 min incubation in 300 nM

solution of 49, 69-diamidino-2-phenylindole dihydrochloride

(DAPI) (Sigma) in PBS. Monolayers were then washed three

times in PBS and used for fluorescence microscopy. Immunoflu-

orescent images were collected using a confocal microscope (Leica

DM IRB/E, Wetzlar, Germany) at the excitation wavelength,

450–500 nm and emission wavelength .528 nm.

Preparation of total cell extracts
For preparation of total cell lysates, cells were harvested by

trypsinization and centrifuged at 2506g for 5 min at 4uC.

Supernatant was removed, and the pellet was washed once with

ice-cold phosphate-buffered saline (PBS) and then centrifuged

again as described before. Cell pellet was resuspended in lysis

buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl,

1 mM EDTA, and 1% (wt/vol) Triton X-100 supplemented with

1x protease inhibitor cocktail (Sigma), 0.5 mM phenylmethylsul-

fonyl fluoride (PMSF), 1 mM NaF and 1 mM Na3VO4, at a cell

density of 107 cells/ml for 30 min at 4uC. After centrifugation at

12,0006g for 30 min at 4uC, the supernatant was collected as total

cell lysate. The protein concentration was determined using Bio-

Rad protein assay reagent (Bio-Rad, Hercules, CA).

Western blot analysis
The indicated amounts of cell extracts were electrophoresed

onto a 12% SDS-PAGE. Proteins were then transferred to

nitrocellulose membranes (Schleicher & Schuell, Keene, NH).

Membranes were saturated by incubation at 4uC overnight with

5% (wt/vol) nonfat dry milk in PBS–0.1% (wt/vol) Tween 20 and

then incubated with the polyclonal anti-APE1 antibody [17] for

3 h. After three washes with PBS–0.1% (wt/vol) Tween 20,

membranes were incubated with an anti-rabbit Ig coupled to

peroxidase (Sigma). Upon 60 min of incubation at room

temperature, the membranes were washed three times with

PBS–0.1% Tween 20 and the blots were then developed using

the ECL enhanced chemiluminescence procedure (PIERCE,

Rockford, IL). Normalization was performed with the polyclonal

anti-b-tubulin antibody (Sigma). Blots were quantified by using a

Chemi DOC XRS densitometer (Bio-Rad).

Immunofluorescence and confocal analysis
Twenty-four hours before the experiment, cells seeded at 46105

cells/cm2, were grown on glass cover slips. For APE1 immuno-

fluorescence experiments, HepG2 cell clones were fixed in 4%

(wt/vol) paraformaldehyde for 20 min at room temperature,

permeabilized for 5 min with PBS-0.25% (wt/vol) Triton X-100

and then incubated for 30 min with 10% (v/v) fetal bovine serum

(FBS) in PBS (blocking solution) to block unspecific binding of the

antibodies. Cells were then incubated overnight at 4uC with the

anti-FLAGH M2 Monoclonal Antibody-FITC Conjugate (Sigma)

diluted 1:100 in blocking solution. After washing, a second

blocking step for 30 min in the dark was performed, and then the

cells were incubated for 3 h with the second primary antibody,

rabbit-polyclonal to Histone H3 (Acetyl K18) (Abcam, Cam-

bridge, UK) in blocking solution. After washing, cells were

incubated for 90 min with secondary antibody Alexa Fluor 546-

conjugated goat anti-rabbit (1:500; Molecular Probes, Monza, IT).

The preparations were then washed with PBS three times for

5 min each in the dark. Nuclei were counterstained by 5 min of

incubation in 300 nM solution of 49, 69-diamidino-2-phenylindole

dihydrochloride (DAPI) (Sigma) in PBS. The preparations were

then washed three times in PBS for 5 min. The microscope slides

were then mounted onto slides with an anti-fade reagent.

Coverslips were visualized through a Leica TCS SP laser-scanning

confocal microscope (Leica Microsystems, Wetzlar, Germany)

equipped with a 488-nm argon laser, a 543-nm HeNe laser, and a

63x oil fluorescence objective.

For c-H2A.X immunofluorescence experiments, control and

etoposide-treated cells were washed with PBS, fixed for 20 min

with 4% (wt/vol) paraformaldehyde in PBS, and permeabilized for

5 min with 0.25% (wt/vol) Triton X-100 in PBS. Slides were

blocked with 10% (v/v) FBS in PBS, at 4uC, overnight, incubated

for 2 h at room temperature with anti-c-H2A.X antibody

(Stressgen, Ann Harbor, MI) and washed with 0.1% (wt/vol)

Triton X-100 in PBS. Anti-c-H2A.X antibody were used at

1:500 dilution. For detection, cells were incubated with Alexa

Fluor-488-labelled anti-mouse secondary antibody (Invitrogen,

Monza, IT). Nuclei were counterstained incubating cells with

0.3 mg/ml propidium iodide (PI) for 5 min, at 37uC. Cells were

washed and mounted in MowiolH 4–88 (Sigma) supplemented with

1:5 DABCO (Sigma) as anti-fade reagent. Images were collected

using a confocal microscope.

Quantification of c-H2A.X foci was carried out by BD Pathway

855, using 20X objective. Automated image analysis was

performed with customizable and highly flexible software tools.

Nuclear boundaries were generated using the Hoechst images.

The c-H2A.X images were acquired and data intensity was

analyzed using BD PathwayTM system software within the nuclear

boundaries.
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Transient transfection experiments
The constructs of human IL-8 promoter, 21498/+44 hIL-8/

Luc and 2162/+44 hIL-8 DNF-kB/Luc, were kindly provided by

Dr. S.E. Crowe [30].

