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Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a leading
cause of death worldwide. Despite decades of research, there is still much to be
uncovered regarding the immune response to Mtb infection. Here, we summarize the
current knowledge on anti-Mtb immunity, with a spotlight on immune cell amino acid
metabolism. Specifically, we discuss L-arginine and L-tryptophan, focusing on their
requirements, regulatory roles, and potential use as adjunctive therapy in TB patients.
By continuing to uncover the immune cell contribution during Mtb infection and how
amino acid utilization regulates their functions, it is anticipated that novel host-directed
therapies may be developed and/or refined, helping to eradicate TB.

Keywords: tuberculosis, mycobacteria, L-arginine, L-tryptophan, amino acid
INTRODUCTION

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading worldwide cause of
death due to a single infectious agent (1). Approximately one quarter of the world’s population is
infected with Mtb, with 10 million new infections each year (1). In 2019, Mtb claimed nearly 1.3
million deaths, with over 250,000 deaths in HIV-positive patients – representing a greater than 20%
reduction in TB-related deaths since 2000 (1). Progress in ending the TB epidemic is slow, however,
and at this rate TB is unlikely to be eradicated this century (2). The COVID-19 pandemic has
significantly curtailed this progress and is estimated to result in an additional 400,000 TB-related
deaths in 2020 (1). Additionally, drug-resistant Mtb strains continue to pose a public health
problem, especially in developing countries with the highest rates of infection (1, 2). While the live
attenuated M. bovis Bacille Calmette-Guérin (Mb BCG) vaccine is administered to newborns in TB
endemic countries, little protection is formed against pulmonary TB (3). Additionally, Mb BCG
cannot be administered to immunocompromised patients due to the high risk of disseminated
infection (1–3). As such, new strategies are urgently needed to end the fight against TB.

In response to infection, immune cells undergo metabolic changes. Following LPS stimulation,
macrophages utilize aerobic glycolysis to generate the energy needed to fuel their effector functions (4).
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By contrast, while Mtb-infected inflammatory macrophages
seeming rely on glycolysis, Mtb-infected alveolar macrophages
utilize fatty acid b-oxidation for energy (5). Additionally, following
activation T cells undergo metabolic reprogramming, switching
from a naïve state where energy is derived mainly from the TCA
cycle and oxidative phosphorylation to an activated state
dominated by aerobic glycolysis (6). Thus, precise alterations in
metabolic function depend on the pathogen and cell type involved.
Amino acid metabolism is often affected following infection.
Amino acids are the building blocks of proteins, but also
regulate cellular responses via nutrient sensor signaling or serve
as anapleurotic precursors for energy-producing pathways, such as
the tricarboxylic acid (TCA) cycle. Therefore, adjustments in
amino acid concentrations regulate how immune cells respond
to infection.

Targeted metabolomics studies have proposed metabolite
changes, particularly in amino acid abundance, may serve as
biomarkers following Mtb infection. Multiple studies have
observed decreased L-citrulline (L-CIT) and L-ornithine
(L-ORN) – metabolites of L-arginine (L-ARG) – in the sera of
active TB patients compared to healthy controls (7–9).
Interestingly, following antibiotic treatment, L-CIT and L-ORN
levels in TB patients increase to those of healthy controls (8).
Additionally, active TB patients display decreased L-tryptophan
(L-TRP) and increased levels of its metabolites, including L-
kynurenine (KYN), in their sera and urine as compared to
healthy controls (7–11). In fact, metabolite tracking may
predict a patient’s TB status. One study found just 20 serum
metabolites, 11 of which were amino acids or derivatives, were
required to discriminate active TB patients from healthy controls
(7). When tracking household contacts of TB patients, amino
acid alterations in the serum could discriminate between patients
who later developed TB and those who remained healthy (12).

Given these data, it is important to understand how amino
acids contribute to immune cell function following Mtb
infection. Here, we review immune responses during Mtb
infection and immune cell metabolism of two key amino acids:
L-ARG and L-TRP.
IMMUNE RESPONSE TO
MYCOBACTERIUM TUBERCULOSIS

Macrophages
Upon inhalation, Mtb bacilli are phagocytosed by alveolar
macrophages (Figure 1A), resident phagocytes within alveoli
(13, 14). Alveolar macrophages make up the majority of
mycobacteria-laden cells in the lung during early Mtb
infection, with neutrophils not appearing until 10-14 days
post-infection (14–16). Additionally, accumulation of group 3
innate lymphoid cells (ILC3s) parallels that of alveolar
macrophages and precedes infiltration of inflammatory
macrophages (17).

Alveolar macrophages express numerous pattern recognition
receptors involved in Mtb recognition, stimulation of which
induces an inflammatory response and recruitment of
Frontiers in Immunology | www.frontiersin.org 2
additional innate immune cells, including neutrophils,
inflammatory macrophages, and dendritic cells (DCs) (16, 18,
19). Although alveolar macrophages rapidly phagocytose Mtb
bacilli, the immune response is slow, contributing to impaired
mycobacterial clearance. Mtb bacilli inhibit a variety of effector
responses, including phagolysosome fusion and cytokine
production, resulting in mycobacterial overload, cell death, and
widespread distribution of infection throughout the lung (Figure
1B) (20–23).

The myeloid population responding to Mtb infection is
diverse, marked by production of various anti-mycobacterial
effectors including nitric oxide (NO), tumor necrosis factor
(TNF) a, interleukin (IL)-12, IL-1a, and IL-1b, all of which
are critical for infection control (24–26). An abundance of
literature supports a dual role for macrophages as the main
effector killing cells and a growth niche for mycobacteria.
Inflammatory macrophages, as the main reservoir for Mtb
growth, are the most well studied. Like their alveolar
counterparts, inflammatory macrophages are impaired in
combating Mtb infection due to inhibition of effector
functions, as well as Mtb adaptations to a harsh intracellular
environment (20–22).

