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Abstract

The ER and Golgi membrane system plays major roles in cell signaling and regulation of the 

biosynthesis/transport of proteins and lipids in response to environmental cues such as amino acid 

and cholesterol levels. Rab1 is the founding member of the Rab small GTPase family, which is 

known to mediate dynamic membrane trafficking between ER and Golgi. Growing evidence 

indicate that Rab1 proteins have important functions beyond their classical vesicular transport 

functions, including nutrient sensing and signaling, cell migration, and presentation of cell surface 

receptors. Moreover, deregulation of RAB1 expression has been linked to a myriad of human 

diseases such as cancer, cardiomyopathy and Parkinson’s disease. Further investigating these new 

physiological and pathological functions of Rab1 should provide new opportunities for better 

understanding of the disease processes and may lead to more effective therapeutic interventions.

Introduction

Rab1 was first identified as Ypt1 (yeast protein transport 1) in the budding yeast 

Saccharomyeces cerevisiae 48. Rab1A and Rab1B were subsequently isolated as mammalian 

homologs of Ypt1 55, 58. Over the next three decades, a large number of Rab proteins have 

been identified and shown as key components of the intracellular vesicular transport system 
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that carries out vesicle docking and infusion, organelle motility and secretion of 

macromolecules 24. In mammals, there are over 60 Rab GTPase family members, 

representing the largest branch of the Ras superfamily 24. Rab1A and Rab1B have been 

found in 158 and 89 different organisms, respectively, ranging from yeast to humans, 

indicating that Rab1 is highly conserved during evolution. Rab1A and Rab1B contain a short 

N-terminal sequence, a conserved motif named “G box” essential for guanine nucleotide 

binding and guanosine 5′-triphosphate (GTP) hydrolysis, and a carboxyl (C)-terminal motif 

containing two conserved cysteine residues called “CC motif” that is the site for 

geranylgeranylation necessary for membrane binding 56 (Figure 1).

Active Rab proteins are localize to specific intracellular membranes. Rab1A and Rab1B are 

found predominantly at the membrane of endoplasmic reticulum (ER) and Golgi 

apparatus 41, 46. They have also been detected on lipid rafts 59 and autophagasomes 70, 

respectively. Rab1 proteins undergo several posttranslational modifications that regulate 

their functions. Ser-194 of Rab1A is phosphorylation by Cdk1 (Cdc2) kinase that affects its 

association with membranes during mitosis 5. Phosphocholination at Ser-79 of Rab1A and 

Ser-76 of Rab1B by AnkX of the bacterial pathogen Legionella pneumophila leads to 

displacement of the GDP dissociation inhibitor (GDI) 35. AMPylation at Tyr-77 by 

Legionella pneumophila DrrA occurs in the switch 2 region of Rab1B protein, leading to 

moderate inactivation of the GTPase activity, while de-AMPylation by L. pneumophila SidD 

releases Rab1B from bacterial phagosomes 36, 38.

Like other Ras-related small GTPases, Rab1 activity is regulated by guanine nucleotide 

exchange factors (GEFs), GTPase-activating proteins (GAPs), GDP dissociation inhibitors 

(GDIs) and GDI-displacement factors (GDFs) 9. GEF and GAP catalyzes the conversion of 

Rab1 between the inactive GDP-bound and active GTP-bound forms, which regulates 

localization of Rab1 proteins to either cytosol or membranes 9. GDI binds to Rab1-GDP, 

which maintains Rab1 in the inactive state and prevents Rab1 from binding to the 

membranes 9. The inhibitory effect of GDI is relieved by GDF. TRAPP (transport protein 

particle) is a multimeric protein complex that serves as a GEF for Rab1. In yeast, there are 

three distinct TRAPP complexes, TRAPP I, II and III, which regulate Rab1 proteins in ER-

to-Golgi traffic, intra-Golgi traffic, and autophagy, respectively 7. However, only one 

TRAPP, the TRAPP II complex, has been identified in mammalian cells that regulates Golgi 

traffic 7. Because Rab1 has low intrinsic GTPase activity, it relies primarily on GAP to 

accelerate GTP hydrolysis, which converts Rab1 from the GTP-bound to GDP-bound form, 

releasing Rab1 from the membranes 7. Unlike the limited GEF proteins, there are over 40 

Rab GAPs encoded by the human genome 18. Rab GAPs are also known as TBC proteins 

that contain a conserved catalytic domain called the Tre2/Bub2/Cdc16 domain 18. GDIs are 

relatively simple with only two isoforms that recognize geranylgeranylated Rab proteins and 

maintain them in the inactive, GDP-bound form 9.

The ER and Golgi apparatus play a major role in the biosynthesis/transport of proteins and 

lipids. These organelles are highly dynamic and the rate of membrane trafficking between 

the two organelles rapidly changes in response to nutrient conditions and metabolic 

demands 30. Transport between the ER and Golgi is mediated by pre-Golgi structures or 

intermediate compartment where Rab1 proteins are enriched. The switch between GDP- and 
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GTP-bound states promotes Rab1 conformational changes and binding to effectors. Rab1-

GTP regulates vesicular targeting and fusion to the Golgi complex by recruiting the tethering 

factor p115 and v-SNAREs to vesicles derived from the ER. The tethering protein is 

recruited to the coat protein complex II (COPII) on ER-derived vesicles, leading to 

formation of a cis-SNARE complex that promotes targeting to the Golgi membranes 4. In 

addition, Golgi-84 binds to Rab1A/B-GTP, which contributes to the assembly of Golgi 

ribbon and the maintenance of Golgi structure 14, 47.