One day before transfection, JHH6 cells were seeded in

triplicate in 96-well plates at a density of 31000 cells/cm2. Then

cells were transiently transfected with 200 ng of total DNA (hIL-8/

Luc promoter and pRL-CMV Renilla luciferase constructs in a

ratio of 49:1) per well, using Lipofectamine 2000 reagent

(Invitrogen, Carlsbad, CA) according to the manufacturer’s

instructions. The transfection reagent was removed 4 h post-

transfection and cells were incubated with complete medium for

16 h. The following day, cells were washed twice with PBS, pre-

treated with E3330 in serum-free William’s medium E and then

treated with TNF-a as reported in the text. Finally cells were lysed

with Dual-GloHLuciferase Assay System (Promega) according to

the manufacturer’s instructions. The luminescence signals were

quantified using a ModulusTM II Microplate Multimode Reader

(Turner Biosystems Inc., Sunnyvale, CA). Firefly luciferase activity

was normalized to the Renilla luciferase activity.

Real time PCR
Total RNA from cells was extracted using SV Total RNA

Isolation System (Promega) according to the manufacturer’s

instructions. Single-stranded cDNA was obtained using the

iScriptTM cDNA Synthesis kit (Bio-Rad Laboratories, Hercules,

CA) according to the manufacturer’s instructions.

Real Time quantitative PCR was performed with an CFX96TM

Real-Time PCR Detection Systems (Bio-Rad Laboratories);

Primers used were: IL-8 For 59-CTGGCCGTGGCTCTCTTG-

39, IL-8 Rev 59-CCTTGGCAAAACTGCACCTT-39; 18S For

59-CTGCCCTATCAACTTTCGATGGTAG-39, 18S Rev 59-

CCGTTTCTCAGGCTCCCTCTC-39; GAPDH For 59-

CCCTTCATTGACCTCAACTACATG-39, GAPDH Rev 59-

TGGGATTTCCATTGATGACAAGC-39; HPRT For 59-

AGACTTTGCTTTCCTTGGTCAGG-39, HPRT Rev 59-

GTCTGGCTTATATCCAACACTTCG-39.

cDNA was amplified in 96-well plates using primers for IL-8,

18S, GAPDH and HPRT in separate wells using the 2X iQTM

SYBRH Green Supermix (Bio-Rad Laboratories) [100 mM KCl;

40 mM Tris–HCl, pH 8.4; 0.4 mM of each dNTP; 50 U/ml iTaq

DNA polymerase; 6 mM MgCl2, SYBR Green I, 20 nM

fluorescein, and stabilizers] and 300 nM specific sense and anti-

sense primers in a final volume of 15 ml for each well. Each sample

was analysed in triplicate. A sample without template, as negative

control, and a sample with not retro-transcribed mRNA instead of

template cDNA, as control for genomic DNA contamination, were

included. The cycling parameters were: denaturation at 95uC for

10 s and annealing/extension at 60uC for 30 s (repeated 40 times).

In order to verify the specificity of the amplification, a melt-curve

analysis was performed, immediately after the amplification

protocol.

Soluble cytokines determination
IL-8 and IL-12 protein levels in TNF-a-treated cell-culture

supernatants were quantified using a FlowCytomix assay kit

(Bender MedSystems, Atlanta, GA), according to the manufac-

turer’s protocol.

Statistical analysis
Statistical analysis on biological data was performed using the

Microsoft Excel data analysis program for Student’s t-test analysis.

P,0.05 or P,0.01 were considered as statistically significant.

Results

Expression of ectopic APE1WT protein confers hepatic
cells protection toward genotoxic damage

We first investigated the biological effects of APE1 over-

expression on hepatic cells by using HepG2 cells, stably over-

expressing the ectopic form of the wild type protein (APE1WT) or

its deletion mutant (APE1ND33) lacking the first 33 residues [31].

The cell clones, in which the endogenous APE1 protein is co-

expressed with an ectopic Flag-tagged recombinant APE1 protein,

represent an overexpression model to test the role of functional

and non-functional APE1 proteins in lipid-induced cytotoxic effect

and mimics the condition found in advanced stages of liver cancer

progression (Fig. 1A) [14]. We characterized both cell models for

APE1 localization by immunofluorescence analysis, demonstrating

that, similarly to the endogenous protein, the ectopic APE1WT

localized mainly within the nuclear compartment of HepG2 cell

clones, while the APE1ND33 mutant showed a pan-cellular

distribution in both cytoplasmic and nuclear compartments, as a

consequence of the lack of the bi-partite NLS sequence [32] and as

already observed in other cell systems (Fig. 1B) [33].

Then, we evaluated the effect of the over-expression of APE1WT

and APE1ND33 functional mutant on cell viability. Over-expression

of APE1WT caused an increased cell proliferation rate, while

expression of the APE1ND33 protein form exhibited an apparent

impairment of cell growth as compared to the control cell clone

(Fig. 1C). Control cells showed an intermediate phenotype due to

the expression of only the endogenous APE1 protein. Cell viability

assays, evaluated through MTT analysis, showed that the

impaired proliferation observed in the APE1ND33 mutant was

associated to a reduced cell viability with respect to the APE1WT

expressing clone (Fig. 1D). These data support the conclusion that

the ND33 deletion mutant may act as a dominant negative form of

APE1 directly impacting on cell viability, as also seen in other

cancer cell models [17,34].

