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Natural selection that affected modern humans early in their evolution has likely shaped some of the traits that set present-

day humans apart from their closest extinct and living relatives. The ability to detect ancient natural selection in the human

genome could provide insights into the molecular basis for these human-specific traits. Here, we introduce a method for

detecting ancient selective sweeps by scanning for extended genomic regions where our closest extinct relatives,

Neandertals and Denisovans, fall outside of the present-day human variation. Regions that are unusually long indicate

the presence of lineages that reached fixation in the human population faster than expected under neutral evolution.

Using simulations, we show that the method is able to detect ancient events of positive selection and that it can differentiate

those from background selection. Applying our method to the 1000 Genomes data set, we find evidence for ancient selec-

tive sweeps favoring regulatory changes and present a list of genomic regions that are predicted to underlie positively se-

lected human specific traits.

[Supplemental material is available for this article.]

Modern humans differ from their closest extinct relatives,
Neandertals, in several aspects, including skeletal and skull mor-
phology (Weaver 2009), and may also differ in other traits that
are not preserved in the archeological record (Varki et al. 2008;
Laland et al. 2010). Natural selectionmay have played a role in fix-
ing these traits on themodern human lineage. However, the selec-
tion events driving the fixation would have been restricted to a
specific timeframe, extending from the split between archaic and
modern humans ca. 650,000 yr ago to the split of modern human
populations from each other around 100,000 yr ago (Prüfer et al.
2014). While methods exist that can be used to scan the genome
for the remnants of past or ongoing positive selection (Nielsen
et al. 2007; Pybus and Shapiro 2009), current methods have
limited power to detect positive selection on the human lineage
that acted during this older timeframe (see Sabeti et al. 2006 for
a review on detectionmethods and their timeframes): an unusual-
ly high ratio of functional changes to nonfunctional changes, such
as the dN/dS test, requires millions of years and often multiple
events of selection to generate detectable signals (Kryazhimskiy
and Plotkin 2008), while unusual patterns of genetic diversity be-
tween individuals and populations (e.g., extended homozygosity,
Tajima’s D, FST) are most powerful during the selective sweep or
shortly after (Sabeti et al. 2006; Oleksyk et al. 2010). A favorable
substitution is not expected to leave a mark on linked neutral var-
iation beyond 250,000 yr in humans (Przeworski 2002, 2003).

The genome sequencing of archaic humans (Neandertals and
Denisovans) to high coverage (Meyer et al. 2012; Prüfer et al. 2014)
has spawned newmethods to investigate the genetic basis of mod-
ern human traits that are not shared by the archaics (Pääbo 2014).
One method, called 3P-CLR, models allele frequency changes be-
fore and after the split of two populations using the archaic ge-
nomes as an outgroup (Racimo 2016). 3P-CLR outperforms
previous methods in the detection of older events of selection

(up to 150,000 yr ago) (Fig. 2 fromRacimo 2016) but has little pow-
er to detect events older than 200,000 yr ago inmodern humans. A
secondmethod applied an approximate Bayesian computation on
patterns of homozygosity and haplotype diversity around alleles
that reach fixation (Racimo et al. 2014). Although this approach
expands our ability to investigate older time frames, this signal
of selection also fades over time, and events of positive selection
older than 300 thousand years ago (kya) become undetectable.

Based on a method introduced by Green et al. (2010), Prüfer
et al. (2014) presented a hidden Markov model that identifies re-
gions in the genomewhere theNeandertal andDenisovan individ-
uals fall outside of present-day human variation (i.e., the archaic
lineages fall basal compared to all present-day humans) and ap-
plied the model to detect selective sweeps on the modern human
lineage. Regions that are unusually long are candidates for ancient
selective sweeps as variants are likely to have swept rapidly to fix-
ation, dragging along with them large parts of the chromosomes
that did not have time to be broken up by recombination. While
this method is, in principle, expected to be able to detect events
as old as the modern human split from Neandertals and Deniso-
vans, this power was never formally tested, and it has several other
shortcomings. First, the method was limited to modern human
polymorphisms, ignoring the additional information given by
fixed substitutions. Second, the method does not fit parameters
to the data but requires these parameters to be estimated through
coalescent simulations.

Here, we introduce a refined version of this method, called
ELS (Extended Lineage Sorting), that models explicitly the longer
regions produced under selection and includes the fixed differenc-
es between archaic and modern human genomes as an additional
source of information. The ELS method also takes advantage of an
expectation-maximization algorithm to estimate the model pa-
rameters from the data itself, making it free from assumptions re-
garding human demographic history.
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To evaluate the power of the ELS method to detect ancient
selective sweeps, we tested its performance under scenarios of
background selection and neutrality. Finally, we present an updat-
ed list of candidate regions that likely underwent positive selection
on the modern human lineage since the split from the common
ancestor with Neandertals and Denisovans.

Results

Selection causes extended lineage sorting between closely related

populations

The ancestors of modern humans split from the ancestors of
Neandertals and Denisovans between 450,000 and 750,000 yr
ago (Prüfer et al. 2014). Because the two newly formed descendant
groups sampled the genetic variation from the ancestral popula-
tion, a derived variant can be shared between some members of
both groups, while other individuals show the ancestral variant.
At these positions, some lineages from one group share a more re-
cent common ancestor with some lineages in the other group than
within the same group (Rosenberg 2002), a phenomenon called
incomplete lineage sorting (Fig. 1A).

