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Abstract: Ultracold atoms in an optical lattice provide a unique approach to study quantum
many-body systems, previously only possible by using condensed-matter experimental systems. This
new approach, often called quantum simulation, becomes possible because of the high controllability
of the system parameters and the inherent cleanness without lattice defects and impurities. In this
article, we review recent developments in this rapidly growing field of ultracold atoms in an optical
lattice, with special focus on quantum simulations using our newly created quantum many-body
system of two-electron atoms of ytterbium. In addition, we also mention other interesting
possibilities offered by this novel experimental platform, such as applications to precision
measurements for studying fundamental physics and a Rydberg atom quantum computation.
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1. Introduction

Recently, the technique of manipulating individ-
ual single quantum systems, such as an atom, ion,
and photon, has made dramatic progress. On the
other hand, many functional materials, a high-Tc

superconductor being a representative example, are
strongly correlated quantum many-body systems,
studied by various approaches to obtain a deeper
understanding of the novel behaviors.1) Quite often,
even a qualitative understanding is difficult to obtain
for such quantum many-body systems.

Under these circumstances, a system of ultracold
atoms in an optical lattice (see Fig. 1) is regarded as
an ideal quantum simulator of quantum many-body
systems, because it possesses high degrees of con-
trollability of the system parameters, and it is a
quite clean system, free of lattice defects and impu-
rities.2)–5) By developing quantum simulation tech-
niques using this ideal system of ultracold atoms in
an optical lattice, it is expected that we can offer

indispensable guidelines for the synthesis of novel
functional materials by providing quantitative under-
standings of strongly correlated many-body systems.
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Fig. 1. (Color online) Optical lattice. Laser light whose fre-
quency is far off-resonant with atomic resonances produces a
potential for the atoms, and the potential depth is proportional
to the light intensity. A periodic potential for atoms is created
by the standing waves of laser light. The left panel shows the
laser configuration for realizing the 3D optical lattice. When the
optical lattice potential depth is so deep that atoms are tightly
bound in the lattice sites, such a system can be described with a
high degree of precision utilizing a Hubbard model that consists
of a tunneling term characterized by the tunneling energy, t, and
an on-site interaction term characterized by the on-site energy,
U, as shown in the right panel, where the crossed points of the
grids represent the optical lattice sites. These important
parameters can be precisely tuned by the optical lattice laser
intensity and a Feshbach resonance.*1 Department of Physics, Graduate School of Science,
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The system is also quite useful for the ideal
realization of novel topological phases. Thus, quan-
tum simulation research will have potential impacts
on our society.

Here, we consider the notion of quantum
simulation research using cold atoms in an optical
lattice.6) Even if one performs some type of experi-
ments using cold atoms in an optical lattice, the
work is not always regarded as being a quantum
simulation within the framework of quantum infor-
mation science. For an experiment to be called a
quantum simulation, the Hamiltonian of the target
system must be clearly defined without any ambi-
guity, no matter how difficult it is to calculate the
static or dynamic properties of the system. From the
viewpoint of engineering, quantum simulations are
important for computationally hard problems, such
as the Fermi-Hubbard model (FHM) and the quench
dynamics of the Bose-Hubbard model (BHM), where-
as, from a scientific point of view, the target of
quantum simulation could include conceptually
important phenomena, such as topological quantum
phenomena, even if it is computationally not difficult.

Figure 2 summarizes the achievements of optical
lattice quantum simulation research as well as its
future directions, expressed by italics. Quantum
phase transitions for bosons7),8) were successfully
observed and quantum magnetism is being actively

studied for fermions by both ensemble measure-
ments9)–11) and a recently developed method involv-
ing the site-resolved imaging of individual single
atoms, called a quantum gas microscopy
(QGM).12)–17) The apparent next step is to lower
the temperature of atoms, to realize the expected
d-wave superfluidity. Along with the important
directions of lowering the temperature and the
development of measurement and control techniques,
a rich variety of interesting research topics are
currently being studied, such as SU(N) spin symme-
try, non-standard lattice, topological physics, open
quantum dynamics, mixtures, quantum transport,
and so on. In Sec. 2–8, we introduce these important
topics along with the backgrounds as well as detailed
descriptions of our experiments done by using a
two-electron atom of ytterbium(Yb). In Sec. 9, in
addition to the summary and perspective of the
quantum simulation research, we also mention other
interesting possibilities offered by this novel exper-
imental platform, such as the applications to
precision measurements for the study of funda-
mental physics18) and a Rydberg atom quantum
computation.19)

Before going into the details of the experiments,
here we summarize the implications and unique
properties of Yb quantum gas, a new quantum
many-body system created and developed in our
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Fig. 2. Achievements and future directions of optical lattice quantum simulation. Lowering the temperature and developing techniques
for measurement and control are two important directions of the field. In addition, the diversity of research topics is also an important
feature.
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laboratory over more than two decades.5) It is true
that alkali atoms are standard atomic species in cold-
atom research. However, extending atomic species
beyond alkali atoms is important because we can
then explore unique possibilities by utilizing atomic
species with unique features. In this respect, a rare-
earth atom of Yb that possesses the electronic
structure of Xe4f146s2 is quite interesting, because it
offers many important possibilities for fundamental
research and applications, which are in fact described
in this article. One of the unique features of an Yb
atom is its energy structure associated with the
two-valence electrons. The low-lying energy levels are
shown in Fig. 3. There are two ultranarrow optical
transitions of 1S0-3P0 and 1S0-3P2. Both transitions
have an ultranarrow linewidth of about 10mHz, and
are useful for probing and manipulating the quantum
phases as well as constructing novel experimental
platforms. Yb has a rich variety of isotopes with five
bosons (168Yb, 170Yb, 172Yb, 174Yb, and 176Yb) and
two fermions (171Yb and 173Yb). While bosonic
isotopes have no spin in the ground state, fermionic
isotopes have nuclear spin I (I F 1/2 for 171Yb and
I F 5/2 for 173Yb), which is utilized for SU(N)
physics,20) described later. The important parameters
of the s-wave scattering lengths which characterize
ultracold atomic gases are precisely determined by
our two-color photoassociation measurement.21) The
rich variety of stable isotopes allows us to study not
only Bose-Einstein condensate (BEC) and Fermi
degenerate gas (FDG), but also quantum degenerate
mixtures, such as Bose-Bose, Bose-Fermi and Fermi-
Fermi mixtures. Using the laser cooling and evapo-

rative cooling, in fact, we can realize various
quantum degenerate gases of Yb atoms,5) which are
utilized in experiments described in the following
sections.

2. Quantum simulation of Fermi-Hubbard model

Strongly correlated many-body systems of elec-
trons play a fundamental role in condensed-matter
physics. A central model is the Fermi-Hubbard
model (FHM). Quantum simulations of FHM can
be performed by using ultracold Fermi gases loaded
into an optical lattice.