We then tested the ability of APE1 overexpression to protect

cells from genotoxic treatments, as described for other cell models

[35,36,37] but never in hepatic cells. To this aim, APE1WT and

APE1ND33 cell clones were treated with the DNA alkylating agent

methyl methanesulfonate (MMS) [38], with hydrogen peroxide

(H2O2) or with etoposide, which induces double strand breaks

(DSBs) in DNA. Cell clones were incubated with increasing doses

of MMS for 2 h, and cell viability was measured by MTT assay.

Upon treatment with 2.0 mM MMS, cell viability was significantly

reduced in the APE1ND33 expressing clone as compared with

APE1WT and control clones (Fig. 1E). Similar results were

obtained in the case of H2O2 as genotoxicant (Fig. 1F). These

results suggest that stably over-expressed APE1WT protects cells

against genotoxicity induced by alkylating treatment and oxidative

stress, as already observed in other cell lines [36].

In the case of DNA double-strand break analysis, cells were

treated for 1 h with 50 mM etoposide, an inhibitor of topoisom-

erase II that causes cytotoxic DSBs formation [39]. As the

phosphorylation occurring on S139 of H2A.X, called cH2A.X, is

important during DNA double-strand repair and is considered a

marker of DSBs cell damage [40], we analysed the kinetics of

etoposide-induced DSB repair by the different cell clones. After

1 h of etoposide treatment, cells were collected and the level of

cH2A.X was measured at 0 h, 15 h and 24 h to evaluate the

kinetics of repair associated with the expression of functional or

non-functional APE1 protein (Fig. 1G and Fig. S1). As observed in

Fig. 1G, the recovery from DSBs damage was strikingly different

in the three cell clones tested. In the case of the APE1ND33 cell

clone, the number of DSB-related cH2A.X foci remained
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Figure 1. Expression of ectopic APE1WT protein confers cells protection to genotoxic damage but not to FAs-induced cytotoxicity.
Panel A: Western Blot analysis of total cell extracts from HepG2 stable cell clones. Stably transfected clones have been obtained as described in
Materials and Methods section. Twelve micrograms of protein extracts were separated by 12% SDS-PAGE and then transferred onto a NC membrane.
The membrane was immunoblotted with anti-APE1 antibody. The values reported above refer to the ratios of the band intensities between
ectopically-expressed and endogenous APE1, as measured by densitometry. The ectopic Flag-tagged recombinant protein both in the APE1WT and
the APE1ND33 cell clones is expressed to a similar extent at different days of cell culture. a: clones after the sixth in vitro passage; b: clones after the
tenth in vitro passage. Panel B: APE1 localization within HepG2 cell clones. HepG2 cell clones were fixed and immunostained for Histone H3 (red)

APE1 Redox Activity Regulates IL8 Expression
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significantly higher than controls at both release times while the

amount of DSBs formation was lower in APE1WT expressing

clone. The repair kinetics was faster for the APE1WT than control

and the APE1ND33 expressing cell clones. As in the case of MMS,

the expression of the ND33 APE1 confers a deficient phenotype to

HepG2 expressing cells confirming the dominant-negative effect of

this mutant toward DNA breaking lesions.

FAs accumulation on HepG2 cells does not affect APE1
expression levels

To evaluate the effect of APE1 on lipotoxicity induced by FAs

accumulation, HepG2 cells were incubated with 600 mM of the

long-chain FAs mixture (oleate/palmitate) at the final ratio of 2:1

for 24 h. Fat-overloading and the extent of lipid uptake, were

assessed by transmission electron microscopy or by the fluorescent

lipophilic dye, Nile Red, a vital staining compound used for the

detection of intracellular lipid droplets by fluorescence microscopy

[29] (Fig. 2A,B). As determined by Western blot analysis, the FAs

treatment does not significantly alter the expression level of

endogenous APE1 protein both in APE1WT and APE1ND33 cell

clones (Fig. 2C). Lipotoxicity also did not differ between all cell

lines (Fig. 2D). These data demonstrate that, as opposed to what

was observed using genotoxic treatments, overexpression of

functionally active APE1 protein does not protect hepatic cells

from FAs-induced cytotoxicity.

NF-kB transcription factor regulates IL-8 promoter
activity in JHH6 cells and E3330 treatment inhibits TNF-a-
induced IL-8 promoter activity

IL-8 gene expression is mainly modulated at the transcriptional

level in a stimulus- and cell type-specific manner [41]. High levels

of IL-8 mRNA and APE1 protein expression may play an

important role in inflammatory liver injury as a consequence of

lipid accumulation. To determine the proper experimental model

in which testing the causal link between APE1 and IL-8

expression, we initially determined the expression levels of these

two genes in Huh-7, HepG2 and JHH6cell lines . As shown in

figure 3A, protein expression was highest in JHH6 cells, which

express approximately 2.5-fold higher levels of APE1 protein than

control Huh-7 cells. Then, we compared the expression levels of

IL8 gene in HepG2 and JHH6 cells through RT-PCR (Fig. 3B)

and observed that JHH6 cells express higher levels of IL8 than

HepG2 cells. These observations indicate that, with respect to

APE1 expression levels, JHH6 cells are a good model to investigate

the role of APE1 in the inflammatory process associated to liver

tumorigenesis.