Eventually, a derived allele may reach fixation as part of a re-
gion that has not been unlinked by recombination. In these re-
gions, all descendants will derive from one common ancestor,
and any lineage from the other population will constitute an

outgroup, i.e., all lineages are sorted. Because of recombination,
the humangenome is amosaic of independent evolutionary histo-
ries, and the process of lineage sorting is expected to randomly af-
fect regions, until, ultimately, all lineages will be sorted. In the case
of modern humans, only a fraction of the regions in the genome
are expected to show lineage sorting (Prüfer et al. 2014), and the
genome can be partitioned into regions where an archaic lineage
falls either within the variation of modern humans (internal re-
gion) or outside of the human variation (external region) (Fig. 1B).

While lineage sorting canoccur under neutrality, selection on
the modern human branch is expected to always lead to external
regions as long as the selective sweep finished. In cases where
the selective sweep is sufficiently strong, there will not be suffi-
cient time for recombination to break the linkage with neighbor-
ing sites and a large region will reach fixation (extended lineage
sorting) (Fig. 1C). In contrast, selection on standing variation
may fail to generate such large regions, since recombination can
act on the haplotype(s) with the prospective advantageous variant
before selection sets in. We note that neither demography nor se-
lection on the archaic lineage affect the lineage sorting within
modern humans and thus the power to detect selective sweeps.

Expected incomplete lineage sorting among humans to archaics

We used coalescent simulations to determine the incidence and
expected length of regions resulting from incomplete lineage

Figure 1. Illustration of the lineage sorting process. (A) Effects on the genealogy. The process starts with a random distribution of lineages when the
ancestral population splits. The lineage in black is an outgroup to lineages in blue, so that the blue lineages show a closer relationship between populations
than to the black lineage (incomplete lineage sorting). When the blue lineages in the top population reach fixation (through a selective sweep for instance),
any lineage from the other populations will constitute an outgroup, thereby completing the sorting of lineages. (B) Two types of genealogies illustrating the
possible relationships between an archaic lineage and modern human lineages. (C) Local effects in the genome at different time points. The curves rep-
resent the progression of lineage sorting for two independent regions, evolving under neutrality (black curve) and positive selection (blue curve), respec-
tively. Longer fixation times are associated with more recombination so that neutrality produces smaller external regions.
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sorting inmodernhumans. Using amodel of humandemographic
history (Yang et al. 2014), we estimated the fraction of lineage sort-
ing in modern humans in regard to Neandertals and Denisovans.
In simulations with 370 African chromosomes, and assuming a
uniform recombination rate, ∼10% of the archaic genome is
more divergent than the time to themost recent commonancestor
of all sampled human variation. The length of the external regions
is expected to be ∼0.0016 centimorgan (cM) (95% CI: 0.001–
0.0095 cM; e.g., 1–9.5 kb for a recombination rate of 1 cM/Mb)
with the longest regions on the order of 0.02 cM. In contrast,
internal regions are expected to be 0.012 cM long (95% CI:
0.0097–0.07 cM).

Minimum strength of selection to produce detectable

sweep signals

We investigated the range of selection coefficients that could have
led to the fixation of a lineage after the split with the archaic hom-
inins but before the differentiation of genetically modern humans
about 100–120 kya (Li and Durbin 2011) by simulating mutations
occurring at different times and evolving with different selection
coefficients. While the simulations show that completed selective
sweeps could have occurred with selection coefficients as low as
0.0005 (Fig. 2A), the length distribution of haplotypes reaching
fixation is indistinguishable from neutrality for selection coeffi-
cients under 0.001 (Fig. 2B,C). Under neutrality, the average
length of external regions was 0.02 cM and remained below 0.03

cM for most simulations with a selection coefficient of 0.001. In
contrast, external regions longer than 0.1 cMwere observed for se-
lection coefficients above 0.05. Therefore, detectable signals are
expected to be biased toward strong events with a selection coeffi-
cient larger than 0.001.

Hidden Markov model to detect extended lineage sorting

To detect regions of extended lineage sorting, we modeled the
changes of local genealogies along the genome with a hidden
Markov model. We distinguish two types of genealogies, internal
or external, depending on whether the archaic lineage falls inside
or outside of the human variation, respectively (Fig. 3A). Themod-
el includes a third state corresponding to extended lineage sorting,
and external regions produced by this state are required to be lon-
ger, on average, than those produced by the external state. The
three states are inferred from the state of the archaic allele (ances-
tral or derived) either at a polymorphic position in modern hu-
mans or at a position where modern humans carry a fixed
derived variant. In the following, we describe the different statisti-
cal properties expected for each type of genealogy.

We first considered external regions. Atmodern human poly-
morphic sites, the archaic genome is expected to carry the ances-
tral variant since the derived variant would indicate incomplete
lineage sorting. To account for sequencing errors or misassign-
ment of the ancestral state, we allow a probability of 0.01 for carry-
ing the derived allele (see Methods). At sites where the derived

allele is fixed, the archaic genomewill of-
ten carry the derived state, if the fixation
event occurred before the split of the ar-
chaic from the modern human lineage,
or occasionally, the ancestral state, if
the fixation event is more recent and oc-
curred after the split.