2.1 Fermi-Hubbard model. FHM is described
by the following:

HSUð2ÞFHM ¼ �t
X

hi;ji;� c
y
i;�cj;� þ U

X
i
ni;"ni;#

þ
X

i;�
�ini;�; ½1�

where ci,< is a fermionic annihilation operator for
site i and spin < F D1/2(") or !1/2(#), ni;� ¼ cyi;�ci;�
is the number operator, and 0i represents the super-
imposed weak potential. While Eq. [1] contains only
the minimum ingredients of the nearest-neighbor
hopping, t, and on-site interaction, U, for correlated
electrons, it has successfully accounted for diverse
phenomena observed in solid-state materials.

For a strong repulsive interaction at a higher
temperature, on the one hand, the two-component
or SU(2) FHM gives rise to a paramagnetic Mott
insulator, which is a dramatic manifestation of
quantum many-body effects. At a lower temperature,
on the other hand, an antiferromagnetic order
emerges below the Néel temperature.1),22) Note that
quantum magnetism manifests itself in quantum
many-body states of spins coupled by the exchange
interaction, and lies at the heart of many fundamen-
tal phenomena in condensed-matter physics. In fact,
doped 2D SU(2) FHM at low temperatures is a
minimum model of high-Tc superconductivity,1) the
complete understanding of which has not been
obtained in spite of intensive studies.

2.2. Cold atom SU(2) FHM. The develop-
ment of experimental implementation of the FHM
with ultracold fermionic atoms in optical lattices has
provided a new approach for advancing our under-
standing of strongly correlated fermions.23) Mott
insulating phases have been realized, and studied
by various techniques. Recently, an antiferromag-
netic order SU(2) FHM17) has been successfully
observed by a QGM technique, where the spatial
redistribution of entropy with engineered potential
landscapes is utilized for obtaining the ultracold
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Fig. 3. Relevant low-lying energy levels of an Yb atom. The
thickness of the arrows schematically represents the strength of
the optical transitions. The 1S0-1P1 transition gives a strong
radiation pressure on the Yb atoms, and is useful for slowing
down the high-velocity atomic beam. The 1S0-3P1 intercombina-
tion transition gives a low atomic temperature of 4.4 µK with
Doppler cooling, and is useful for magneto-optical trapping. In
addition, there are two ultranarrow optical transitions of 1S0-3P0

and 1S0-3P0, which are useful for two-orbital quantum simu-
lators, precision measurements, and so on.
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temperature of 0.25(2)/kB # t. Here, kB is the
Boltzmann constant. Currently, much effort is being
devoted for lowering the temperature to realize d-
wave superfluidity.

2.3. SU(N) FHM. More than 30 years ago, Ian
Affleck and others introduced the SU(N) Hubbard
model24),25) as an extension of the conventional SU(2)
model, which today attracts much theoretical inter-
est in connection with its exotic quantum phases20)

of the SU(N) quantum magnetism, such as chiral
spin liquids. The SU(N) FHM is described by the
following Hamiltonian:

HSUðNÞFHM ¼ �t
X

hi;ji;� c
y
i;�cj;� þ U

X
i;� 6¼�0

ni;�ni;�0

þ
X

i;�
�ini;�; ½2�

where now < F 1, 2, + N. Note that the hopping
matrix element, t, and on-site interaction, U, do not
depend on the spin, <, which assures the SU(N)
symmetry. The low-temperature behaviors of the
SU(N > 2) model are predicted to be qualitatively
different from those of the SU(2) model, mainly due
to the enhancement of quantum fluctuation for a
large-N system.

2.4. Cold atom SU(N). A rich variety of
ultracold atomic systems make it possible to create
artificial matter, which is not accessible by tradi-
tional condensed-matter systems. The realization of
SU(N) FHM is one illustrative example, while SU(N)
physics has been discussed in condensed-matter
physics, e.g., in the context of heavy-fermion systems
for atoms with f-electrons.24),25) For fermionic iso-
topes of two-electron atoms, such as ytterbium
(173Yb) and strontium (87Sr) in the ground 1S0 and
metastable 3P0 states, the nuclear spin degrees of
freedom are decoupled from the electron angular
momentum, and thus the inter-atomic interaction
does not depend on the spin, <. This allows us to
ideally realize the SU(N F 2I D 1) FHM for nuclear
spin I. The positive scattering lengths a F 10.55 nm
for 173Yb and a F 5.09 nm for 87Sr correspond to
repulsive interactions (U > 0), which is a case of
interest in strongly correlated many-body systems.

How can we measure the spin distribution? For
alkali-atoms with a large magnetic moment origi-
nated from electron spins, a magnetic-field gradient
on the order of several Gauss/cm is sufficient for
separately imaging each of the spin components by a
Stern-Gerlach effect. However, the magnetic mo-
ments of nuclei of the SU(N) systems are too weak for
this purpose. We have developed an optical Stern-
Gerlach effect which utilizes the gradient of a pseudo-

magnetic field created by off-resonant laser light, and
is thus also useful for nuclear spin systems.26)

Figure 4 indicates the result of optical Stern-Gerlach
imaging of the SU(6) spins of 173Yb atoms, which
clearly shows the existence of 6 spin components with
almost equal weights.

2.5. Cold atom SU(N) experiment: Mott
insulator. First, we focus on the realization of a
paramagnetic SU(N) Mott insulator.27) There are
several signatures for a successful formation of a
Mott insulating state. One important feature is the
existence of a charge excitation gap. As the U
interaction increases, the mobility of atoms is sup-
pressed. Finally, the system enters the incompressible
Mott phase when the gap opens. At the same time,
a multiple occupation of lattice sites, closely related
to the compressibility, ∂n/∂7, becomes energetically
unfavorable, and is suppressed in the Mott regime.
In addition to these features of a Mott insulator, it
is also interesting to clarify the difference between
the behaviors of Mott insulators with SU(2) and
SU(N > 2) symmetries.
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Fig. 4. (Color online) Optical Stern-Gerlach spin measurement.
(a) Schematic of the principle of the method. Applying the off-
resonant laser light results in the spin-dependent light shifts.
When the atoms are located at the shoulder of the beam, then
the atoms receive a different momentum kick, resulting in a
spin-dependent spatial distribution after some free ballistic flight
time. (b) Observed spin distribution with an optical Stern-
Gerlach effect for 173Yb. The existence of six spin components of
mF F !5/2, +, D5/2 is confirmed.
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Based on the double occupancy measurement,
several characteristics of a Mott phase, such as
the charge excitation gap and incompressibility,
have been clearly observed.27) The result of lattice
modulation spectroscopy in which we measure the
number of doublons created by the application of the
lattice amplitude modulation, clearly indicates the
charge excitation gap in a strongly-correlated regime.
We also measured the rate of the doublon production
by applying lattice amplitude modulation. This is
sensitive to the nearest-neighbor correlation, and
thus to the temperature of the atoms in the lattice.
Comparing the results of an SU(6) system with that
of a usual SU(2) system under the same conditions
clearly reveals that, due to the large entropy ln(N)
carried by spin, significant cooling occurs for the
SU(6) system during adiabatic loading into the
lattice; in other words, the Mott phase becomes
remarkably stabilized for a large-spin system. This
effect is analogous to Pomeranchuk cooling in solid
3He.28)