IL-8 transcriptional responses to pro-inflammatory mediators

are rapid and require only 100 nucleotides of 59-flanking DNA

upstream of TATA-box. Within the IL-8 promoter sequence,

DNA binding sites for inducible transcription factors AP-1, NF-IL-

6 and NF-kB are present [30,42]. To investigate the role of NF-kB

on basal and TNF-a-induced IL-8 expression in JHH6 cells, we

evaluated the effect of deletion of the NF-kB binding site on IL-8

promoter sequence. We used a reporter assay approach to study

the effect of TNF-a on the IL-8 expression levels. Cells were

transiently transfected with luciferase-linked constructs of the wild-

type human IL-8 promoter 21498/+44 hIL-8/Luc and the

2162/+44 hIL-8/Luc DNF-kB in which the NF-kB binding sites

were deleted [30] (Fig. 3C). After transfection cells were stimulated

with TNF-a for 3 h to trigger NF-kB functional activation. As

shown in Fig 3D, TNF-a treatment significantly stimulated the IL-

8-promoter activity only in cells transfected with the 21498/+44

hIL-8/Luc plasmid while TNF-a stimulatory effect was completely

lost in cells transfected with deletion mutant promoter. Notably,

the basal transcriptional activity of the IL-8 promoter was

dependent on the presence of functional NF-kB binding sites

suggesting that the transcription factor NF-kB plays a central role

in both basal and TNF-a-induced IL-8 promoter activity.

Given that APE1 regulates NF-kB DNA binding activity in a

redox-dependent manner [11], we speculated if the specific

inhibitor of APE1 redox function, E3330 [16], was able to reduce

TNF-a-induced IL-8 gene expression. Accordingly, we evaluated

the effect of E3330 on cell viability. Analysis using the MTS assay

on JHH6 cells treated for 7 h with several doses (25–200 mM) of

E3330 revealed that E3330 has no cytotoxic effect up to a

concentration of 100 mM (Fig. 3E). We determined whether

E3330 treatment impairs subcellular APE1 trafficking in hepatic

cells, as previously observed in glioblastoma cells [17]. Immuno-

fluorescence experiments (Fig. 3F) clearly demonstrated that a

significant relocalization of APE1 protein from the nuclear to the

cytoplasmic compartment occurred in JHH6 cells with no

significant alterations in total protein levels, as measured by

Western blot analysis (data not shown). We then examined the

effect of E3330 on TNF-a-induced IL-8 promoter activation.

JHH6 cells were pre-treated with increasing concentrations of

E3330, for 4 h prior to treatment with TNF-a for 3 h. As shown in

figure 3G, pre-treatment with E3330 significantly attenuated

TNF-a-induced IL-8 promoter activity in a dose-dependent

manner.

and for Flag-tagged APE1 with an a-Flag antibody (green). Merged images (yellow) show the localization of APE1WT within cell nuclei and
colocalization with Histone H3. The APE1ND33 deletion mutant colocalizes with Histone H3 within cell nuclei but show also cytoplasmic positivity.
Panel C: Growth curve of HepG2 cell clones. HepG2 empty clone, APE1WT clone and APE1ND33 clone cells were seeded into each well of a 24-well
plate and cell growth was monitored every two or three days as indicated, by trypan blue exclusion. APE1ND33 cells (triangle) grew more slowly than
the APE1WT (square) and the empty clones (dot). Panel D: Cell growth by MTT colorimetric assay. Thirty thousand cells of the control (empty clone),
APE1WT and APE1ND33 clones were seeded in quadruplicate wells in a 96-well microculture plate. Cell viability was measured after 72 h of culture. MTT
assay also revealed that APE1ND33 cell clone has a lower level of proliferation than empty and APE1WT clones. Data, expressed as the percentage of
cell viability with respect to the control empty clone, are the means 6 SD of three independent experiments. Panel E: Effect of MMS on viability of
HepG2 cell clones. HepG2 cell clones were treated for 2 h with 1.6 or 2.0 mM MMS and cell viability was estimated by the MTT colorimetric assay.
When cells were treated with 2.0 mM MMS, cell viability was significantly decreased in the APE1ND33 cell clone but not in the APE1WT clone,
suggesting that the ectopic expression of APE1WT protects cells against MMS-induced citotoxicity. Data shown are the means 6 SD of three
independent experiments. Panel F: Effect of H2O2 on viability of HepG2 cell clones. HepG2 cell clones were treated with 2.5 mM hydrogen
peroxide for 1 h, then cell viability was determined by the MTT assay. After exposure to 2.5 mM H2O2 no significant decrease in cell viability was
detected for APE1WT clone compared to empty and APE1ND33 cell clones. The histograms show the means 6 SD of three independent experiments.
Panel G: Quantification of cH2A.X foci in response to etoposide treatment. The cH2A.X foci were detected using immunohistochemistry and
quantified by image analysis. Cells were treated with etoposide (50 mM) for 1 h and the number of double strand DNA breaks (DSBs) was determined
at different times of release (0 h, 15 h and 24 h). cH2A.X foci levels remain significantly higher than controls at 15 h and 24 h in etoposide treated
APE1ND33 cell clone (triangle). DNA damage was weaker for APE1WT clone (square) than empty (dot) and APE1ND33 cell clones, suggesting a protective
role of APE1 overexpression in DNA repair.
doi:10.1371/journal.pone.0070909.g001
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Figure 2. Overexpression of APE1 protein does not protect HepG2 cells from FAs treatment. Panel A: Nile Red staining. Fluorescence of
Nile Red-stained were measured on HepG2 cells previously incubated with 600 mM FAs mixture (oleate/palmitate 2:1) for 24 h (b and d) or left
untreated as control (a and c). Cells were fixed with 1.5% glutaraldehyde in PBS, washed with buffered saline and then were stained with Nile Red
10 mg/ml (a and b) or 100 mg/ml (c and d). As confirmed by Nile Red staining, HepG2 cell line exhibited a fat overloading profile. Panel B:
Transmission electron microscopy analysis. HepG2 cells were treated with the 600 mM FAs mixture at the final ratio of 2:1 (oleate/palmitate) for 24 h
(b and d) or left untreated (a and c). Cells were then fixed and paraffin-embedded. Transmission electron microscopy confirmed fat overloading
induction in HepG2 cell line. Magnification: 6300X (a and b) and 8000X (c and d). Panel C: Western Blotting analysis of total cell extracts from
HepG2 stable cell clones after FAs treatment. HepG2 cell clones were treated with 600 mM of FAs mixture (2:1 ratio of oleate/palmitate) for 24 h or
left untreated as control. After FAs treatment, total cell extracts were prepared and 12 mg of protein extract was loaded onto a 12% SDS-PAGE,
blotted and probed with anti-APE1 antibody. FAs treatment does not alter the endogenous levels of APE1 both in the APE1WT and the APE1ND33 cell
clones. Panel D: Effect of FAs treatment on viability of HepG2 cell clones. HepG2 cell clones were treated with 600 mM of FAs mixture (2:1 ratio of
oleate/palmitate) for 24 h. Cytotoxicity was assessed by trypan blue exclusion test. After exposure to FAs there was a significant reduction in cell
viability but no significant difference between the clones. Data, expressed as the percentage of cell viability, are the means 6 SD of three
independent experiments.
doi:10.1371/journal.pone.0070909.g002
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Figure 3. NF-kB transcription factor regulates IL-8 promoter activity in JHH6 cells and E3330 treatment inhibits TNF-a-induced
promoter activation. Panel A: Western Blotting analysis of total cell extracts from human hepatocellular carcinoma cell lines. A representative
Western blot analysis for the evaluation of APE1 expression in Huh-7, HepG2 and JHH6 cell lines is shown in the upper panel. b-Tubulin was always
measured as loading control and was used for data normalization. The lower panel shows expression levels of the protein obtained after
densitometric analysis of the bands. An almost two-fold increase was observed in the content of APE1/Ref-1 in JHH6 cell line compared to Huh-7.
Values were reported as histograms of the ratio between APE/Ref-1 band intensities and b-Tubulin. Data are the means 6 SD of three independent
experiments. Panel B: IL-8 mRNA expression in human hepatocellular carcinoma cell lines. IL-8 mRNA levels were evaluated on HepG2 and JHH6
cell lines by Real-Time PCR. Total RNA was extracted and reverse-transcribed as described in Material and Methods section. The histograms show the
detected levels of IL-8 mRNA normalized to two different housekeeping genes (18S and GAPDH). An almost thirty-fold increase was observed for the
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E3330 treatment specifically decreases both TNF-a- and
FAs-induced IL-8 endogenous gene expression