For internal regions, the archaic is
expected to share the derived allele at
modern human fixed derived sites but
can carry the ancestral allele in ourmodel
to accommodate errors, albeit with low
probability. In contrast, at sites that are
polymorphic in modern humans, the
probabilities of observing the ancestral
or the derived allele in the archaic ge-
nome will depend on the age of the de-
rived variant, with young variants being
less likely to be shared compared to older
variants. The frequency of the derived
variant in themodernhumanpopulation
can be used as a proxy for its age, and the
emission probabilities in our model take
the modern human derived allele fre-
quency into account (see Methods).

We modeled the transition proba-
bilities between internal and external re-
gions (related to the length of the
regions) by exponential distributions.
The extended lineage sorting state has
the same chance of emitting derived al-
leles as the other external state but is re-
quired to have a larger average length.
We used the Baum-Welch algorithm
(Durbin et al. 1998), an expectation-

Figure 2. (A) Fraction of selected alleles reaching fixation (gray) or segregating (orange) at present,
depending on the strength of selection (columns) and the age of the mutation (rows, in kya) in our sim-
ulations. Events for which the selected variant was lost are not shown. (B) Distribution of the genetic
length of external regions simulated under neutrality. (C ) Distributions of the genetic length of external
regions depending on the strength of selection (columns) and age of mutations in kya (rows). The blue
line corresponds to the upper limit for the length of external regions produced under neutrality from B.
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maximization algorithm, to estimate the emission probabilities
and estimate the transition probabilities with a likelihoodmaximi-
zation algorithm.

Accuracy of parameter estimates and inferred genealogies

We first investigated the performance of the parameter inference
on simulated data under neutral evolution. We found that the es-
timated probabilities for encountering ancestral/derived alleles in
external and internal regions fit the simulated parameters well
(on average, less than ± 0.08 from simulated under all tested
conditions) (Supplemental Figs. S1, S2), while the estimated
length of internal and external regions deviate more from the sim-
ulated lengths (around 15% overestimate of the mean length)
(Supplemental Fig. S3). However, we found that the model exhib-
its better accuracy in labeling the correct genealogies with the esti-
mated length parameters compared to the simulated true values
(Supplemental Fig. S4). This difference seems to originate from
the difficulty in accurately detecting very short external regions
or internal regions with very few informative sites. We note that
detecting selection is not affected by this problem since we are pri-
marily interested in detecting long external regions. Including
fixed differences improves the power to assign the correct geneal-
ogies compared to a version of themethodwithout this additional
source of information (Supplemental Fig. S4).

We do not expect ELS regions to be
detected in our neutral simulations, and
indeed we found that either the estimat-
ed proportion of ELS converged to zero or
themaximum likelihood estimate for the
length of ELS and external regions con-
verge to the same value (49% and 51%
of simulations, respectively). A likeli-
hood ratio test comparing a model with-
out the ELS state to the full model with
the ELS state also showed no significant
improvement with the additional state
in almost all neutral simulations (only
one likelihood ratio test out of 100 simu-
lations showed a significant improve-
ment after Bonferroni correction for
multiple testing).

We then evaluated the accuracy of
the ELS method to assign the correct ge-
nealogy to regions based on sequences
obtained through coalescent simulations
with selection (Fig. 3B,C). In these simu-
lations, the underlying genealogy at each
site along the sequences is known and
can be compared to the estimates. To be
conservative, we only focused on results
with the smallest selection coefficient
(s = 0.005) that produces regions long
enough to be detectable. In Figure 3B,
we show the accuracy for labeling the ex-
tended lineage sorting regions depen-
dent on the posterior probability cutoff
for the ELS state. The results demonstrate
that themodel has sufficient power to ac-
curately label sites that experienced se-
lection with a coefficient s≥ 0.005 and
an occurrence of the beneficial mutation

as long as 600,000 yr ago.
We also used the simulations of positive selection events (s =

0.005) with two different times at which the beneficial mutation
occurred, 300 and 600 kya, to test how often the beneficial simu-
lated variant falls within a detected ELS region (Supplemental
Table S1). To put this rate of true positives into perspective, we
also counted how many ELS regions did not overlap the selected
variant (false positives). A large fraction of selected mutations
were detected (87%–92%). However, we also found a substantial
fraction of false positive ELS regions (10%–11%).When restricting
detected ELS regions to those that are longer than 0.025 cM, we
find less than 0.1% false positives compared to 65%–68% true pos-
itives. Not all simulated regions with a selection coefficient of
0.005 produce ELS regions of this size, so that the rate of true pos-
itives for truly long regions is expected to be higher. For all follow-
ing analyses, we used this minimal length cutoff of 0.025 cM.