Despite this inhibition, inflammatory macrophages harness
multiple pathways to restrict Mtb growth. Combined TLR2 and
IFNgR stimulation leads to transcription of Nos2, which encodes
inducible NO synthase (iNOS), resulting in NO production
(Figure 1B) (19). In mice, NO positively correlates with Mtb
killing and mice lacking NO synthesis fail to control
mycobacterial infections, succumbing even to Mb BCG (27–
30). iNOS and NO production have been detected in human
macrophages in vitro and the lungs ofMtb-infected patients (31–
34). The contribution of NO in the pathogenesis of human Mtb
infection, however, is highly debated. Some studies have found
NO production does not play a central role in control of human
Mtb infection, while others suggest clearance of Mtb is NO-
dependent (32, 35–39). Nevertheless, the presence of iNOS and
NO in the Mtb-infected lung suggests NO is involved in human
immune responses toMtb infection, albeit not entirely similar to
those in mice.

While NO is a predominant mycobactericidal mechanism,
macrophages also utilize nutrient limitation, reactive oxygen
species, and apoptotic and autophagic pathways for Mtb
elimination (19, 40). However, Mtb harnesses various
inhibitory mechanisms to prevent its clearance via these
mechanisms (23, 41). Therefore, it is evident macrophages play
an important role in combating Mtb infection, but their efforts
are thwarted by microbial adaptations.

Neutrophils
Neutrophils are short-lived innate immune cells that rapidly
migrate to the lungs upon Mtb infection (Figure 1B) (42).
Neutrophils phagocytose Mtb bacilli, yet evidence of their
ability to kill mycobacteria is conflicting (43–45). While studies
have shown neutrophil-derived molecules are mycobactericidal,
neutrophils display poor antimycobacterial activity and may
contribute to destruction of the lung parenchyma (43, 44, 46–
49). Upon activation, neutrophils release neutrophil extracellular
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traps (NETs) composed of nuclear proteins and proteases.
Nucleosomes and elastase – both found within NETs – have
been detected in plasma of active TB patients, and Mtb can
induce NET formation in vitro (50–53). Despite evidence that
Mtb-induced NETs are phagocytosed and stimulate macrophage
cytokine production, NETs also provide a niche for Mtb growth
(52, 53). Therefore, a clear role for neutrophil mediated Mtb
defense has not yet been elucidated.

Neutrophil activity enhances anti-mycobacterial responses in
peripheral immune cells. Infected neutrophils interact with and
increase DC antigen presentation and T cell stimulatory capacity
(54). Following administration of a M. smegmatis-derived
vaccine in mice, neutrophil depletion decreased T cell
responses and increased mycobacterial burden upon Mtb
challenge (55). As such, neutrophils may play an important
role in coordinating innate and adaptive immune responses
following Mtb infection.
Frontiers in Immunology | www.frontiersin.org 3
Natural Killer Cells
Natural killer (NK) cells – cytolytic innate lymphocytes
recognize ligands present in the Mtb cell wall and molecules
expressed byMtb-infected phagocytes, leading to cytolytic killing
of infected cells (Figure 1A) (56–58). Additionally, NK cells
secrete IFNg and IL-22 following Mtb infection, stimulating
phagosome maturation in Mtb-infected macrophages (59).
Recent studies have identified changes in both human and
mouse NK cells following Mtb infection, resulting in decreased
NK cell number and functionality (60–62). Taken together, NK
cells are likely an important immune contributor during Mtb
infection, but their definitive role remains to be elucidated.

Dendritic Cells
DCs are essential in linking innate and adaptive immunity. In
mice, DCs make up one of the largest proportions of Mtb-
infected phagocytes by 4 weeks post-infection (63). Patients with
A B C

D E F

FIGURE 1 | Immune response to Mycobacterium tuberculosis. (A) Following inhalation, Mtb bacilli are phagocytosed by alveolar macrophages in the lung, resulting
in cytokine and chemokine production. NK cells are innate lymphocytes that are cytotoxic to infected alveolar macrophages and produce inflammatory cytokines.
Group 3 innate lymphoid cells (ILC3s) are also present in the lung early following Mtb infection. (B) As infection progresses, alveolar macrophages are overrun with
Mtb bacilli and undergo cell death. Inflammatory macrophages, neutrophils, and dendritic cells are recruited from the bloodstream. Inflammatory macrophages
produce mycobactericidal nitric oxide (NO) and phagocytose Mtb-containing neutrophil extracellular traps (NETs), secreted by neutrophils. Dendritic cells
phagocytose Mtb bacilli and migrate to the draining lymph node, where they secrete Mtb antigens to be presented by resident dendritic cells, initiating naïve T cell
activation. (C) After migrating to the lymph node, activated T cells secrete inflammatory cytokines, including interferon (IFN)g and tumor necrosis factor (TNF)a, which
further stimulate macrophage anti-mycobacterial activity. Activated CD8+ T cells are also cytotoxic to infected macrophages. Treg cells produce cytokines, such as
IL-10, to inhibit the activity of other lymphocytes in the lung. (D–F) Concurrently, granulomas begin to develop in the lung. (D) Early granulomas consist of
aggregations of infected phagocytes. (E) Mature granulomas consist of a core of Mtb bacilli, infected macrophages, and multinucleated giant cells surrounded by
more macrophages, neutrophils, dendritic cells, and fibroblasts. The outside of the granuloma consists of T and B cells, forming a lymphocytic cuff. (F) As infection
progresses and potentially following some degree of immunosuppression the granulomas begin to break down, leading to dissemination of Mtb bacilli and
reactivation of TB disease.
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DC defects are highly susceptible to disseminated mycobacterial
infections, likely due to impaired adaptive immune activation
(64). To initiate adaptive immunity, DCs phagocytoseMtb bacilli
and migrate to draining lymph nodes to present antigenic
peptides (Figure 1B) (13, 63, 65). Interestingly, this priming
requires live Mtb bacilli within the lymph node (63, 65).
However, Mtb-laden DCs are poor antigen presenters and
instead secrete soluble, unprocessed Mtb antigens, which are
presented by uninfected lymph node resident DCs (63, 66, 67).
While this process circumvents inefficient antigen presentation
byMtb-infected DCs, it may also lead to decreased T cell priming
(67, 68). Regardless, DCs serve a central role in priming the
adaptive immune response following Mtb infection.