2.6. Cold atom SU(N) experiment: quantum
magnetism. Second, we focus on the spin
correlations of the atoms in an optical lattice.11)

The detection of spin correlations is important for
characterizing quantum many-body states in optical
lattices. For the SU(2) Hubbard model, antiferro-
magnetic correlations were observed in dimerized
lattices9) that consist of uncoupled two-site systems
with enhanced inter-site hopping, and thus large
exchange interactions, uniform 3D lattices using
Bragg spectroscopy,10) and 1D- and 2D-lattices
using quantum gas microscopy.14)–17) We extended
the scheme of the singlet-triplet oscillation (STO)
method developed for SU(2) systems and successfully
obtained clear signals of antiferromagnetic correla-
tions for dimerized lattice11) as well as homogeneous
1D, 2D, and 3D lattices, and the dimensional
crossover regimes in our recent work.29) Figure 5
shows the typical STO signals observed for SU(4)
systems in a dimerized lattice, from which we can
determine the numbers of singlet-pairs (NS) and
triplet pairs (NT

0) consisting of different spin
components. In a separate measurement, we can
determine the total atom number, Ntot. We thus
deduce the important quantities of the normalized
STO amplitude, defined as (NS ! NT

0)/Ntot, and the
singlet-triplet imbalance, defined as (NS ! NT

0)/
(NS D NT

0), which characterize the spin correlation.
The precise control of the spin degrees of freedom by
an optical pumping technique enables one a straight-
forward comparison of SU(N F 2)- and SU(N F 4)-

spin systems in the lattice. Figure 6 reveals that the
antiferromagnetic spin correlation is enhanced for
an SU(4)-spin system compared with SU(2), which
indicates that the Pomeranchuk cooling effect is also
quite helpful at low temperatures where quantum
magnetism manifests itself.

While in the dimerized lattice we enhance the
exchange interaction coupling by enhanced tunneling
within the dimer, even in homogeneous lattices,
where no apparent mechanism of artificially enhanc-

Fig. 5. (Color online) Typical singlet-triplet oscillation (STO)
signal observed for the SU(4) system in a dimerized lattice. In
a separate measurement, we can determine the total atom
number, Ntot, and the difference between Ntot and the atom
number at the beginning of STO corresponds to the singlet-pairs
NS and that between Ntot and the atom number after the half
cycle of STO triplet pairs, NT

0. The clear oscillation indicates an
excess of the singlet-pairs over the triplet, corresponding to the
antiferromagnetic spin correlation.

Fig. 6. (Color online) Enhanced Pomeranchuk cooling in quan-
tum magnetism in a dimerized lattice. The normalized STO
amplitude is plotted against the initial entropy of the atoms in
a harmonic trap before loading to the lattice. The larger STO
signal for the SU(4) system, compared with SU(2), indicates
realization of the lower temperature of the atoms in the
dimerized lattice.
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ing the spin correlation, we have clearly observed the
nearest-neighbor antiferromagnetic spin correlations
of ultracold atoms with SU(6) spin symmetry in
optical lattices in our recent work.29) State-of-the-art
theoretical calculations based on exact diagonaliza-
tion and determinantal quantum Monte-Carlo reveal
that the experimental data for 1D agrees with theory
in which no fitting parameters exist. Remarkably, a
comparison with theory implies that the achieved
temperature is as low as about 0.1 of the tunneling
energy, which is the lowest among experiments ever
reported with ultracold fermions. For other dimen-
sions, experimentally achieved correlations are al-
ready higher than the regime where theoretical
calculations easily converge, while highlighting the
experiments as quantum simulations.

3. Quantum simulation with
a non-standard lattice

The many-body properties of a quantum system
drastically depend on the geometry of an underlying
lattice structure. The high flexibility of optical lattice
systems enables one to realize several important non-
standard lattice structures.30)

3.1. Non-standard lattice. Some types of
lattices exhibit novel energy-band dispersions, while
the kinetic energy of a massive particle generally has
a quadratic dependence on its momentum. A honey-
comb lattice,31) for example, gives rise to a linear
dispersion, called a Dirac cone, and has been the
target of numerous studies. A more exotic situation is
totally vanishing dispersion, called a flat band.32),33)

The macroscopic degeneracy in the flat band causes
the emergence of localized eigenstates, and has been a
key concept in the context of itinerant ferromagnet-
ism for electrons.34)–36) A well-known example having
a flat band is a kagome lattice structure,37) which has
also been the target of extensive research.

3.2. Lieb lattice. Figure 7(a) shows a lattice
structure, called a Lieb lattice, which consists of three
sublattices A, B, and C: A-sites form a standard
square lattice and the others, B- and C-sites, lie on
every line of the square lattice, and thus also called a
line-centered square lattice.38) This Lieb lattice also
has a flat dispersion in the second band and a Dirac
cone on the corner of the Brillouin zone in the tight
binding model, as shown in Fig. 7(b).

To derive this band structure, it is convenient to
take plane waves on each sublattice |k, Ai, |k, Bi,
and |k, Ci with a momentum k as a basis set. The
existence of only nearest-neighbor tunneling, J,
between A and B and that between A and C induces

couplings among these basis states. The resulting
tight-binding Hamiltonian, ĤTB, can be written as

ĤTB ¼
X

k
âyk;A âyk;B âyk;C

� �
T

âk;A

âk;B

âk;C

0
B@

1
CA; ½3�

where T is a 3 # 3 matrix that couples each
sublattice, given by

T ¼
0 � 2J cosðkxd=2Þ � 2J cosðkyd=2Þ

�2J cosðkxd=2Þ 0 0

�2J cosðkyd=2Þ 0 0

0
B@

1
CA:

½4�
The energy eigenvalues and eigenstates are obtained
by diagonalization in a straightforward way, and the
energy of the second band is zero with the eigenstate
given by

jk; 2ndi ¼ cos �kjk; Bi � sin �kjk; Ci; ½5�
where tan 3k F cos(kxd/2)/cos(kyd/2). This corre-
sponds to the flat band shown in Fig. 7(b).