Role of background selection

Background selection is defined as the constant removal of neutral
alleles due to linked deleterious mutations (Charlesworth et al.
1993). In regions of the genome that undergo background selec-
tion, a fraction of the populationwill not contribute to subsequent
generations, causing a reduced effective population size. As a con-
sequence, remaining neutral alleles can reach fixation faster than

Figure 3. (A) Graphical representation of the Extended Lineage Sorting hidden Markov model. States
are depicted by nodes and transitions by edges. Each state emits an archaic allele as either derived, D, or
ancestral, A, depending on the type of site in the modern human population (fixed or segregating at a
given frequency). States are labeled I for Internal, E for External, and ELS for Extended Lineage Sorting. (B)
Receiver operator curves for varying cutoffs on the posterior probability of the ELS state and counting the
number of sites in ELS regions that were correctly labeled. All bases labeled ELS outside of simulated ELS
regions are considered false positives. Sites in ELS regions with a posterior probability below the cutoff are
considered false negatives. (C) Example of the labeling of a simulated ELS region. Horizontal bars indicate
true external (top) and internal (bottom) regions. The posterior probability is shown in red for ELS regions
and in gray for E regions. The region overlapping position 50,000 (red bar) is caused by a simulated selec-
tive sweep.
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under neutrality, potentially producing unusually long external
regions that could be mistaken as signals of positive selection.
We investigated the effects of background selection by running
forward simulations with parameters that mimic the strength
and extent of background selection estimated for the human ge-
nome (Messer 2013). While background selection simulations
did produce some long outlier regions that fall outside the distribu-
tion observed in neutral simulations, most regions are still smaller
than regions simulated with positive selection at a conservative se-
lection coefficient of 0.005 (Fig. 4A). Indeed, among the 1160 ex-
ternal regions detected in our simulations of background selection
(s = 0.05) (Fig. 4A), only six were labeled as ELS and only three
passed the minimal length filter of 0.025 cM.

Candidate regions of positive selection on the human lineage

To identify ancient events of positive selection on the human lin-
eage, we applied the ELS method to African genomes from the
1000 Genomes Project (The 1000 Genomes Project Consortium
2012). We disregarded non-African populations since Neandertal
introgression in these populations could mask selective sweeps
and lead to false negatives. A model with ELS fits the data signifi-
cantly better than a model without the ELS state for all chromo-
somes and for both tested recombination maps (P-value < 1 ×
10−8) (Supplemental Table S2).

We identified 81 regions of human extended lineage sorting
forwhichboth recombinationmaps support a genetic lengthgreat-
er than 0.025 cM (average length: 0.05 cM). Depending on the re-
combination map, the longest overlap between the maps is 0.12
(African-American map) or 0.17 (deCODE map) cM long, which
is three to four times longer than the longest regions produced
under background selection in our simulations. An additional
233 regions are longer than 0.025 cMaccording to only one recom-
bination map, with 71% of those additional regions showing sup-
port for theELS stateusingboth recombinationmaps.This suggests
that thevariation in thecandidate setmostly stems fromuncertain-

ty about recombination rates. We will refer to the set of 81 regions
as the core set (Supplemental File S1) and the set including the 233
putatively selected regions foundwith justone recombinationmap
as the extended set (314 regions) (Supplemental File S2).

For completeness, we also ran our model on the X
Chromosome and identified 12 additional candidates (43 if we
consider candidates found with at least one recombination
map), applying a more stringent length cutoff of 0.035 cM to ac-
count for the stronger effects of random drift on this chromosome
(Methods). Interestingly, we also found a significant increase of
posterior probabilities for selection within previously reported re-
gions under potential recurrent selective sweeps in apes (Mann-
Whitney U one-sided test, P-value < 2.2 × 10−16) (Supplemental
Table S3; Dutheil et al. 2015; Nam et al. 2015).

The detected selection candidate regions on the autosomes
do not show a decrease in B-scores (McVicker et al. 2009), a local
measure of background selection strength, comparedwith random
regions (Wilcoxon rank-sum test comparing the average B-scores
with permuted regions, P-value = 0.565, or comparing the lowest
B-scores in our regions to permuted regions, P-value = 0.504) (Fig.
4B). This suggests that candidate regions are not primarily generat-
ed by strong background selection.

We compared our candidate regions to the top candidates of
eight previous scans for selection, including iHS, FST, XP-CLR, and
HKA (Pybus et al. 2014; Cagan et al. 2016). Using the estimated
time to the most recent common ancestor among Africans for
each identified region/site, we found that our ELS scan identified
significantly older events than other screens (Mann-Whitney U
tests) (Fig. 5; Supplemental Table S4). We found 23 regions from
the core set (detected by both recombination maps) overlapping
with candidates from previous scans and 68 for the extended set
(detected by at least one recombination map); neither overlap is
more than expected at random (P-values are 0.06 and 0.595, re-
spectively). In contrast, our candidate regions overlap candidate
regions from 3P-CLR (Racimo 2016) and the ABC approach for
detecting ancient selection (Racimo et al. 2014) more often than

expected by chance (P-values < 0.05)
(Supplemental Table S5).

Biological functions of the candidate

regions

Since positive selection acts on advanta-
geous phenotypes that are caused by
changes to functional elements in the ge-
nome, we would expect that our candi-
date regions would overlap functional
elements in the genome more often
than expected.