CD4+ T Cells
CD4+ T cells are essential for anti-mycobacterial immunity, as
HIV/AIDS patients with low CD4+ T cell counts and animal
models lacking CD4+ T cells quickly succumb to infection, even
with attenuated mycobacterial strains (69–71). Naïve T cell
activation is delayed following infection due to a variety of
evasive mechanisms harnessed by Mtb (67, 72). In mouse
models, antigen-specific CD4+ T cells are detected in the
draining mediastinal lymph nodes and lungs 2 and 3 weeks
post-Mtb infection, respectively (19). In non-human primates,
antigen-specific CD4+ T cells are not detected in the lungs until 4
weeks post-infection (73). Adoptive transfer studies indicated
CD4+ T cell activation in the lymph node does not begin until 7
days post-infection, despite an abundance of antigen-specific
cells (74). These findings indicate a combination of ineffective
antigen presentation and immune evasion significantly delay
priming of anti-Mtb adaptive immunity.

Activated CD4+ T cells migrate to the infected lung and
interact with innate cells to reinforce anti-Mtb immune
responses (Figure 1C). IFNg- and TNFa-producing CD4+ TH1
cells are required for optimal anti-mycobacterial responses, as
humans and mice with defects in the IFNg/IL-12/TH1 axis are
highly susceptible to mycobacterial infection (75–82). Mice
lacking TH17 immunity display increased Mtb burden
following infection (83, 84). Adoptive transfer of antigen-
specific TH17 cells into T cell-deficient mice prolongs survival,
even when IFNg-deficient, suggesting TH17 cells act
independently of TH1 cells to control Mtb infection (85).
Despite this, TH17 responses are negligible in active TB
patients, indicating work is still needed to determine the
impact of TH17 immunity in human Mtb infection (86). Thus,
while the TH1 cells are essential, further investigation into other
CD4+ T cell subtypes is required to better understand the anti-
mycobacterial immune response.

IFNg is a main driver of Mtb growth restriction and
prevention of extrapulmonary dissemination through induction
of iNOS, inflammatory cytokines, and antimicrobial peptides
in infected macrophages (87). Despite its protective role,
IFNg has been implicated in the pathogenesis of prolonged
Mtb infection as it promotes cavitation and destruction of lung
tissue (88, 89). As such, TH1 activity is restricted by IL-10,
an inhibitory cytokine produced chiefly by macrophages and
Foxp3+ T regulatory (Treg) cells (Figure 1C) (90–92). Treg
Frontiers in Immunology | www.frontiersin.org 4
expansion has been detected in Mtb-infected macaques and
humans (93–96). TH1 cells co-secreting IFNg and IL-10 have
also been detected in bronchoalveolar lavage fluid from active TB
patients and mice with high infectious doses, though the
contribution of these cells remains unclear (97, 98). In mice,
Treg depletion enhances mycobacterial clearance at the expense of
increased pulmonary immunopathology, while Treg expansion
dampens TH1 responses (99–101). Taken together, TH1
immunity, while critical for Mtb clearance, is dampened by Treg

cells in order to preserve lung architecture and function following
Mtb infection.

CD8+ T Cells
Loss of CD8+ T cell responses impairs anti-mycobacterial
immunity in animal models (102–104). Though an exact role
remains unclear, CD8+ T cells prevent TB reactivation via
cytokine production, perforin-mediated lysis of Mtb-infected
phagocytes, and secretion of cytotoxic granules for direct
killing of intracellular Mtb (Figure 1C) (105–107). TNFa
inhibitors selectively deplete a subset of granulysin-secreting
memory CD8+ T cells, which may explain why patients with
autoimmune diseases prescribed anti-TNFa drugs are more
susceptible to mycobacterial infections (108). Studying the role
of CD8+ T cells in Mtb infection has been difficult, however, as
CD8+ T cells cannot recognize Mtb-infected macrophages to the
same extent as their CD4+ counterparts (109). While more work
is needed, these studies show CD8+ T cells help control
mycobacterial infection.

B Cells
Despite being an intracellular pathogen, growing evidence
indicates humoral immunity is essential for anti-Mtb immune
responses. Anti-Mtb antibodies have been detected in humans
exposed to Mtb and provide protection in mouse models (110).
However, the antibody pool in sera of active TB patients is small
and limited to membrane-associated and extracellular antigens
(111). Interestingly, Fc glycosylation of anti-Mtb antibodies
differs depending on the stage of infection and can
discriminate between latent and active TB patients (112, 113).
Antibodies secreted in latent TB promote increased NK cell
responses and inflammasome activation of human monocyte
derived macrophages in vitro (112). Additionally, human
monocyte derived macrophages cultured with antibodies from
latent TB patients displayed decreased mycobacterial burden as
compared to those cultured with antibodies from active TB
patients (112). These findings are complemented by reports
that IgG glycosylation of anti-Mtb antibodies is required to
observe protection upon transfer into mouse models (114,
115). Still, the role of humoral immunity against Mtb requires
additional investigation.