To investigate the effect of E3330 on TNF-a-induced IL-8

expression, JHH6 cells were pre-treated with 100 mM E3330 for

4 h before exposure to TNF-a. As shown in figure 4, pre-

treatment with E3330 significantly decreased TNF-a-induced IL-8

expression in terms of both endogenous mRNA transcription

(Fig. 4A) and protein production (Fig. 4B). We confirmed the

inhibitory effect of E3330 on IL-6 expression (Fig. 4C), another

cytokine activated by NF-kB which is induced by FAs accumu-

lation. Interestingly, E3330 does not affect TNF-a-induced IL-12

protein secretion suggesting a specific effect of E3330 on IL-8 and

IL-6 gene expression, at least in our experimental system (Fig. 4D).

These data point to a potential use of E3330 to reduce the

inflammatory processes in liver diseases such as those associated

with NASH.

To investigate whether FAs overloading could play a role in the

development of inflammation through induction of IL-8 produc-

tion, we used the in vitro cell model of hepatic steatosis, i.e. JHH6

cells, described above. JHH6 cells were treated for different times

with 800 mM of mixture of oleate/palmitate (2:1 ratio). This

treatment had not effect on cell viability (data not shown) while IL-

8 mRNA expression was increased in a time-dependent manner

(Fig. 4E). To investigate the effect of E3330 on FAs-induced IL-8

expression, JHH6 cells were pre-treated with 100 mM E3330, for

4 h prior to treatment with 800 mM FAs for 3 h. As shown in

Figure 4F, pre-treatment with E3330 significantly decreased FAs-

induced IL-8 expression.

Discussion

The current work was aimed at elucidating the role and the

impact of APE1 in the onset of inflammatory circuits in liver

diseases, such as those associated to NASH and to evaluate

whether the APE1 redox inhibitor, i.e. E3330, may prevent the

induction of IL-8 and IL-6 expression by both TNF-a or FA

treatment.

Our data demonstrate that in hepatic cancer cell lines APE1

redox function is involved in TNF-a and FA-induced IL-8- and

IL-6 expression, and its inhibition by E3330 may represent a

promising tool for reducing the early inflammatory process in liver

diseases such as in NASH. NASH is a clinically relevant pathology

since the high prevalence in the general population and the

possible evolution towards pathologies with a fatal outcome [2].