We first tested this hypothesis by
counting the overlap between sweep
candidate regions and protein coding
genes (Ensembl release 82) (Aken et al.
2016).We find no statistically significant
overlap of ELS regions with protein cod-
ing genes compared to randomly placed
regions of the same size (P-value = 0.671
and 0.124, for core and extended set, re-
spectively) (Fig. 6). Previous work has
identified 96 proteins that carry human
fixed derived nonsynonymous changes
compared to Neandertal and Denisova,

Figure 4. Effects of background selection. (A) Comparison of the length of ELS regions in simulations of
different scenarios. For the distribution under background selection, the s parameter corresponds to the
average selection coefficient from the gamma distribution (shape parameter of 0.2). We assumed that
the deleterious mutations are recessive with dominance coefficient h = 0.1. The horizontal blue line cor-
responds to the length cutoff applied to the real data. (B) Distribution of B-scores in the candidate sweep
regions (red curve) compared to sets of random regions with matching physical lengths (blue area with
dotted blue lines indicating the 95% confidence intervals over 1000 random sets of regions). The lowest
B-score (i.e., stronger background selection) was chosen when a region overlapped several B-score
annotations.
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which constitute a particularly interesting subset of potentially
functional changes to genes that may have been caused by selec-
tive sweeps (Prüfer et al. 2014). We found no overlap between
these genes and the core set of sweep candidate regions that
were identified by both recombinationmaps. However, when con-
sidering the extended set of sweep candidate regions, 11 regions
overlapped such genes: ADSL, BBIP1, ENTHD1, HERC5, KATNA1,
KIF18A, NCOA6, PRDM10, SCAP, SLITRK1, and ZNHIT2. This over-
lap is significantly larger than expected by chance (only two genes
are expected on average; P-value < 10−3). In all instances, the can-
didate regions contained at least one fixed amino acid change.
Since fixed changes are part of the information used to infer exter-
nal regions, it stands to reason that the presence of such a change
may bias toward observing an overlap with candidate regions (72/
81 core regions and 275/314 regions from the extended set contain
fixed changes). However, we note that the overlap with fixed ami-
no acid changes is also significantly larger than the overlap with
other fixed changes (963 of 20,347 fixed changes fall within can-
didate regions from the extended set; binomial P-value = 0.006).

Phenotypemay also be influenced by regulatory changes that
affect gene expressions. Interestingly, we found a significant en-
richment for regions overlapping enhancers and promoters (P-val-
ue < 0.001 and P-value = 0.002, respectively) (see Fig. 6) when
considering the extended set of 314 candidate regions. However,
this enrichment was not significant for the smaller core set of
candidates.

To further investigate the biological function of our regions,
we tested for Gene Ontology enrichment in genes within the ex-
tended set of regions (Prüfer et al. 2007). No category showed sig-
nificant enrichment when comparing to randomly placed regions
of identical sizes in the genome (see Supplemental Methods). We
also assigned genes that overlap our extended data set to tissues
in which they show the significantly highest expression (Anders

and Huber 2010) and found again no enrichment (Supplemental
Table S6). In an attempt to include potential regulatory changes
in the enrichment test, we assigned genes to candidate regions
when a region fell upstream of or downstream from a gene (see
Supplemental Methods). Although many candidate genes that
were annotated in this way were most highly expressed in the
brain or the heart (Odds ratio = 2.10 for both tissues), this enrich-
ment is not significant when correcting for gene length and mul-
tiple testing (Family-wise error rate = 0.336 and 0.997, respectively)
(Supplemental Table S7).

Additional work will be required to investigate the phenotyp-
ic consequences of changes in candidate regions for selection. To
facilitate this work, we provide an annotated list of fixed or nearly
fixed sites on the human lineage that fall within our candidate re-
gions (Supplemental File S3).

Overlap with Neandertal introgression

Introgression from Neandertals and Denisovans into modern hu-
mans occurred approximately 37,000 to 86,000 yr ago
(Sankararaman et al. 2012, 2016; Fu et al. 2014, 2015). For those
advantageous derived variants that arose on the modern human
lineage prior to introgression, we would expect that selection
may have acted against the re-introduction of the ancestral variant
through admixture. We tested whether this selectionmay have af-
fected the distribution of Neandertal introgressed DNA around
fixed changes in candidate sweep regions. Out of a total of 963
fixed derived variants in Africans overlapping the extended set
of sweep regions, 240 (25%) show the ancestral allele in non-
Africans and show evidence for re-introduction by admixture us-
ing a map of Neandertal introgression (Vernot and Akey 2014).
This level of Neandertal ancestry is comparable to the genome-
wide fraction of out-of-Africa ancestral alleles at African fixed de-
rived sites (∼26%; bootstrap P-value = 0.583). We also find no sig-
nificant reduction in frequency of Neandertal ancestry around
candidate substitutions in sweep regions, when comparing one

Figure 5. Distributions of estimated ages of the modern human segre-
gating derived variants with the highest frequency in putatively selected
regions or the age of the derived variants at sites identified by various ge-
nome-wide scans. Our candidate regions are labeled as ELS, for Extended
Lineage Sorting; other candidate regions are from Pybus et al. (2014) and
Cagan et al. (2016). The color coding indicates the type of signal detected
by each method. Ages were estimated by ARGweaver (Rasmussen et al.
2014). We only report events between 0 and 600 kya.