For bosons, interplay between frustrated kinetic
energy and inter-atomic interactions is considered
to support exotic phases, like supersolids.32),33) For
fermions, the celebrated Lieb’s theorem predicts the
emergence of nonzero magnetization with their Fermi
level lying at the flat band.34)–36) Note that the
structure of the Lieb lattice is identical to the three-
band d-p model, which describes the CuO2 plane of
high-Tc superconductors.39)

3.3. Matter wave localization in an optical
Lieb lattice. It is obvious that optical-lattice
realization of the Lieb lattice for ultracold atoms
should provide a unique and powerful quantum
simulation of a quantum many-body system for both
fermions and bosons. By superimposing three differ-
ent kinds of optical lattices, we successfully realize
the Lieb lattice with high controllability of the lattice
parameters.38) In particular, fast control of the lattice
potential can imprint a periodic phase on an atomic
condensate. This technique provides important
means to transfer a Bose condensate prepared in
the ground dispersive band of the Lieb lattice into the
initially unoccupied flat band. Furthermore, dynami-
cal control of the energy bands allows us to observe
occupation numbers of three sublattices in the Lieb
lattice with a so-called sublattice mapping technique,
which enables us to investigate the stability of the
atoms in a flat band.

The highlight is the successful observation of the
localized nature of a wave function in the flat band,
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shown as filled squares in Fig. 7(c). This is caused by
destructive interference between the hopping from B-
to A-sites and that from C- to A-sites, which is the
origin of the unique behaviors of quantum particles in
a flat band. In contrast, in a usual dispersive band,
shown as open circles in Fig. 7(c), the constructive
interference of the tunneling results in delocalization
of the atoms.

3.4. Spatial adiabatic passage: transport
without transit. In addition, we find a close
analogy between the coherent tunnel-coupled three
sublattices in the Lieb lattice and the coherent laser-
coupled three internal states in an atomic system.40)

The Hamiltonian of the coherent laser-coupled
three-level system is described by the following
Hamiltonian:

H ¼
0 � �

� 0 0

� 0 0

0
@

1
A: ½6�

Here, + is the Rabi-frequency representing the
coherent laser coupling between the |Ai and |Bi
states as well as that between |Ai and |Ci. We now
consider the Hilbert space spanned by |Ai, |Bi, and
|Ci. When one compares Eqs. [4] and [6], the analogy
to a $-type system is now obvious: momentum-
dependent couplings play a role of Rabi couplings in a
three-level system.

In quantum optics, a well-known phenomenon
unique to the three-level system coherently coupled
via two optical fields is the so called Stimulated
Raman Adiabatic Passage (STIRAP) process, which
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Fig. 7. (Color online) Lieb lattice. (a) Lattice structure. A Lieb lattice is a bi-partite lattice consisting of A-site as well as B- and
C-sites. (b) Band structure. The tight-binding energy dispersion shows the existence of flat band and Dirac cones. (c) Matter-wave
localization. When the atoms are prepared in the flat band, represented by (|Bi ! |C i)/ ffiffiffi

2
p

(right panel), the population of the A-site,
which is plotted in the figure in the middle panel as a function of time after the state preparation, is suppressed, even though tunneling
between the A-sites and B- and C-sites is allowed (red data in the middle panel), indicating the localization of atoms. In contrast, we
have observed the sizable population in the A-site (blue data in the middle panel) when the atoms are prepared in the dispersive band
represented by (|Bi D |C i)/ ffiffiffi

2
p

(left panel). Here, the observed oscillation corresponds to the constructive interference of coherent
tunnelings between the A- and B-sites and the A- and C-sites.
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was developed in the 1980’s, and has been a robust
and efficient way for transferring atomic/molecular
internal quantum states in spite of lossy intermediate
states.40) A key ingredient for the STIRAP is the
existence of a dark state, which consists only of the
initial and final states with no contribution of the
intermediate optically excited states, and thus does
not couple with the laser light. As is readily known
from Eq. [6], a dark state, (|Bi ! |Ci)/ ffiffiffi

2
p

, arises as
one of the eigenstates of the Hamiltonian, Eq. [6].

Thus, the analogy between the Lieb lattice and
laser-coupled three-level system suggests the realiza-
tion of a matter-wave analogue of the STIRAP,
meaning that a massive particle moves without any
practical possibility of being found at the intermedi-
ate area under the situation where the initial and
final states are spatially well separated. Such process-
es, named spatial adiabatic passage (SAP), offer
paradoxical transport without transit.41),42) Figure 8
shows the experiment of SAP.43) After the counter-
intuitive sequence of the dynamical control of
tunneling amplitudes, the atoms initially located in
B-site move to C-site with the population in the
intermediate A-site kept minimally small. This is the
first realization of SAP for massive particles. Notice
that the flat band consists only of the sublattices B
and C with no contribution of the corner A-site. It is
the flat band that is responsible for the role of the
dark state in the STIRAP. Our work has shed light

on an analogy between the laser-coupled atomic
energy levels and the spatial degrees of freedom of
atoms in optical lattices, which provides novel
methods of the coherent control in ultracold atomic
systems.

4. Quantum simulation of Thouless pump

Topology is an important concept in physics. In
condensed matter systems, the best-known example
would be the integer quantum Hall effect (IQHE). In
a celebrated paper44) by Thouless, Kohmoto, Night-
ingale, and den Nijs (TKNN), they showed that a
topological invariant, the sum of the Chern number
over the two-dimensional magnetic Brillouin zone
of filled bands, gives a quantized value of the Hall
conductance. A quantum simulation of topological
quantum phenomena is performed by utilizing the
high controllability of optical lattice systems.

4.1. Thouless pump. In 1983, Thouless also
considered an electron gas in an infinite one-dimen-
sional periodic potential driven by a periodic cycle to
discuss the conductive property of the polyacety-
lene.45) He showed that the charge transferred by this
system in each “pumping” cycle is quantized, and that
the quantization of this charge pumping shares the
same topological origin as the IQHE. More specifi-
cally, the amount of pumped charge per cycle can be
expressed by the Chern number over the (1D1)
dimensional Brillouin zone. Therefore, the Thouless
pump can, in principle, be a very accurate standard
for electric current, just like the Quantum Hall
conductance is the standard for electric resistance
with extremely high accuracy due to its topological
robustness. However, Thouless’s type of the charge
pumping device with sufficiently long spatial perio-
dicity has not been realized in electronic systems.