The Granuloma
Despite a coordinated immune response, patients are generally
unable to clear Mtb infection. As such, the immune system walls
off Mtb bacilli in granulomas, a hallmark of human TB disease
(Figures 1D–F). Granulomas are characterized by a central core
of Mtb-infected multinucleated giant cells and uninfected
February 2021 | Volume 11 | Article 628432
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macrophages at varying stages of differentiation, surrounded by
macrophages, neutrophils, DCs, and fibroblasts, along with a
lymphocytic cuff composed of T and B cells (116–119).
Granulomas can contain Mtb infection for decades. However,
hypoxia causes the core necrosis, allowing for dissemination and
reactivation of pulmonary TB infection and/or seeding in
extrapulmonary sites (120, 121). Additionally, the granuloma
structure precludes drug penetration and elimination of Mtb
bacilli (122). Thus, while protective against active disease,
granulomas present a therapeutic issue contributing to the
difficulty of eradicating TB.

The immune response against Mtb is multifaceted and highly
dependent on the cell’s metabolic state and ability to acquire
nutrients. Minor alterations in immune cell metabolism have the
potential to fundamentally change outcomes throughout Mtb
infection. Changes in carbohydrate and fatty acid metabolism
following Mtb infection, particularly in macrophages, have been
well described and reviewed (5, 118, 123, 124). Amino acids can
impact cellular nutrient signaling and be utilized by immune
cells in a variety of metabolic pathways. For example, L-
glutamine can signal nutrient sufficiency through mTOR or be
oxidized and converted to other energy sources like citrate,
which can enter the TCA cycle or be utilized for fatty acid
synthesis (123). Meanwhile, L-serine, which plays a main role in
1 carbon metabolism via the folate cycle, has been shown to
support macrophage functions through mTOR activation (125).
Here we will focus on L-ARG and L-TRP metabolism in immune
cells following Mtb infection, and how their acquisition and
utilization change over the disease course.
Frontiers in Immunology | www.frontiersin.org 5
L-ARGININE METABOLISM

L-ARG is an amino acid obtained from the diet, generated via de
novo synthesis, or scavenged following protein turnover (126).
At homeostasis, the intestinal-renal axis of L-ARG synthesis
maintains the body’s L-ARG supply (127, 128). However, in early
life, during chronic infection or inflammation, or following renal
or intestinal injury, synthesis is not sufficient to meet the body’s
needs, classifying L-ARG as a semi-essential amino acid (126).
L-ARG is also part of the urea cycle, a pathway utilized to
eliminate nitrogenous waste products. Patients with most urea
cycle disorders exhibit impaired de novo synthesis, so L-ARG is
considered essential (126).

L-ARG is the sole substrate for NO synthase enzymes (126).
In myeloid cells, L-ARG is converted to NO via iNOS, forming
L-citrulline (L-CIT) as a by-product (Figure 2A) (129, 130). L-
CIT is a noncanonical amino acid utilized in the urea cycle and
found in peptides/proteins following posttranslational
modification of peptidyl-L-ARG (127, 130). In some cells,
including immune cells, L-CIT serves to generate L-ARG.
Through the sequential activity of argininosuccinate synthase 1
(Ass1) and argininosuccinate lyase (Asl), L-CIT is metabolized to
form L-ARG (130). These reactions require L-aspartate and
generate L-fumarate, which are intermediates in the TCA
cycle. L-ARG can also be metabolized by arginases to form L-
ornithine (L-ORN), a noncanonical amino acid formed in the
urea cycle and a polyamine precursor (126, 131). There are two
known arginase isoforms – cytosolic arginase 1 (Arg1) and
mitochondrial arginase 2 (126).
A B

C

FIGURE 2 | Immune cell amino acid metabolism following mycobacterial infection. (A) L-ARG metabolism pathway in immune cells. (B) L-TRP metabolism pathway
in immune cells. (C) Amino acid metabolism between myeloid and T cells. Abbreviations: L-ARG, L-arginine; L-CIT, L-citrulline; L-ORN, L-ornithine; iNOS, inducible
nitric oxide synthase; Ass1, argininosuccinate synthase 1; Asl, argininosuccinate lyase; Arg1/2, arginase 1/2; L-TRP, L-tryptophan; KYN, L-kynurenine; IDO,
indolamine 2,3-dioxygenase; CAT1, cationic amino acid transport 1; CAT 2, cationic amino acid transporter 2; LAT1. L-type amino acid transporter 1.
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L-ARG is also a precursor of creatine, L-proline, L-glutamate,
and agmatine (126). Additionally, L-ARG regulates the protein
kinases and cellular nutrient sensors general control
nonderepressible 2 (GCN2) and mammalian target of
rapamycin complex 1 (mTORC1) (132). The roles of GCN2
and mTORC1 in immune cells, and their regulation by L-ARG,
have been reviewed elsewhere (133–136) and will not be
discussed here.

L-arginine Metabolism and Implications on
the Anti-Mycobacterial Immune Response
Macrophages
Macrophages are often characterized as M1 (“classically
activated”) or M2 (“alternatively activated”) based on their
metabolic state and effector molecules. In fact, L-ARG
utilization has often been used to classify macrophages, where
iNOS or Arg1-expressing macrophages are considered “M1” or
“M2”, respectively (118, 124). Following mycobacterial infection,
however, macrophages co-express iNOS and Arg1 (137–139).
Thus, macrophages that respond to Mtb infection do not
concisely fit within the “M1” versus “M2” binary with respect
to L-ARG utilization.