NASH has been correlated with direct lipid toxicity, impaired

mitochondrial function, elevated cytochrome P450 activity (spe-

cifically CYP2E1 and CYP4A10/4A14), oxidative damage and

increased inflammatory cytokines levels in the liver and periphery

[9]. Since a better understanding of the molecular events

regulating these mechanisms may be helpful in designing new

therapeutic strategies, we utilized an in vitro hepatic model to study

the pathway responsible for inflammatory cytokines production

(IL-8 and IL-6) triggered by FAs accumulation and TNF-a
stimulation (Fig. 5). In this pathway, mitochondrial impairment

and resulting oxidative stress condition may cause the functional

activation of NF-kB transcription factors through APE1 regulatory

redox function leading to IL-8 and IL-6 gene expression.

To create a lipotoxic condition and a pro-inflammatory status,

we treated JHH6 cells with FAs or TNF-a. In fact, it has been

demonstrated in different models that FAs increase the expression

of inflammatory cytokine through mechanism involving activation

of NF-kB [7,8,9]. Also, TNF-a plays an important role in

inflammatory liver injury. Accordingly, intrahepatic gene expres-

sion and/or plasma levels of TNF-a are increased in fatty liver and

in NASH patients [43] and modulation of TNF-a expression by

genetic deletion or other means results in the amelioration of

steatosis, inflammation, and hepatocyte damage in ob/ob mice and

in dietary models of steatohepatitis [44] suggesting a pivotal role of

this cytokine in NASH. Moreover, interference with NF-kB

activation significantly protected from the development of

steatohepatitis, and reduced the expression of TNF-a and

ICAM-1 [45]. These observations suggest that TNF-a is one of

the multiple effectors of steatohepatitis, and that NF-kB activation

plays a pivotal role in the early onset and maintenance of the

inflammatory process.

In the molecular pathway represented in Figure 5, the cellular

damage due to FAs or TNF-a treatment is principally mediated by

mitochondrial impairment. In fact the impairment in free FAs b-

oxidation is at the basis of the onset of NASH. Mitochondria are

involved in both free FA b-oxidation and reactive oxygen species

(ROS) generation. Patients with NASH are characterized by

abnormal mitochondria from both a functional and a morpho-

logical point of view. Accumulating evidence indicates that

respiratory chain defects are key-determinant of mitochondrial

dysfunction and thus oxidative stress generation [9]. Chemical

modification of essential biomolecules by ROS and RNS cause

their functional inactivation and lead to either cell death or to an

adaptive cellular response, e.g. activation of redox-sensitive

transcription factors [46] (nuclear factor NF-kB, Nrf-1 and Sp-1)