4.2. Cold atom realization of a Thouless
pump. Researchers in the field of ultracold atoms
have started to realize various topologically-non-
trivial systems by exploiting the controllability of
ultracold atoms in optical lattices.46) In particular,
we successfully demonstrated the Thouless charge
pump47),48) by constructing a controllable one-dimen-
sional periodic potential consisting of an optical
superlattice and loading ultracold fermionic 171Yb
atoms instead of electrons. More specifically, we
realized the specific lattice model of a Rice-Mele
model given in Eq. [7],

HRM ¼
X

i
ð�ðJ þ �Þayi bi � ðJ � �Þayi biþ1

þ h:c:þ�ðayi ai � byi biÞÞ; ½7�

Fig. 8. (Color online) Spatial adiabatic passage. Initially, most
of the atoms are prepared only at the B-site (green triangle). The
counter-intuitive sequence for transferring the atoms from the
B-site to the C-site (red square), consisting of the increase, and
later decrease, of the tunneling between the A- and C-sites,
followed by the increase and later decrease of the tunneling
between the A- and B-sites, results in reasonably efficient
transfer with no sizable population in the intermediate A-site
(blue circle).
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where ai and bi are fermionic annihilation operators
in the two sublattices of the i-th unit cell; J ’ ‘ is
the tunneling amplitude within and between unit
cells, respectively, and " denotes a staggered on-site
energy offset. Thouless pumping in the Rice-Mele
model is performed by temporally changing the
dimerized hopping amplitude, ‘, and the staggered
energy, ". Therefore, a particular pumping sequence
corresponds to a particular trajectory in the ‘-"
parameter space, and the topology of the Thouless
pump is determined by whether the trajectory
encircles the degeneracy point of ‘ F " F 0.
Figure 9(a) shows a typical pumping sequence and
the corresponding lattice potentials at representa-
tive times.

As shown in Fig. 9(b), we clearly observed the
quantization of Thouless pumping as the quantized
shift of the atomic cloud. This is equivalent to a
direct measurement of the Chern number of the
system. To highlight the topological feature of the
pumping, we performed measurements with several
topologically-distinct pumping sequences, and com-
pared the amount of pumping. The results are shown
in Fig. 9(c). For trajectories which enclose the
degeneracy point, the quantized Thouless pump is
observed, irrespective of the details of the trajectory,
on one hand. For a trajectory that does not enclose
the degeneracy point, on the other hand, no pump is
observed. These observations illustrate the topolog-
ical nature of the Thouless pump.

4.3. Disorder induced pump. In addition, we
experimentally revealed a surprising effect of quasi-
periodic disorder in Thouless quantum pumping in
our recent study.49) Specifically, we discovered a
counter-intuitive phenomenon of disorder-induced
pumping in which the presence of disorder induces
a non-trivial pump, instead of suppressing, while no
pump is observed under a clean condition. This non-
trivial phenomenon is a (1D1) dimensional analogue
of the seminal topological Anderson insulator,50)

which has recently attracted so much attention from
both theory and experiment. Since the pioneering
work by Niu and Thouless in 1984,51) the problem of
topology and disorder has been a crucially important
classic problem, but has not been fully understood
so far.

Our experimental observations not only demon-
strate the realization of a disorder-induced pump, but
also quantitatively reveals the degree of robustness
and breakdown of the Thouless pump against
disorder. The pumped charge keeps its quantized
value even at disorder strengths comparable to the

Anderson-localization transition point. The pumped
charge drastically decreases when the disorder
strength exceeds the threshold value determined by
the pump parameters. In addition, our further
measurement suggests that the gap closes at the
threshold of the disorder strength, indicating that
the disorder induces a topological phase transition
from topologically non-trivial to trivial phases. Our
system offers a unique platform for studying various
disorder-related novel effects for a wide range of
topological quantum phenomena.

5. Quantum simulation of open quantum system

For a deeper understanding of the physical
phenomena in real materials and the development
of quantum mechanical devices, it is important to
clarify how the dissipation influences the quantum
many-body system. The effect of the quantum state
by dissipation is often regarded as the observation,
crucially important in quantum theory. In addition,
recent theories predict the novel role of the dis-
sipation as a tool for preparing and stabilizing some
particular quantum states of interest.52),53)

5.1. Dissipation in cold atom experiment.
Ultracold atoms in an optical lattice is an ideal closed
quantum many-body system, isolated from the
external environment in a vacuum chamber, and is
also ideal for studying open quantum systems by
artificially introducing dissipation processes in a
well-controlled manner. The introduction of a one-
body dissipation has been experimentally realized
with several methods, such as an electron beam,54)

and a well-controlled photon scattering process.55)

Our recent experimental studies of the Parity-Time-
symmetric quantum many-body system of bosons
have utilized one-body atom loss as dissipation.56) A
three-body loss process57) has been introduced by
utilizing a Feshbach resonance.58) Since a two-body
process plays an important role in quantum phase
transitions, investigating the effect of two-body loss
process is especially interesting. Along this line of
research, the stability of the molecules in a Mott
insulating state was investigated so far by using the
intrinsic inelastic nature of molecular collisions.59),60)

5.2. Driven, dissipative Hubbard model. We
performed a systematic study of the effect of
dissipation on a prototypical quantum phase tran-
sition in a Bose-Hubbard model, namely the one
between the Mott insulator and superfluid phases.61)

We successfully realized a driven-dissipative Bose-
Hubbard system in a three-dimensional optical
lattice by employing photo-association techniques
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Fig. 9. (Color online) Thouless pump using cold atoms. (a) Typical pumping sequence of Thouless pump. The dimerized lattice
potential is periodically modulated with a period of T. The corresponding lattice potential (solid lines) and the atom distribution (red
circles) within the lattice are shown. Note that our observable is the shift of the center-of-mass position of the whole atom cloud in a
weak harmonic confinement (blue dashed lines), and there are in general holes in the lattice indicated by the arrow. This schematic
figure shows the shift of the atoms by exactly one unit cell (light blue area). (b) Quantized Thouless pump. The shift of the center-of-
mass position in units of lattice constant d is plotted as a function of the pumping time in units of the period T, or the number of the
cycle. The data points are well fitted with a linear line corresponding to the Chern number 1. (c) Topological nature of a Thouless
pump. Similar plots, as in (b), are shown for various sequences. The diamonds and circles represent the trajectories encircling the
degeneracy point of the origin in the ‘-" parameter space in a different way, resulting in the same pumping behavior. The inverted
triangle represents the trajectory encircling the degeneracy point, but with reverse direction, resulting in the reverse direction of
pumping. The square does not encircle the degeneracy point, resulting in no pumping.
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to engineer two-body inelastic collisions with a
controllable strength. Thus, this system can be
described by the following master equation for
density operator ;:

!
d

dt
� ¼ �i½HBHM; �� þ L2ð�Þ; ½8�

where

HBHM ¼ �t
X

hi;ji b
y
i bj þ U

X
i
niðni � 1Þ=2 ½9�

is a single-component Bose-Hubbard Hamiltonian
with bj being an boson annihilation operator. Also,

L2ð�Þ ¼ !�

4

X
i
ð�byi b

y
i bjbj�� �byi b

y
i bjbj þ 2bjbj�b

y
i b

y
i Þ;
½10�

where ! denotes the strength of the two-body loss
induced by photoassociation.