In mice, macrophages have been shown to utilize L-ARG to
fuel NO production via iNOS (Figure 2) (124, 129). However,
following Mtb infection extracellular L-ARG is not sufficient to
sustain NO synthesis. As such, macrophages convert L-CIT into
L-ARG, which is instrumental for continued NO production
(139, 140). Amino acid tracing showed regeneration of L-ARG
from L-CIT preferentially feeds into NO synthesis via iNOS, as
opposed to L-ORN synthesis via Arg1 (140). This corresponds
with previous studies indicating structural colocalization of NOS
enzymes with Asl, one of the L-ARG synthesis enzymes, during
systemic NO production (141). Evidence of colocalization of
Ass1, Asl, and iNOS has not been definitively shown, though a
combination of immunoprecipitation and tandem mass
spectrometry suggests such a complex is formed within RAW
264.7 murine macrophages (141). Thus, macrophage L-ARG
synthesis from L-CIT likely serves to fuel NO synthesis. Still,
there are likely additional macrophage anti-mycobacterial
mechanisms that require a sufficient L-ARG supply, and
investigation outside of NO production will be beneficial since
NO does not play a dominant role in human macrophages.

Immune cell L-ARG synthesis is vital for controlling
mycobacterial burden. Bone marrow chimeric mice with
hematopoietic cells from Ass1 hypomorphs were unable to
control Mtb infection as compared to controls (139).
Additionally, mice with a conditional hematopoietic or
myeloid deletion of Asl or Ass1 displayed increased burden
following Mb BCG or Mtb infection (142). Therefore, L-ARG
and its synthesis contribute to macrophage defense following
mycobacterial infection.

Arg1-expressing macrophages are present following Mtb
infection in humans, non-human primates, and mice (138,
143–145). Though L-ORN is a polyamine precursor, these
metabolites have little effect on Mtb growth in vitro (145).
Instead, by synthesizing L-ORN, Arg1 depletes the
Frontiers in Immunology | www.frontiersin.org 6
microenvironment of L-ARG (Figure 2) (129). Arg1
expression occurs alongside upregulation of CAT-2B, the high-
affinity isoform of L-ARG transporter CAT-2 (146, 147). Though
iNOS has been shown to have a higher affinity for L-ARG, Arg1
has greater maximal activity, and as such imported L-ARG is
preferentially shuttled for L-ORN synthesis rather than NO
production (148). In mice co-infected with Schistosoma
mansoni and Mtb, Arg1 impaired mycobacterial control and
worsened lung pathology (149). A mouse model lacking Arg1 in
hematopoietic cells displayed increased macrophage NO
production and enhanced mycobacterial clearance (137). Thus,
Arg1-expressing macrophages likely play an inhibitory role,
limiting NO production and Mtb clearance.

Arg1-expressing macrophages are found in granulomas from
Mtb-infected patients and non-human primates (138, 143).
Using an intradermal Mtb infection model in Nos2-/- mice,
Arg1-expressing macrophages were detected in granulomas
(145). Interestingly, loss of Arg1 in hematopoietic cells of
Nos2-/- mice resulted in more enlarged, necrotic granulomas
and increased mycobacterial burden (145). Additionally,
presence of Arg1 in granulomas correlated with decreased T
cell proliferation (145). Thus, it is likely Arg1 regulates T cell-
mediated lung immunopathology following Mtb infection.

Neutrophils
Human neutrophils store and release Arg1 upon activation in
vitro (150). In sepsis patients, circulating neutrophil counts
positively correlate with plasma Arg1 activity (151). Following
phagocytosis of fungi, Arg1 is upregulated in neutrophils (152).
Airway supernatant from cystic fibrosis patients suppresses T cell
responses in vitro, which was reversed following addition of Arg1
inhibitor N-w-Hydroxy-L-norarginine (153). This was attributed
to neutrophil Arg1 release, as neutrophil counts positively
correlated with airway supernatant Arg1 activity (153). Thus,
multiple mechanisms of neutrophil Arg1-mediated immune
regulation exist, yet neutrophil Arg1 activity in Mtb infection
still requires investigation.

The role of neutrophil L-ARG synthesis has not been studied
in Mtb infection. Our work investigating myeloid L-ARG
synthesis following mycobacterial infection utilized Lyz2-cre
for conditional deletion, also targeting neutrophils (142).
However, the role of neutrophil-specific L-ARG metabolism
following mycobacterial infection has not been addressed and
warrants further investigation.

NK Cells
NK cells require L-ARG for proliferation, expression of activating
receptors, and IFNg production in vitro (154). Human NK cells
constitutively express endothelial NOS, inhibition of which impairs
cytotoxicity (155, 156). Like T cells, NK cells are inhibited by
myeloid-derived Arg1 (157–159). In hepatitis C virus infection,
Arg1-producing myeloid-derived suppressor cells decreased NK cell
IFNg production through mTOR inhibition, which was reversed
upon in vitro L-ARG supplementation (158). Despite this, neither
NK cell L-ARG metabolism nor Arg1-mediated inhibition have
been explored following Mtb infection.
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Dendritic Cells
Mouse bone marrow derived DCs (BMDCs) express Arg1 during
development and have active GM-CSF-dependent L-ARG
metabolism (160, 161). Additionally, mouse BMDCs grown
without L-ARG decreased MHC II surface expression, while
MHC I expression was unaffected (162). Thus, L-ARG is
involved in BMDC development, though more thorough
investigation is needed.