contributing to the production of pro-inflammatory and fibrogenic

mediators by Kupffer cells and HSC. Of interest is the recent

finding of a role for the transcription factor Nrf-1, a central player

mRNA IL-8 expression in JHH6 cell line. Data are the means 6 SD of three independent experiments. Panel C: Schematic representation of the
luciferase-linked human IL-8 promoter constructs used in this study. The plasmids 21498/+44 hIL-8/Luc and 2162/+44 hIL-8/Luc (deleted of a 59
promoter region) contain binding sites for AP-1, NF-IL-6 and NF-kB transcription factors. Site-directed mutation of the IL-8 NF-kB binding site in the
context of the 2162/+44 hIL-8/Luc plasmid abolished the binding of NF-kB on IL-8 promoter. Panel D: Effect of site-directed mutagenesis of the
NF-kB binding site in the human IL-8 promoter sequence. JHH6 cells transfected with 21498/+44 hIL-8/Luc or 2162/+44 hIL-8/Luc DNF-kB
constructs and then treated with 2000 U/ml of TNF-a for 3 h, were analyzed through gene reporter assay. In cells transfected with the 21498/+44
hIL-8/Luc construct, TNF-a stimulated IL-8 luciferase activity, whereas mutation of the NF-kB binding site significantly decreased both basal and TNF-
a-induced IL-8 promoter driven activity in JHH6. Data reported are the means 6 SD of three independent experiments. These data suggest a central
role of NF-kB in IL-8 gene transcription. Panel E: Effect of E3330 treatment on JHH6 viability. Levels of viability were measured with MTS assay in
JHH6 cells treated for 7 h with increasing doses of E3330. Up to a concentration of 100 mM the treatment with E3330 did not affect the cellular
viability. Data, expressed as the percentage of cell viability, are the means 6 SD of three independent experiments. Panel F: Effect of E3330 on APE1
subcellular distribution. APE1 subcellular localization was detected through confocal microscopy analysis using a specific a-APE1 monoclonal
primary antibody. APE1 mainly localized within the nuclear compartment and accumulated into nucleoli. Treatment with 100 mM E3330 for 6 h
induced a robust cytoplasmic enrichment of APE1. As control, cells were treated with DMSO without any effect on APE1 subcellular distribution.
Panel G: Effect of E3330 treatment on TNF-a-induced IL-8 promoter activity. JHH6 cells transfected with 21498/+44 hIL-8/Luc construct were pre-
treated with increasing concentration of E3330, or with vehicle (DMSO) as a control, for 4 h prior to treatment with 2000 U/ml TNF-a for 3 h. TNF-a
stimulated IL-8 luciferase activity and the pre-treatment with E3330 significantly decreased, in a dose-dependent manner, TNF-a-induced IL-8
promoter activity. Data reported are the means 6 SD of three independent experiments.
doi:10.1371/journal.pone.0070909.g003
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Figure 4. E3330 treatment specifically inhibits TNF-a- and FAs-induced IL-8 endogenous gene expression. Panel A: Effect of E3330
treatment on TNF-a-induced IL-8 mRNA expression. JHH6 cells were pre-treated with 100 mM E3330 or with vehicle (DMSO) as a control, for 4 h
prior to treatment with 2000 U/ml TNF-a for 2 h. IL-8 mRNA expression was determined by Real-Time PCR. The histograms show the detected levels
of IL-8 mRNA normalized to control (DMSO) and normalized to two different housekeeping genes (GAPDH and HPRT). IL-8 mRNA expression was
increased by TNF-a treatment when compared with control cells and pre-treatment with 100 mM E3330 decreased TNF-a-induced IL-8 mRNA. Data
reported are the means 6 SD of three independent experiments. Panel B: Effect of E3330 treatment on TNF-a-induced IL-8 protein production.
JHH6 cells were pre-treated with 100 mM E3330 or with vehicle (DMSO) as control, for 4 h prior to treatment with 2000 U/ml TNF-a for 2 h. The
supernatants of the same cells analyzed for mRNA were assayed for IL-8 protein by FlowCytomix assay kit. TNF-a stimulated the secretion of IL-8
protein by JHH6 cells and the pre-treatment with 100 mM E3330 significantly suppressed TNF-a-induced IL-8 protein release. Data reported are the
means 6 SD of three independent experiments. Panel C: Effect of E3330 treatment on TNF-a-induced IL-6 mRNA expression in JHH6 cells. JHH6
cells were pre-treated with 100 mM E3330 or with vehicle (DMSO) as a control, for 4 h prior to treatment with 2000 U/ml TNF-a for 3 h. IL-6 mRNA
expression was determined by Real-Time PCR. The histograms show the detected levels of IL-6 mRNA normalized to control (DMSO) and normalized
to two different housekeeping genes (GAPDH and HPRT). IL-6 mRNA expression was increased by TNF-a treatment and the pre-treatment with
100 mM E3330 significantly decreased TNF-a-induced IL-6 mRNA. Data reported are the means 6 SD of three independent experiments. Panel D:
Effect of E3330 treatment on TNF-a-induced IL-12 protein production in JHH6 cells. The same supernatants analyzed for IL-8 protein were assayed
for IL-12 protein by FlowCytomix assay kit. E3330 does not affect TNF-a-induced IL-12 activation suggesting a specific effect of E3330 on IL-8 gene
expression. Data reported are the means 6 SD of three independent experiments. Panel E: Effect of FAs overload on IL-8 gene expression. JHH6
cells were treated for different times with 800 mM of mixture of oleate/palmitate (2:1 ratio) and IL-8 mRNA expression was determined by Real-Time
PCR. The histograms show the detected levels of IL-8 mRNA normalized to control (DMSO) and normalized to two different housekeeping genes
(GAPDH and HPRT). IL-8 mRNA expression was increased by FAs treatment when compared with control cells in a time-dependent manner. Data
reported are the means 6 SD of three independent experiments. Panel F: Effect of E3330 treatment on FAs-induced IL-8 mRNA expression. JHH6
cells were pre-treated with 100 mM E3330 or with vehicle (DMSO) as a control, for 4 h prior to treatment with 800 mM of mixture of oleate/palmitate
(2:1 ratio) for 3 h. IL-8 mRNA expression was determined by Real-Time PCR. The histograms show the detected levels of IL-8 mRNA normalized to
control (DMSO) and normalized to two different housekeeping genes (GAPDH and HPRT). IL-8 mRNA expression was increased by FAs treatment and
pre-treatment with 100 mM E3330 decreased FAs-induced IL-8 mRNA. Data reported are the means 6 SD of three independent experiments.
doi:10.1371/journal.pone.0070909.g004
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in controlling expression of antioxidant genes through binding to

ARE sequences, in NASH and hepatic cancer development [47].

Interestingly, both Nrf-1 and APE1 are over-expressed in liver

cancer [14]. Very recently, Li et al demonstrated that APE1 acts as

a new redox coactivator of Nrf-1 regulating the expression of Tfam,

Cox6c, and Tomm22 nuclear genes with mitochondrial function.

This evidence highlights an additional regulatory role for APE1 in

the maintenance of mitochondrial functionality upon oxidative

stress and provides the first hypothesis for an indirect mitochon-

drial function of APE1 through a nuclear transcriptional

mechanism [48]. Collectively, these findings suggest that the

APE1-Nrf-1 axis deserves further attention.

For a better understanding of the role of APE1 in the onset of

inflammatory circuits in liver diseases, we wondered whether

APE1 overexpression would protect hepatic cells from the

cytotoxic effects of genotoxicants and from lipid induced

cytotoxicity. We used HCC-derived cell line overexpressing

functional and non-functional APE1 proteins. Due to the

prominent role played by APE1 in the repair of specific oxidative,

alkylation, and enzymatic DNA intermediates, we treated cells

with different DNA damaging agents, including MMS, hydrogen

peroxide and etoposide. The results show the expected protective

function of APE1 towards these genotoxic agents [36,49],

confirming the validity of the cell model developed. Moreover,

they suggest that the upregulation of APE1 protein expression

levels observed in hepatic cancer cells may reflect an adaptive

response to cell damage and may be responsible for further cell

resistance to chemotherapy, as shown in other cancer cell models

[49,50]. However, the same protection was not evident in the case

of FAs cytotoxicity. Data obtained also suggested that the increase

of APE1 protein observed both in NASH models and in liver tissue

obtained from NASH patients [13] may result as the consequence

of lipid-induced hepatocellular injury. The damage may be

explained on the basis of APE19s roles in intracellular signalling

as a transcriptional coactivator rather than its role as DNA repair

enzyme. The deficient phenotype, observed in the case of the

ND33 mutant expressing cells, confirms the dominant-negative

effect of this mutant toward DNA breaking lesions. This effect may

be due to the loss of BER coordination as the consequence of the

impairment of APE1 protein-protein interactions (which is in fact

modulated by the first 33–35 N-terminal amino acids of APE1)