Figure 6. Enrichment for regulatory elements (enhancers, P-value <
0.001; protein-coding genes, P-value = 0.124; and promoters, P-value =
0.002) in the extended set of 314 candidate sweep regions. The distribu-
tions were obtained by randomly placing candidate regions in the genome
to obtain lists of regions with similar physical lengths. The red lines repre-
sent the value observed in the real extended set.
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randomly sampled fixed African substitution per region against
random regions matched for size and distance to genes (Supple-
mental Figs. S5, S6).

If selection against the re-introduction of an ancestral variant
were very strong, selectionmay have depleted Neandertal ancestry
in a large region surrounding the selected allele. Interestingly, we
find some of our sweep candidate regions that fall within the
longest deserts of both Neandertal and Denisova ancestry
(Supplemental Table S8; Vernot et al. 2016). A significantly high
number of the core set of regions fall in these deserts (5/81 regions,
P-value = 0.024), while the extended set shows no significant en-
richment (9/314 regions, P-value = 0.205).

Discussion

Many genetic changes setmodern humans apart fromNeandertals
and Denisovans, but their functions remain elusive. Most of these
changes probably resulted in either no change to the phenotype or
to a selectively neutral change. However, in rare instances, selec-
tion may have favored changes modifying the appearance, behav-
ior, and abilities of present-day humans. Unfortunately, current
methods to identify selection have limited power to detect such
old events of positive selection (Przeworski 2002, 2003; Sabeti
et al. 2006).

Here, we introduce a hidden Markov model to detect ancient
selective sweeps based on a signal of extended lineage sorting.
Using simulations, we were able to show that the method can
detect older events of selection as long as the selected variant
was sufficiently advantageous. The power to detect older events
is due to the fact that themethod increases in powerwith the num-
ber of mutations that accumulated after the sweep finished. We
also showed that background selection can cause false signals
and have chosen a minimum length cutoff on candidate regions.
While this cutoff reduces the number of false positives due to back-
ground selection, we note that this cutoff is expected to exclude
bona fide events of positive selection, too.

We applied the ELSmethod to 185 African genomes, the Altai
Neandertal genome, and the Denisovan genome and detected 81
candidate regions of selection when requiring a minimum genetic
length supported by two independent recombination maps. The
uncertainty in the recombinationmaps has a large effect on our re-
sults, as shownby themuch largernumberof314 regions identified
by either recombination map. Recombination rates over the ge-
nome are known to evolve rapidly (Lesecque et al. 2014), and of
particular concern are recent changes in recombination rates that
make some regions appear larger in genetic length than they
were in the past. By comparing the current recombination rates
in our regions to recombination rates in the ancestral population
of both chimpanzee and humans (Munch et al. 2014), we identi-
fied some candidate regions thatmayhave increased in recombina-
tion rates (Supplemental Table S9). However, it is currently
impossible to date the change in recombination rates confidently,
and these candidate sweeps may post-date the change.

A particular strength of our screen for selective sweeps is the
ability to detect older events, as indicated by the estimated power
to detect simulated events of positive selection of old age andmod-
erate strength. This sets the ELS method apart from previous ap-
proaches that made use of archaic genomes, which were geared
toward detecting younger events with an age of less than
300,000 yr ago (Racimo et al. 2014; Racimo 2016). Despite this dif-
ference, we found significant overlap between the ELS candidates
and the candidates identified by these other approaches, while the

overlap with other types of positive selection scans is smaller.
Among our candidates, 55 are novel regions (234 if considering
the extended set) that were not detected in any of the previous
screens, including previous versions of the screen without fixed
differences (Supplemental Fig. S7).

While we find no difference in the fraction of genes in select-
ed regions compared to randomly placed regions, we detect an en-
richment for enhancers and promoter regions. This result is in
agreement with the hypothesis that regulatory changes may play
an important role in human-specific phenotypes (King and
Wilson 1975; Carroll 2003; Enard et al. 2014), maybe more so
than amino acid changes (Hernandez et al. 2011; see also Enard
et al. 2014; Racimo et al. 2014). Interestingly, several gene candi-
dates falling within sweep regions play a role in the function and
development of the brain. A particularly interesting observation
is the potential selection on the genes encoding both the ligand,
SLIT2, and its receptor, ROBO2, which reside on Chromosomes 4
and 3, respectively (see Supplemental File S3 for an annotated list
of changes in those genes). Members of the Roundabout (ROBO)
gene family play an important role in guiding developing axons
in the nervous system through interactions with the ligands
SLITs. SLITs proteins act as attractive or repulsive signals for axons
expressing different ROBO receptors.ROBO2has been further asso-
ciated with vocabulary growth (St Pourcain et al. 2014), autism
(Suda et al. 2011), and dyslexia (Fisher and DeFries 2002) and is in-
volved in the development of neural circuits related to vocal learn-
ing inbirds (Wanget al. 2015). Interestingly,ROBO2 is also ina long
desert of bothDenisovan andNeandertal ancestry innon-Africans.