Little is known about DC L-ARG metabolism following
infection. TNF/iNOS-producing DCs are one of the main
inflammatory myeloid cell types present following bacterial
and parasitic infections, though they have not been
investigated following Mtb infection (163–165). Additionally,
Giardia duodenalis-infected human monocyte-derived DCs
decrease expression of the co-stimulatory molecule CD86 in
the absence of L-ARG (166). However, DC L-ARG metabolism
during Mtb infection has not yet been investigated.

T Cells
T cells rely on L-ARG for cell cycle progression, proliferation,
and effector functions (Figure 2) (167–172). T cells express the
L-ARG synthesis enzymes, with Asl and Ass1 induced upon in
vitro activation (173, 174). Functions requiring L-ARG can be
rescued by L-CIT when L-ARG is limiting in vitro (173–175).
Human CD4+ T cells utilize CAT-1 and LAT-1 to import L-ARG
and L-CIT, respectively (174, 176).

T cell responses are suppressed when L-ARG is limiting.
Myeloid Arg1 has been implicated in T cell suppression observed
following mycobacterial infection, vaccination, and cancer
(Figure 2) (153, 177–180). Following in vitro stimulation with
heat-killed Mb BCG, macrophage Arg1 suppressed T cell
proliferation, which was restored in cultures supplemented
with L-CIT (173). These data suggest L-ARG synthesis from L-
CIT may circumvent T cell suppression following L-ARG
depletion. Still, mice with a T cell-specific loss of L-ARG
synthesis did not display impaired mycobacterial clearance
with either Mtb Erdman or Mb BCG, yet displayed a slight,
although significant, decrease in CD4+ T cell accumulation in the
lung and draining lymph nodes, compared to controls (173).
Given the accumulation impairment, mycobacterial burden and/
or T cell mediated lung immunopathology should be investigated
during multiple stages of infection.

B Cells
L-ARG deficiency impairs B cell maturation at the pro- to pre-B cell
stage (181). Arg1-treated 697 pre-B lymphoblastic cells displayed
increased cell death, which was reversed or attenuated upon
addition of L-ARG or L-CIT, respectively (182). Therefore, it is
likely B cells express L-ARG synthesis machinery, although this has
not been definitively determined. Regardless, the impact of B cell L-
ARG utilization and metabolism have not yet been explored
following Mtb infection.

L-Arginine Supplementation in Tuberculosis
Treatment
Given L-ARG is required for optimal immune cell function, L-
ARG supplementation has been attempted in vitro and in vivo
Frontiers in Immunology | www.frontiersin.org 7
and has been considered as a potential vaccine adjuvant or
therapeutic (139, 140, 183–187). L-ARG supplementation has
been investigated in the treatment of active TB with mixed
results. Some studies have shown oral L-ARG decreases
constitutional symptoms and increases sputum conversion in
active TB patients (188, 189). However, another study in which
active TB patients were given a high L-ARG diet found no benefit
when compared to normal diet, even though HIV-positive
patients showed an increased cure rate (190). Regardless,
oral L-ARG is subject to metabolism in the small intestine,
resulting in excess water and electrolyte secretion and severe
gastrointestinal distress, making it unlikely for oral L-ARG
supplementation to be used clinically in TB treatment (191).

L-CIT presents a potential therapeutic alternative as it increases
circulating L-ARG and NO following oral supplementation
and has not been shown to induce gastrointestinal side effects
(191–194). Additionally, use of L-CIT as an adjuvant improved
antibody production following viral vaccination in mice (195).
Addition of L-ARG alone or with L-CIT, however, did not increase
antibody titers (195). This indicates L-CIT supplementation may
be considered for boosting immune function when L-ARG is
not recommended.

In summary, L-ARG plays an important role in immune cells
following mycobacterial infection. In macrophages, L-ARG is
needed to fuel NO synthesis and its synthesis from precursor L-
CIT is required to control mycobacterial infection. Additionally,
Arg1-expressing macrophages likely control T cell mediated
immunopathology following Mtb infection via L-ARG
depletion. T cells require L-ARG to fuel their effector
functions, setting up an effective competition for nutrients with
myeloid cells (Figure 2C). The requirement for L-ARG in both
macrophages and T cells has been extensively studied, and likely
serves as an immunoregulatory mechanism following Mtb
infection. The role of L-ARG in other myeloid cells, including
neutrophils and dendritic cells, as well as NK cells and B cells has
not been extensively studied in the context of Mtb infection.
Additionally, the use of L-ARG and/or L-CIT as potential
therapeutic or preventative approaches should be further
investigated in the context of Mtb infection and vaccination.
L-TRYPTOPHAN METABOLISM

L-TRP is an essential amino acid obtained from the diet (196).
However, in cases where L-TRP cannot be properly absorbed or
is in low abundance, L-TRP may be in short supply (196).
Proteolysis allows for recycling of L-TRP to meet cellular
nutrient requirements, but the contribution of protein
catabolism to L-TRP plasma concentrations is unclear (197).

When in excess, L-TRP is metabolized to form niacin (Figure
2B). In fact, L-TRP is second only to niacin itself as the body’s
main source of NAD+, a reducing equivalent that is required for
many metabolic reactions, such as glycolysis and the TCA cycle
(198). To form NAD+, L-TRP is metabolized via the KYN
pathway (196, 199). In hepatocytes, steroids and excess L-TRP
upregulate tryptophan 2,3-dioxygenase (TDO), which converts
L-TRP to N-formylkynurenine, a KYN precursor (196, 200). In
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innate immune cells, TLR and IFNgR ligation increase
indoleamine 2,3-dioxygenase (IDO), which catalyzes the same
reaction (196, 200). Unlike TDO, IDO allows for more
promiscuous substrate binding, including 5-hydroxytryptophan,
serotonin, and D-tryptophan (201). While both require oxygen,
TDO requires heme-associated molecular oxygen and IDO
requires superoxide anions (199, 201). Of the enzymes that
metabolize L-TRP through the KYN pathway, only IDO is
present and active in immune cells.