Figure 10(a) shows the result of the number of
atoms remaining after applying the two-body dis-
sipation, which clearly indicates that a sufficiently
strong dissipation inhibits the coherent tunneling
motion of the atoms. This is nothing but a
manifestation of the quantum Zeno effect.62)

Figure 10(b) represents the results on the effect
of two-body dissipation on the superfluid-Mott
insulator quantum phase transition. In dynamics

subjected to a slow ramp-down of the optical lattice,
we have found a novel role of dissipation where
strong dissipation favors the Mott insulating state:
melting of the Mott insulator is delayed and growth
of the phase coherence is suppressed. Notice that
the absence of coherence peaks in this case does not
mean that the state under dissipation is thermal.
This is justified by our experimental confirmation of
restoration of the coherence after turning off the
dissipation.

It is also interesting to study driven, dissipative
FHM in which quantum magnetism within the
dimerized lattice is dynamically controlled by utiliz-
ing two-body atom loss.63),64)

The present work provides us with a new
method for experimental investigations of quantum
many-body systems with controllable dissipation
and, therefore, stimulates further studies on quantum
phase transition phenomena in Liouvillian dynamics.

6. Quantum simulation with atomic mixtures

Since the inter-atomic interaction plays a crucial
role in the formation of a Mott insulator state, we
can easily imagine that a combined system of two
different Mott insulators with strong interspecies
interactions will show drastically new features,
instead of just the simple sum of the two systems,

a) b)
= 0 

[kHz]

Fig. 10. (Color online) Effect of dissipation on the Bose-Hubbard model. (a) Quantum Zeno effect. The rate of the two-body loss, which
results only from tunneling at the lattice height of 8 ER, is plotted as a function of the strength of the two-body photoassociation
dissipation, !. Here, ER represents the recoil energy, which corresponds to the kinetic energy of the atom with the momentum of a
single-photon of the lattice laser light. The counter-intuitive behavior of a decrease in the loss for increased strength of the dissipation
is interpreted as being a quantum Zeno effect. (b) Superfluid-Mott insulator transition under dissipation. Time-of-Flight images are
shown for various lattice depths after a slow ramping down of the lattice from the Mott insulator. Here, the sharp matter-wave
interference peak is a signature of the superfluidity, which is clearly observed at a lattice depth of lower than 8 ER, for example, in the
case of no dissipation. In contrast, in the presence of the strong dissipation, such a clear interference peak is suppressed even at a
shallow depth of 4 ER.
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and will enable us to explore the rich phases that
are not accessible with a single-component Mott
insulator system. Experimental studies on the Bose-
Fermi mixture of rubidium (87Rb) and spin polarized
potassium (40K) were reported in which the effect of
fermions on the bosonic superfluid-Mott insulator
transition was studied.65)–67) There are also studies on
Bose-Bose and Fermi-Fermi mixtures.

6.1 Dual Mott insulators. By utilizing a rich
variety of isotopes of Yb atoms, both for bosons
and fermions, we have realized and studied a novel
strongly-correlated system of interacting dual Mott
insulators.68) The dual Mott insulators of bosons
and fermions can be described by the Hamiltonian
(HBFHM) with boson–fermion on-site interactions,
UBF, in addition to the bosons (HBHM) and fermions
(HFHM),

HBFHM ¼ HBHM þHFHM þ UBF

X
i;�

nB;inF;i;�: ½11�
To characterize dual Mott insulators, we need

to measure the double occupancy of bosonic and

fermionic atoms and the pair occupancy of bosons and
fermions for varying numbers of atoms, as shown in
Fig. 11. Our qualitatively new finding is that the
relative filling of atoms and interspecies interaction
between atoms drastically modify each Mott insu-
lator, while inducing various interesting quantum
phases and their competition. Specifically, we reveal
the rich behaviors of atoms, such as melting of a
Mott insulator and the generation of various compo-
site particles of boson and fermions in the case of
attractive interspecies interactions, and an anti-
correlated mixed Mott insulator phase and complete
phase-separation in the repulsive case. We have also
revealed novel thermodynamic behaviors both for
repulsively and attractively interacting cases, and
have found evidence of intrinsic adiabatic cooling and
heating effects.

6.2. Mixtures with a large mass ratio.
Mixtures of large mass ratio are of particular interest,
realizing a mixed-dimensional system as an illustra-
tive example. An intriguing possibility is that an

Mixed Mott Phase Separation
Composite particles: 

type A type B type C

boson

fermion

type Atype B

type C

a) b)
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1
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Fig. 11. (Color online) Competition of various phases of a Bose-Fermi dual Mott insulator of repulsively interacting 174Yb-173Yb and
attractively interacting 174Yb-173Yb. (a) Various pairs in optical lattice sites, which are identified through several photoassociation
measurements, such as boson-boson (DB), fermion-fermion (DF), and boson-fermion (DBF) pairs. (b) Results of measurements of
various pairs indicate that (left panel, 174Yb-173Yb) bosons and fermions together form a unit-filling Mott insulator at a small number
of fermions NF, whereas the bosonic Mott insulator with double occupancy is phase separated from the unit-filling fermion Mott
insulator for larger NF. On the other hand, (right panel, 170Yb-173Yb), a Mott insulator is melted, accompanied with the formation of
different composite particles of types A, B, and C shown in (a) depending on NF.
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atomic mixture with one species confined in a 2D
plane and immersed into a 3D BEC of the other
species could result in chiral px D ipy superfluidity
by inter-species s-wave interactions.69),70) Here, chiral
px D ipy superfluidity has attracted much attention
concerning fault-tolerant quantum computation with
Majorana modes. In particular, Fermi-Bose mix-
tures in mixed dimensions support this topological
superfluid at relatively higher temperatures for
mixtures with a large mass ratio.64) In addition, the
mixed-dimensional atomic system is interesting for
realizing an experimental platform to study an
Anderson-Orthogonality catastrophe that results
from a Fermi-surface instability induced by a
localized impurity.