Figure 5. Model of the effect of E3330 redox inhibitor on the Fatty Acid-TNFa-APE1-NFkB-IL8 axis. APE1 redox inhibitor E3330 prevents
inflammatory cytokines production (IL-8 and IL-6) triggered by FAs accumulation and TNF-a stimulation in hepatic cancer cell lines. In this pathway,
mitochondrial impairment and resulting oxidative stress condition may cause the functional activation of NF-kB transcription factor through APE1
regulatory redox function leading to IL-8 and IL-6 gene expression.
doi:10.1371/journal.pone.0070909.g005
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and to the concurrent competition of the ND33 mutant with the

WT form for the same damaged substrates [17,33].

Since APE1 is upregulated in hepatic cancer cells, the APE1

overexpression cell model used for this study can be compared to

the condition observed in advanced stages of liver cancer

progression [14]. The protective role of APE1 from genotoxicants

suggest that its up-regulation may occur as an adaptive response to

cell damage and may be associated with the onset of cancer

resistance. Since APE1 has emerged as an excellent target for

sensitizing tumor cells to chemotherapy [50,51,52,53], APE1

DNA-repair and redox-inhibition may be used as a promising

strategy for liver cancer treatment [34,54]. Recent studies have

demonstrated a direct effect of E3330 on a variety of cancer cells

[55,56] and that E3330 has potential efficacy in pancreatic cancer.

In fact, inhibition of APE1 via E3330 results in tumor growth

inhibition in cell lines and pancreatic cancer xenograft models in

mice. These effects of E3330 are accomplished through the redox

inhibition of APE1 on the activity of NF-kB, AP-1, and HIF1a
that are key transcriptional regulators involved in survival and

invasion, and may lead to the blockage of the metastatic process

[20]. E3330 directly interact with APE1 and inhibits its redox

activity by increasing the formation of disulfide bonds by Cys-65,

increased unfolding of the protein, and decreasing the protein

redox active population [15]. APE1 subcellular distribution within

different mammalian cell types is mainly nuclear and critically

controls cellular proliferative rate [37,57]. We recently demon-

strated, in the human glioblastoma cell line SF767, that E3330

treatment caused a significant relocalization of APE1 from the

nuclear to the cytoplasmic compartment with no significant

alterations in total protein levels. Moreover, kinetic experiments

also demonstrated that E3330 treatment caused a progressive

emptying of the nucleoli. These data demonstrate that some of

E3330 effects are associated with alterations of APE1 trafficking

and that the redox state of C65, or the altered configuration of the

APE1 protein, may control APE1 cellular distribution providing

the basis for a new role for this residue in controlling subcellular

distribution [17]. In this study, we demonstrated that in JHH6

hepatic cancer cells, E3330 treatment inhibits TNF-a-induced IL8

production through impairment of APE1 subcellular distribution,

thus confirming a novel aspect of E3330 effect on APE1

modulation. It would also be interesting to check whether the

redox state of APE1 may explain the cytoplasmic accumulation

already observed in HCC [14].

In comparison with other cell types as pancreatic cell lines [58]

we noticed that the hepatic cancer cell lines were less sensitive to

E3330 treatment in terms of cell viability. For example, in PDAC

pancreatic cancer cell line and primary patient cells, E3330 has

little killing or growth effect until concentrations greater than

67.5 mM are reached [20,59]. Other studies using E3330 at

concentrations similar to or above 100 mM have been published

including cellular EMSA assays [60], a reduction of APE1 nuclear

location after 140 mM E3330 treatment without cell killing [17],

and cell survival in human hepatocellular cell lines [61] after

100 mM treatments. Recent data obtained in LPS-activated

macrophages, demonstrated that E3330 suppresses the inflamma-

tory response. Via the inhibition of APE1 redox function on NF-kB

and AP-1 transcriptional activity, E3330 suppresses secretion of

inflammatory cytokines including TNF-a, IL-6 and inflammatory

mediators such as nitric oxide and prostaglandin E(2) [21]. These

results and data presented here are in agreement with other

reports demonstrating the hepatoprotective effect of E3330 against

endotoxin-mediated hepatitis and alcoholic liver injury. In fact in

endotoxin-induced murine hepatitis models, E3330 attenuates the

elevation of plasma TNF activity suggesting that E3330 protects

mice from liver injury through the inhibition of TNF production

[62]. In an experimental alcoholic liver injury rat model, E3330

reduces thromboxane B2 and leukotriene B4 levels in both

nonparenchymal cell supernatant and plasma and reduces TNF

levels in nonparenchymal cell supernatant. These findings suggest

that E3330 has a protective effect in alcoholic liver injury trough

inhibition of thromboxane, leukotriene and TNF generation [63].

All these observations underscore the relevance of using E3330 for

treatment of inflammatory-based liver diseases and the need of

further in vivo studies in NASH animal models.

Supporting Information

Figure S1 Immunofluorescence staining for double
strand DNA damage. HepG2 cell clones were incubated with

or without etoposide (50 mM) for 1 h. After the incubation and the

time course for the release, cells were fixed, permeabilized and

stained for the phosphorylated form of the histone H2A.X using a

specific antibody (green). Nuclei were detected with Propidium

Iodide (red). Scale bar correspond to 20 mm.

(TIF)
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