Two IDO isoforms, IDO1 and IDO2, are expressed by antigen
presenting cells, epithelial cells, vascular endothelial cells, and
neoplastic cells (199, 200). Discriminating between contributions
of IDO1 and IDO2 is difficult, as available inhibitors are not
isoform-specific (196, 199, 202). While knockout mouse lines for
each isoform exist, only the Ido1-/- line is commercially available
(203, 204). As such, we will refer to IDO1 and IDO2 collectively
as “IDO” and provide information about specific isoforms
when available.

L-TRP also forms serotonin, melatonin, and picolinate
(Figure 2B) (196, 200). Like L-ARG, L-TRP regulates mTOR
and GCN2; this has been reviewed elsewhere and will not be
discussed here (133–136).

L-tryptophan Metabolism and Implications
on the Immune Response to
Mycobacterium tuberculosis
IDO activity, measured by L-TRP/KYN ratio, can determine TB
severity. Active TB patients with low L-TRP/KYN ratios (high
IDO activity), have poorer outcomes compared to those with low
IDO activity (205). Additionally, active TB patients with pleurisy
had increased pleural fluid IDO activity compared to patients
with non-infectious pleuritis (206). Active TB patients also
exhibit increased sputum IDO compared to patients with other
lung diseases (207). In HIV+ patients, plasma IDO activity is
increased uponMtb co-infection and could be detected 6 months
prior to TB diagnosis (208). Thus, measuring IDO activity may
have prognostic value in TB diagnosis.

Macrophages
Upon Mtb infection, macrophages expression of IDO is IFNg-
dependent (Figure 2) (209, 210). In macaques, lung IDO
expression is limited to macrophage-rich areas of granulomas
(211). Some have postulated macrophage IDO-mediated L-TRP
depletion exerts an anti-microbial effect; however Mtb can
synthesize L-TRP, making this an unlikely anti-mycobacterial
mechanism (212–214). Macaques treated with IDO inhibitor 1-
methyl-DL-tryptophan (1-MT) showed decreased mycobacterial
burden and lung pathology compared to controls following Mtb
CDC1551 infection, while there was no difference in
mycobacterial burden between Ido1-/- and wild-type mice (209,
215). Thus, a central anti-mycobacterial role for IDO has yet to
be elucidated.

IDO forms metabolites that bind and activate the aryl
hydrocarbon receptor (AHR), a ligand-regulated transcription
factor that modulates immune activity. Following Mtb H37Rv

infection, Ahr-/- mice displayed increased systemic mycobacterial
burden, attributed to loss of myeloid cell AHR (216).
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Macrophage AHR activation induces IL-1b and IL-23
transcription, supporting IL-22 producing lymphocytes (217).
Thus, the role of IDO is not limited to L-TRP depletion, as
L-TRP metabolites modulate immune responses through
AHR activation.

Neutrophils
While unexplored in TB, L-TRP metabolism in neutrophils has
been examined in other infection models. Neutrophil IDO
expression is IFNg-dependent (218). Following Pseudomonas
aeruginosa infection, KYN blunted neutrophil-mediated bacterial
killing by acting as a reactive oxygen species scavenger (219). In
mice, KYN impaired neutrophil chemotaxis in an AHR-
dependent manner following uropathogenic Escherichia coli
infection (220). Thus, IDO activity inhibits neutrophil responses,
and its contributions to neutrophil function following Mtb
infection require further investigation.

NK Cells
L-TRP metabolism in NK cells is unexplored during Mtb
infection. In NK92 MI cells, KYN induces apoptosis, an effect
dependent upon the presence of reactive oxygen species (221). In
a mouse B16 melanoma model, 1-MT administration decreased
NK cell cytotoxicity, reducing their ability to restrict tumor size
(222). Following Paracoccidioides brasiliensis infection, Ido1-/-

mice displayed decreased lung NK cell expansion as compared to
controls (223). Thus, the available data are limited, requiring
further exploration to elucidate the role of L-TRP metabolism in
general NK cell biology and following Mtb infection.

Dendritic Cells
DCs express IDO in an IFNg-dependent manner (218). BMDCs
lacking IDO supported increased proliferation of mycobacterial-
specific CD4+ T cells in vitro (209). Thus, DC IDO expression
likely plays a tolerogenic role following Mtb infection.
Interestingly, a feedback loop involving Arg1 and IDO1 has
been uncovered in DCs (224). In mouse CD11c+ splenic DCs,
TGF-b induces Arg1 expression, followed by Ido1 upregulation
(224). Interestingly, increased Ido1 expression was lost in Arg1-
deficient DCs, suggesting Arg1 is required for Ido1 upregulation
(224). This was mediated by spermidine, a polyamine, via
activation of Src kinase (224). Thus, formation of tolerogenic
DCs requires a coordinated effort between the L-ARG and L-
TRP metabolic pathways. This relationship should be further
explored in other myeloid cells and in Mtb infection.