Experimentally, we have realized quantum
degenerate mixtures with a large mass ratio of about
29 with ultracold 174Yb-7Li (boson-boson) and
173Yb-7Li (fermion-boson) mixtures, as well as
174Yb-6Li (boson-fermion) and 173Yb-6Li (fermion-
fermion).71),72) The quantum degenerate mixtures in
a harmonic trap are adiabatically loaded into 3D or
1D optical lattices. While the optical lattice depths
are not so different for Yb and Li, the recoil energy,
which corresponds to the zero-point energy in the
optical lattice site, is species-selective, much smaller
for heavy Yb than light Li, realizing novel mixed
dimensional systems.71),72)

In addition, our recent efforts have resulted in
the successful formation of 168Er-6Li and 168Er-7Li
mixtures. This is another large mass-imbalanced
ultracold mixture of atoms and, importantly, the
interspecies interaction can be tuned by a Feshbach
resonance. The formation and characterization of
these ultracold mixtures is a first step towards a
possible realizing a topological superfluid in this
system as well as novel universal three-body bound
states, called Efimov trimers.73)

7. Quantum simulation of quantum transport

The Kondo effect74) is a quantum many-body
phenomenon that arises from an antiferromagnetic
spin-exchange interaction between conduction elec-
trons and magnetic impurities. It was originally
studied in the context of enhancing the resistivity
in magnetic alloys at low temperature, contrary to
the monotonic decrease expected for non-interacting
fermions, and now it is an ubiquitous problem in
condensed-matter physics. The Kondo effect is now
one of the important targets of quantum simulation
using cold atoms.

7.1. Kondo lattice model. The Kondo lattice

model,75) where localized spins are periodically
aligned, contains rich physics in the vicinity of the
quantum critical point between paramagnetic and
magnetically ordered phases, which is described by
the following Hamiltonian HKLM:

HKLM ¼ �tg
X

hi;ji;� c
y
i;g;�cj;g;�

þ Vex

X
i;� 6¼�0

cyi;g;�c
y
i;e;�0ci;g;�0ci;e;�; ½12�

where tg is the tunneling amplitude in the conduction
band, Vex expresses the spin-exchange energy be-
tween the conduction electron and localized impuri-
ty, and the symbols g and e represent the conduction
and localized bands, respectively.

Competition between the magnetic correlation
and localization effects is believed to induce rich
quantum phases, represented by a Doniach phase
diagram,75) in which the paramagnetic phase due to
Kondo screening in the strong coupling regime and
the Ruderman-Kittel-Kasuya-Yoshida ordered phase
in the weak coupling regime are expected.76)

7.2. Kondo effect with cold atoms. There has
been increasing interest on quantum simulations of
the Kondo effect by using ultracold atoms in an
optical lattice. Several schemes of a cold-atom
quantum simulator of the Kondo effect have been
proposed for alkali atoms, which require superlattice
structures or the population of excited bands,
whereas Nishida considers orbital SU(3) Kondo
systems by exploiting an confinement-induced reso-
nance.77) Recently, two-electron atoms have been
intensively studied as an experimental platform with
two-orbital degrees of freedom owing to the existence
of the metastable state 3P0 and 3P2 as well as the
ground state 1S0. In work by Gorshkov et al.,78) a
two-orbital system using the 1S0 and 3P0 states is
proposed as a promising candidate for the quantum
simulations of the Kondo lattice model.

One of the essential ingredients concerning the
mechanism of the Kondo effect is an interorbital
antiferromagnetic coupling. The interorbital colli-
sional properties in fermionic isotopes of 173Yb and
87Sr were previously investigated, and the spin-
exchange interactions are found to be ferromagnetic.
From high-resolution laser spectroscopic measure-
ments of the interorbital spin-exchange interaction
for another fermionic isotope of 171Yb, we revealed
the inter-orbital scattering lengths to be aDeg F

225(13)a0 and a!eg F 355(6) a0, indicating that the
spin-exchange interaction between the two-orbital
states is antiferromagnetic, aDeg ! a!eg F !131(19)
a0 < 0, and large enough to observe the Kondo effect
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at currently available atom temperature in an optical
lattice.79) Here, a0 represents the Bohr radius.

7.3. Spin-exchange dynamics. In addition, in
our recent work,80) we have observed the spin-
exchange dynamics between 171Yb atoms in the 1S0
and 3P0 states by constructing a two-orbital optical
lattice. This lattice system realizes a quasi (0D1) D
system where the 1S0 atom behaves as the quasi 1D
itinerant free fermions interacting with the 3P0 atom
serving as a localized impurity. As is shown in
Fig. 12, we have observed a relaxation of the spin
polarization of 1S0 atoms caused by the interorbital
spin-exchange process with the 3P0 atom. Our work
is a first step towards quantum simulations of the
Kondo effect using ultracold atoms.

7.4. Atomtronics. There is another type of
quantum transport experiment in which one meas-
ures the current between terminals, which has been
extensively studied so far in solid state materi-
als.80),81) In this type of experiments, the quantized
conductance was predicted from the Landauer
formula and was demonstrated.

In recent years, the ultracold atom experiments
have entered the domain of quantum transport
experiments.82) As a result, a new research field of
atomtronics has emerged. As a specific example,

researchers created a mesoscopic quantum point
contact (QPC) structure for ultracold atoms in real
space, and successfully observed the quantization of
conductance.83)

7.5. Spinor atomtronics. Instead of a spatial
degrees of freedom, a novel scheme for quantum
transport has been proposed, in which the spin
degrees of freedom of ultracold atoms are exploited.
This scheme should be called atomtronics with a
spin, or spinor atomtronics.84),85) Atoms obtain a
spin-dependent phase shift via impurity scattering,
resulting in quantum transport in Hilbert space
spanned by spin. The spin degrees of freedom of the
Fermi gas correspond to the terminals and the
localized impurity to the QPC.

In recent work,86) we successfully demonstrated
spin-space quantum transport induced by an atomic
QPC using ultracold 173Yb. We elucidate the
fundamental properties of the transport dynamics.
The unique spin degrees of freedom of 173Yb with
SU(N) symmetry have enabled us to successfully
realize a three-terminal impurity-induced quantum
transport system, which corresponds to the Y-
junction. Our work has realized spinor atomtronics,
providing unique possibilities in the quantum simu-
lation of quantum transport.

8. Quantum gas microscopy

As is briefly mentioned in the introduction,
recently, a QGM technique, which is a method for
observing single atoms in an optical lattice with
single-site spatial resolution, has been developed for
alkali atoms.12)–17) With this powerful technique, we
can expect the realization of an ultimate quantum
simulator. In fact, the QGM method enables one to
observe an antiferromagnetically ordered phase for
two-component fermions of alkali atoms loaded into a
two-dimensional optical lattice, which is a break-
through for cold atom FHM research.17)

8.1. QGM of Yb atoms. Extending the QGM
technique to atomic species beyond alkali atoms is
quite interesting, especially to two-electron atoms,
because it will provide intriguing abilities of probing
and manipulating each single atom in the quantum
simulation work described in this articles, like SU(N)
FHM, dual Mott insulators, dissipative Hubbard
models, and so on. As a first step, we recently
achieved site-resolved imaging of individual 174Yb
atoms in a 2D optical lattice.87) Figure 13(a) shows
the observed image of single Yb atoms in an optical
lattice. Figure 13(b) shows the reconstructed lattice
sites and the distribution of the individual atoms in

t=3 ms
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t=70 ms

Fig. 12. (Color online) Spin-exchange dynamics between itiner-
ant 1S0 and localized 3P0 atoms of 171Yb. The number of spin up
(down) in the 1S0 state, represented as blue (red) circles, is
plotted as a function of the hold time at a low magnetic field.
The optical Stern-Gerlach images at the hold time of 3ms and
70ms are shown.
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the optical lattice within the region indicated by the
red square in Fig. 13(a). During probing, we cooled
atoms by additionally applying narrow-line laser
cooling beams with the 1S0-3P1 transition, which is
the key of our method. The Yb QGM was also
developed in a different method.88)

In addition, we developed a new kind of method
for quantum gas microscopy.89) In the conventional
quantum gas microscope technique, fluorescent pho-
tons due to the irradiated resonant probe light are
detected with a high-sensitivity camera. Our new
method is based on dispersive interactions between
atoms and off-resonant probe light with linear
polarization. This dispersive interaction results in a
rotation of polarization of the probe light (Faraday
rotation), which is detected by a Faraday quantum
gas microscope.