We also identified interesting brain-related candidates on the
X Chromosome, among them DCX, a protein controlling neuro-
nal migration by regulating the organization and stability of mi-
crotubules (Gleeson et al. 1999). Mutations in this gene can have
consequences for the expansion and folding of the cerebral cortex,
leading to the “double cortex” syndrome in females and “smooth
brain” syndrome in males (Gleeson et al. 1998).

Wehave presented a new approach to detect ancient selective
sweeps based on a signal of extended lineage sorting. Applying this
approach tomodern human data revealed that selectionmay have
acted primarily on regulatory changes. With population level se-
quencing of nonhuman species becoming more readily available,
we anticipate that this approach will help to reveal the targets of
ancient selection in other species.

Methods

Data

We used single nucleotide polymorphisms (SNPs) from 185 unre-
lated Luhya and Yoruba individuals from the 1000 Genomes
Project phase I (The 1000 Genomes Project Consortium 2012) to-
gether with four ape reference genome assemblies (chimpanzee
[panTro3] [Mikkelsen et al. 2005], bonobo [panPan1.1] [Prüfer
et al. 2012], gorilla [gorGor3] [Scally et al. 2012], and orangutan
[ponAbe2] [Locke et al. 2011]) to compile a list of polymorphic
and fixed derived changes in Luhya and Yoruba. Neandertal and
Denisova alleles at these positions were extracted from published
VCFs (Danecek et al. 2011) using recommended filters (Prüfer
et al. 2014; see Supplemental Material for further details). Sites
where either Neandertal or Denisova carried a third allele were
disregarded.

Genetic distances between these positions were calculated us-
ing the African-American (Hinch et al. 2011) and the deCODE
(Kong et al. 2010) recombination maps (available in Build 37
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from http://www.well.ox.ac.uk/~anjali/). Both maps were chosen
since they estimate recombination rates from events that occurred
within a few generations before the present. Recombination maps
based on older events (i.e., LD-based map) can underestimate re-
combination rates in regions that underwent recent selective
sweeps, potentially masking true signals.

Hidden Markov model

We would like to estimate for each informative position the prob-
abilities for the three possible genealogies, external (E), internal (I ),
and extended lineage sorting (ELS), given the observed data.
Formally and following the notation from Durbin et al. (1998),
we calculate P(πi = k|x), where i denotes the position, k∈ {E,I,ELS}
and x is the sequence of observations with the ith observation de-
noted xi. With the genetic distance d between consecutive sites
and lk, the average genetic length of a region in state k, we specify
the transition probabilities between identical states as tk,k = e−d/lk .
Transitions from I to the states ELS and E depend on an addi-
tional parameter p, the proportion of transitions from I to ELS,
and their probability is given by tI,ELS = p 1− e−d/lI

( )
and

tI,E = (1− p) 1− e−d/lI
( )

. Lastly, transitions from the two external
states to internal have the probability t j,I = 1− e−d/lj , with j∈ {E,
ELS}. By construction, transitions between E and ELS genealogies
are not allowed: it would not be possible to detect such transitions,
as those two states have the same statistical properties.

The inference further requires the probability for observing
an ancestral or derived allele in the archaic at a site iwith a derived
allele frequency fi > 0 in modern humans (noted xi) given that the
true genealogy is k∈ {I, E, ELS}: ek(xi) = P(xi| πi = k). We assume that
∀x : eELS(x) = eE(x) , i.e., that both external states give rise to ances-
tral and derived alleles in the archaic with equal probabilities given
the same observation. Since external regions are not expected to
give rise to derived sites when the derived allele is segregating in
modern humans, the only sources for such an observation can
be errors or independent coinciding identical mutations, and we
define an error rate for external regions: εE = eE(xi = derived, fi < 1).
Similarly fixed derived sites are expected to show the derived allele
in the archaics if the local genealogy is internal, and we define an
error rate for internal regions: εI = eI(xi = derived, fi = 1).

We compute the posterior probability P(πi = k | x) that an ob-
servation xi came from state k given the observed sequence x as:

P(pi = k | x) = P(x,pi = k)
P(x) .

P(x, πi = k) = fk(i)bk(i), where fk(i) = P(x1…xi, πi = k) and bk(i) =
P(xi+1…xL| πi = k) are the output of the Forward and Backward
algorithms, respectively (Rabiner 1989; Durbin et al. 1998). P(x)
corresponds to the likelihood of the data given our model and
was also calculated from the Forward algorithm.

Parameter estimate

We used the Baum-Welch algorithm to estimate all emission prob-
abilities, with the exception of εE, the proportion of segregating
sites derived in the archaic genome in external regions, due to lim-
ited accuracy in the estimates. We set this last parameter to a value
of 0.01, a conservative upper limit on contamination and sequenc-
ing error in the two high-coverage archaic genomes. The Baum-
Welch algorithm was run for a maximum of 40 iterations, and
the convergence criteria were set to a log-likelhoodmaxima differ-
ence of less than 10−4.