T Cells
L-TRP is essential for supporting T cell functions, which are
dampened by myeloid IDO activity (Figure 2) (225–227). When
co-cultured with human CD3+ T cells, pleural fluid from active
TB patients inhibited cell cycle progression, TH1 polarization,
and cytokine production (228). The addition of 1-MT reversed
the effect on cytokine production, though other T cell functions
were not assessed (228). In vitro, IDO1 siRNA silencing in a
macrophage/CD4+ T cell co-culture reduced Mtb burden (215).
IDO1 silencing in macrophages alone had no effect on Mtb
burden, indicating IDO1 inhibited anti-mycobacterial T cell
February 2021 | Volume 11 | Article 628432

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Crowther and Qualls L-Arginine, L-Tryptophan, and Tuberculosis Immunity
functions (215). IDO1 silencing did not increase IFNg
production, though increased IFNb was detected (215). In
Mtb-infected macaques, IDO inhibition increased T cell
proliferation and memory formation, leading to granuloma
reorganization, with CD4+ T cell migration to the core (215).
Whether CD4+ T cell influx into the granuloma is responsible for
decreasedMtb burden and/or improvedMtb clearance has yet to
be explored.

The inhibitory effect of IDO on T cells has been attributed
to L-TRP depletion. However, metabolites produced by IDO
can suppress TH1 and TH17 responses and promote Treg

differentiation, a phenomenon that has been explored in
autoimmune diseases (229, 230). As Treg activity inhibits
anti-mycobacterial TH1 responses, the immunoregulatory role
of L-TRP metabolites should be further explored.

B Cells
Unlike T cells, L-TRP metabolism in B cells duringMtb infection
has not been explored, though it has been studied in other
infection models. In human PBMCs stimulated with Dengue
virus, increasing KYN directly correlated with increased IgG
production (231). However, Ido1-/- mice exhibit increased
intestinal IgA, which afforded protection against Citrobacter
rodentium infection (232). KYN and other L-TRP metabolites
inhibit splenic B cell antibody production and promote apoptosis
(232). In mice, B cell IDO1 is upregulated following T cell-
independent antigen immunization, leading to impaired
antibody production (233). Further, B cells expressing Epstein-
Barr virus latent membrane protein 1 (LMP1) suppressed
antibody secretion in LMP1-negative B cells, which was
reversed upon 1-MT treatment (234). In a mouse model of
Helicobacter felis-induced gastritis, Ido1-/- mice displayed
decreased B cell frequency within the gastric mucosa (235).
Thus, available data on the role of L-TRP metabolism in B
cells are conflicting, with the majority of evidence favoring an
inhibitory role on the part of IDO.

L-Tryptophan Supplementation in Tuberculosis
Treatment
Unlike L-ARG, L-TRP supplementation has not been explored in
TB. Studies indicate isoniazid (INH) – a front-lineMtb antibiotic
– interferes with B vitamin metabolism, resulting in low niacin
(Vitamin B3) levels and development of pellagra (236, 237). In
one case study, an HIV+ patient showed signs of pellagra after
long-term INH prophylaxis, which was reversed upon niacin
supplementation and INH discontinuation (237). Considering
the link between niacin and L-TRP, it would have been of interest
to correlate niacin levels with serum L-TRP, yet this was not
measured. Thus, further studies on L-TRP supplementation to
prevent pellagra in TB patients taking INH, and subsequent
effects on anti-mycobacterial immune responses, are needed.

L-TRP supplementation has been investigated in other
infection models. In teleost fish, L-TRP supplementation
increased plasma cortisol levels, which decreased circulating
leukocytes following Photobacterium infection (238). However,
infected fish receiving excess dietary L-TRP displayed increased
survival (238). In a pig model of rotavirus infection, L-TRP
Frontiers in Immunology | www.frontiersin.org 9
supplementation expanded the Foxp3+ Treg population (239).
Further studies are needed to determine the effect of L-TRP
supplementation on immune responses to Mtb infection.

In summary, following infection myeloid cells express IDO,
thereby depleting the microenvironment of L-TRP. Similar to
L-ARG, T cells require L-TRP to fuel their effector functions, thus
setting up yet another competition for nutrients following
infection (Figure 2C). The role of L-TRP following Mtb
infection in other immune cells requires further investigation.
Additionally, the therapeutic potential of L-TRP supplementation
has not yet been explored in the context ofMtb infection, but may
prove beneficial in patients prescribed INH.
CONCLUDING REMARKS

In this review, we summarized current knowledge on the
immune response to Mtb and the contribution of immune cell
L-ARG and L-TRP metabolism. While availability of other
amino acids likely influences immune responses following
infection, the L-ARG and L-TRP pathways are the most
comprehensive and have identifiable regulatory roles. Available
data suggest amino acid metabolism is central in the regulation
of immune responses following infection. Infection leads to
upregulation of pathways that limit nutrient availability, which
in turn inhibits productive immune responses. Effects of nutrient
limitation have been most extensively studied in macrophages
and T cells, suggesting amino acid restriction by myeloid cells
contributes to T cell suppression following Mtb infection.
However, the immune system must balance amino acid
requirements for T cell-mediated Mtb control with restriction
to suppress T cell-mediated immunopathology. Thus, further
research into competition for amino acids between myeloid and
T cells should be further explored during Mtb infection.

Considering many TB-endemic areas also suffer from
malnourishment, continued research into nutrient restriction
and its effects on anti-Mtb immune responses is needed.
Recently, it was shown that latent TB patients with low body
mass index have altered immune cell profiles, including decreased
memory T and B cells, as compared to latent TB patients with
normal body mass index (240). This underscores the importance
of nutrient availability in the immune system and parallels studies
suggesting nutrient supplementation boosts immune responses
following infection. Given their importance in immune cell
function, the role of amino acid supplementation should be
further explored as a potential therapeutic option in TB,
especially in undernourished populations. Better understanding
nutrient requirements of immune cells following Mtb infection
may aid in development of future host-directed therapies aimed to
eradicate TB.
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