8.2. Scheme for quantum non-demolition
QGM. One may wonder whether it is possible to
perform a quantum non-demolition measurement of
single atoms in an optical lattice, which will
significantly advance various research on the dynam-
ics of open quantum many-body systems for quantum
simulation and quantum information science. Theo-
retically we clarify the classical non-destructive
limit of Faraday quantum gas microscopy using the
coherent state of the probe light.90) The photon
absorption of a probe beam cannot be ignored even
in dispersive detection to obtain a signal-to-noise
ratio greater than unity because of the shot noise of

the probe beam under a standard measurement
condition. Based on this finding, we propose a
possible scheme for a quantum non-destructive
detection scheme of single atoms in an optical lattice
by using a scanning microscope with a squeezed
vacuum.90)

9. Conclusion and prospects

9.1. Conclusions and prospects of quantum
simulations. We have reviewed recent progress of
quantum simulation research with special focus on
the work done by using a quantum many-body
systems of two-electron atom Yb. In partcular, we
describe in detail our recent important work of
quantum simulation, such as SU(N) FHM with
enhanced Pomeranchuk cooling effects observed for
density distributions and quantum magentism
(Sec. 2), novel flat-band physics in optical Lieb
lattice (Sec. 3), the realization of a topological
Thouless pump and the novel interplay between
topology and disorder (Sec. 4), novel roles of
dissipation in quantum phase transitions and quan-
tum magnetism (Sec. 5), quantum simulation of
quantum degenerate mixtures (Sec. 6), cold atom
realization of quantum transport research (Sec. 7),
and the site-resolved imaging of Yb atoms in an
optical lattice by a QGM technique (Sec. 8).

So far, all quantum simulation experiments,
including those described in this article, were
conducted by atomic physics experimentalists using

a) b)

Fig. 13. (Color online) Site-resolved image of individual 174Yb atoms in a two-dimensional optical lattice. During the imaging, the atoms
are confined in an extremely deep optical lattice, and irradiated with probe light resonant with the 1S0-1P1 transition. To suppress
the heating of the atoms during the probing, we also irradiate the atoms with cooling light with the 1S0-3P1 transition. (a) Example of
the image. (b) Reconstructed atom distribution in the optical lattice for the region designated by the red square in (a). The lattice
sites are also superimposed.
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very complicated, rather large-scaled machines under
the well-controlled conditions in their laboratories.
An interesting future possibility is remote quantum
simulations, in which anyone can run a quantum
simulation experiment remotely from home. This
novel online system will provide condensed matter
theorists with a chance to test the validity of newly
developed numerical calculation methods, for exam-
ple. This remote quantum simulation can also be
helpful for a broad range of students to learn
important physical concepts, like Bose-Einstein con-
densation and the superfluid-Mott insulator quantum
phase transition as well as the latest technological
developments in atomic and condensed matter
physics, like a quantum gas microscopy. Efforts
along this line have already started in our lab.

9.2. Application to precision measurements.
An experimental platform for quantum simulation
using ultracold Yb atoms is also useful for precision
measurements to study fundamental physics.18) We
initiated the study involving the laser cooling and
trapping of Yb atoms towards tests of time-reversal
symmetry by searching for a permanent electric
dipole moment. We can expect a long coherence
time for individual atoms localized in each site of
an optical lattice, free from any inter-atomic inter-
action. Theoretical calculations show that Yb atoms
are sensitive to some CP-violating terms.

Our recent experiment along with the theoret-
ical work has tested Newton gravity at a short range
using Yb atoms.91),92) Owing to the lack of a thermal
broadening effect for quantum degenerate Yb atoms
and the simple molecular potential with neither
hyperfine nor singlet-triplet structures, sub-kHz
ultra-precise molecular spectroscopy of least-bound
molecular levels results in determining the upper-
limit of a Yukawa-type correction term.

More recently, precision isotope shift measure-
ments for two-different optical transitions are of
intensive interest. Within the framework of the
standard model, the obtained isotope shift data sets
should satisfy the linearity of a King plot.93) The
deviation of the linearity of a King plot indicates
the existence of a new particle which mediates the
force between an electron and a neutron,94) although
we should be careful concerning the contribution of
higher-order terms of isotope shifts within the
standard model to the possible nonlinearity of the
King plot. Since Yb has a rich variety of isotopes of 5
bosons and 2 fermions as well as ultra-narrow optical
transitions of 1S0-3P0 and 1S0-3P0 with a linewidth on
the order of mHz, a system of ultracold Yb atoms

and isotope mixtures in an optical lattice, which we
have been developing in recent years, offers an ideal
experimental platform for this purpose. Efforts along
this line have already started in our lab.

A new optical transition of 4f146s2:1S0-4f136s25d:
(J F 2) at 431.2 nm, which has never been observed,
is proposed for precision measurements, including
testing the time variation of the fine-structure
constant.95),96) This transition is also expected to
share the advantage of ultra-narrow linewidth.

9.3. Application to quantum computation.
Unique properties of ultracold Yb atoms, especially
the rich internal energy levels, have an important
application to quantum computing. Recent progress
concerning an atom tweezer array using Rydberg
states of alkali-atoms is impressive, and a high-
fidelity quantum gate has been demonstrated to-
wards realizing quantum computers using neutral
atoms.19),97)–99) However, lacking the ability of optical
trapping of Rydberg states of alkali-atoms cause
serious, though not fatal, problems when one
performs quantum gates with reasonable depth. In
contrast, owing to the existence of two valence
electrons in Yb atoms, one can optically trap
Rydberg states, which was recently demonstrated.
Various techniques of laser cooling and the manipu-
lation of internal states of Yb atoms, which we
have been developed for the purpose of quantum
simulation, can be exploited similarly for the develop-
ment of quantum computing using a Yb atom
tweezer array. Efforts along this line have already
started in our lab.
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