We estimated the remaining parameters (average lengths of
regions and the proportion of transitions to the ELS state) using
the derivative free optimization method COBYLA (Powell 1994)

as implemented in the NLopt library (Steven G. Johnson, The
NLopt nonlinear-optimization package, http://ab-initio.mit.edu/
nlopt) to maximize the log-likelihood values calculated by the
Forward algorithm. Convergence was attained in a maximum of
1000 evaluations, and the log-likelihood maximization accuracy
was set to 10−4. To test for convergence to local maxima, we ran
the algorithm twice with different starting points and used the pa-
rameters of the run with the highest likelihood to run the re-esti-
mation algorithm a third time, starting with those parameters.
All three runs gave similar results on all chromosomes.

Post-processing

The HMM was executed independently on all chromosomes for
both Denisova and Neandertal and using the African-American
and deCODE recombinationmaps. An external regionwas defined
as a stretchof high posterior probabilities (P≥ 0.7) for the extended
lineage sorting state that was uninterrupted by sites with a low
probability (P≤ 0.1). The two cutoffs on the posterior probabilities
were determined by simulating sequences with positive selection
(s = 0.005, 500 kya; see below). Sites that were simulated external
in both archaics were labeled as 1 and the remaining sites as
0. The HMM was then run on the simulations. By running a
grid-search over possible cutoffs (step-sizes of 0.05 for the two pa-
rameters) and labeling the HMMoutput accordingly, we identified
the set of chosen parameters by minimizing the root mean square
error

��������������∑
i ti − oi( )2

n

√

,

with n the number of labeled sites, ti the true label, and oi the ob-
served label.

Simulations

We simulated sequences using amodel of recent human demogra-
phy to test the performance of our HMMunder different scenarios
of neutral evolution, positive selection, or background selection.
Each simulation consisted of one chimpanzee chromosome, one
chromosome from each archaic hominin, and 370 human chro-
mosomes, matching the 185 Luhya and Yoruba individuals used
in our analysis. For all simulations in this study, a constant muta-
tion rate of 1.45 × 10−8 bp−1·generation−1, a constant recombina-
tion rate of 1 cM.Mb−1.generation−1, and a generation time of 29
yr were assumed. We used estimates of population sizes from
Yang et al. (2014) and population split estimates from Prüfer
et al. (2014) as parameters for the simulated demography
(Supplemental Information 1, 2).

Neutral simulations were generated with the coalescent
simulator scrm (Staab et al. 2014) and give a good match to our
observed data when plotting derived allele frequency in modern
humans against the proportion of derived alleles in the outgroup
(Supplemental Fig. S8). Simulations with positive selection were
generated with the coalescent simulator msms (Ewing and
Hermisson 2010), and background selection was explored using
forward-in-time simulations generated by SLiM (Messer 2013).
Further details on simulation parameters are given in the
Supplemental Material.

Age comparison with other scans for selection

To compare our sweep screen with previous scans, we downloaded
candidate regions from the 1000G positive selection database
(Pybus et al. 2014). Only candidates with a P-value lower than
0.001 were considered. We added to this set of regions
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the top reported regions from a HKA scan (Cagan et al. 2016).
Allele age estimates were obtained from ARGweaver (Rasmussen
et al. 2014).

FST, iHS, and XP-EHH are site-based statistics which localize
sites that may have been selected (Malécot 1948; Wright 1951;
Voight et al. 2006; Sabeti et al. 2007), whereas selective scans
such as CLR, XP-CLR, Tajima’s D, Fay and Wu’s H, and HKA iden-
tify candidate regions (Hudson et al. 1987; Tajima 1989; Fay and
Wu 2000; Kim and Stephan 2002; Chen et al. 2010). In order to
compare the age of the selection events, we assumed that the se-
lected variant in candidate regions was the site with the highest
frequency. We note that this procedure will underestimate the
age of events if the true selected site reached fixation, as is often ex-
pected for our method; the comparison is thus conservative.

Annotations

We annotated candidate regions using protein coding genes from
Ensembl (release 82), promoters and enhancers mapped by
GenoSTAN (Zacher et al. 2016), a measure of background selection
(B-scores) (McVicker et al. 2009). Candidate regions were also over-
lapped with regions previously suggested to have experienced re-
current selective sweeps in apes on the X Chromosome (Dutheil
et al. 2015; Nam et al. 2015), regions of Neandertal ancestry
(Sankararaman et al. 2014; Vernot and Akey 2014), and long re-
gions devoid of Neandertal and Denisova ancestry (Vernot et al.
2016).

To statistically test the overlap of our regionswith these anno-
tations, we randomly placed regions of similar physical sizes in the
parts of the genome that passed our quality filters. Quality-filtered
regions that were smaller than the longest gap present in our can-
didate ELS regions were regarded as sufficiently short to not pro-
hibit the placement of regions.

Changes of recombination rates along the human lineage
could limit our power to detect selected regions, and we used an
ancestral recombination map of the human-chimpanzee ancestor
to annotate top candidate regions (Supplemental Table S9; Munch
et al. 2014).

Finally, we further characterized fixed or nearly fixed human-
specific changeswithin the candidate regions using annotations of
histone marks (enhancers, promoters), eQTLs, transcription factor
binding sites, and conservation scores (Supplemental File S3).

Software availability

The software and input files used in this study have been made
available through the website http://bioinf.eva.mpg.de/ELS/ and
https://github.com/StephanePeyregne/ELS/. A version of the
source code is also available as Supplemental Code in the online
version of this article.
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