Rab1 Signaling Functions

The ER and Golgi apparatus are central to the synthesis, modification and transport of cell 

surface receptors and transporters. This membrane system also serves as a major hub for cell 

signaling and regulatory functions in response to extracellular and intracellular cues such as 

nutrients and ER stress. For examples, the transcription factors SREBP1 and ATF6 are 

anchored in the ER-Golgi system. Upon stimulation, they are proteolytically processed and 

translocated into the nucleus where they regulate gene expression 22, 27. As a key regulator 

of ER-to-Golgi transport, it is not surprising that Rab1 proteins have been increasingly 

linked to diverse cellular signaling pathways, including nutrient signaling, Notch signaling, 

integrin-dependent cell migration, autophagy and cell surface receptor expression. Figure 2 

summarizes some of the key signal transduction pathways that are regulated by Rab1 

GTPases. In contrast to Ras, Rho and Cdc42, the Ras family of small GTPases traditionally 

known for their role in signal transduction, Rab1 proteins do not appear to directly activate 

their effectors. Instead, they regulate the formation and/or targeting of active signaling 

complex on appropriate membranes. In this regard, Rab1 is similar to Rag in that both 

GTPases act as ‘unconventional’ signaling molecules.

mTOR Signaling

Nutrients such as amino acid (AA) are not only building blocks for the biosynthesis of 

proteins and other macromolecules, but also mitogenic signals that regulate cell growth and 

metabolism. Genetic screens in the budding yeast Saccharomyces cerevisiae identified 

several Golgi proteins important for trafficking the general amino acid transporter Gap1 

from Golgi to the plasma membrane or vacuoles in response to AA availability. One of the 

genes isolated is LST8 (known as GBL or mLST8 in mammals), which later was shown to 

encode an essential subunit of mTORC1, a master regulator of nutrient signaling 44. 

Consistently, mTOR is enriched in the endoplasmic reticulum (ER) and Golgi membrane 

system, which is important for mTOR signaling to S6 kinase 15, 33. Another study shows that 

Golgi-endosome trafficking is crucial for TOR to regulate nuclear localization of Gln3 in 

yeast 43. The ER-Golgi system plays a central role in nutrient signal transduction into the 

nucleus. For example, Pik1, a phosphatidylinositol 4-kinase, shuttles between the Golgi and 

nucleus in a nutrient-dependent manner 13. SREBP1 (Sterol regulatory element-binding 

protein 1), a master transcription factor for metabolic genes, is localized on the ER as an 

inactive precursor. In response to metabolic demands (e.g. insulin or cholesterol), it is 

transported to the Golgi apparatus where it is processed into the active form that transits to 

the nucleus and activates the expression of lipogenic or other metabolic genes 22. mTOR has 

been shown to regulate the trafficking and processing of SREBP1c 19, 42. Collectively, these 
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observations indicate that the ER-Golgi system is especially important for mTOR to regulate 

signaling into the nucleus.

AA is a key activating signal for mTORC1 2, 45. Genetic screens in Drosophila 32 and 

yeast 54 identifies Rab1 as an essential factor for activation of mTORC1 by AA. Rab1A 

knockdown in human embryonic kidney (HEK) 293, colorectal (CRC) and hepatocellular 

carcinoma (HCC) cells attenuates the ability of AA to stimulate mTORC1, while 

overexpression of Rab1A potentiates mTORC1 signaling 54, 66, indicating that this Rab1 

function is evolutionarily conserved. Mechanistically, AA stimulates GTP loading onto 

Rab1 proteins and GTP-dependent interaction with mTORC1 in the Golgi. Rab1 does not 

appear to directly activate mTORC1 kinase activity. Instead, it regulates the interaction of 

mTORC1 with another small GTPase Rheb, which activates mTORC1 activity on the Golgi 

surface. It is interesting to note that the mechanism of mTORC1 activation by Rab1 on the 

ER-Golgi system is similar to that by Rag GTPases on the lysosomes 16. Because mTOR is 

localized in both Golgi and nucleus 31, 57, it will be interesting to see whether the Golgi 

anchored signaling mechanism is especially important for mTOR shuttling into the nucleus.

Notch Signaling

Notch Signaling is an evolutionarily conserved pathway that regulates cell proliferation and 

developmental processes such as cell fate determination and differentiation in metazoans. 

Notch is a cell-surface receptor interacting with transmembrane ligands from neighboring 

cells. Notch receptors are processed in the ER and Golgi in the signal-receiving cell through 

cleavage, glycosylation and other posttranslational modifications, generating a membrane-

attached heterodimer that is transported to the plasma membrane 28. In a Drosophila genetic 

screen for modulators of Notch signaling, a novel protein prenyltransferase (PPT) named 

Tempura was identified 8. Tempura functions as a subunit of a previously uncharacterized 

geranylgeranyl transferase complex for Rab1. Loss of Tempura or RAB1 leads to mis-

localization of Delta and Scabrous, two important Notch signaling components, and Notch 

signaling defects 8. These results demonstrate that Rab1 and Tempura play an important role 

in Notch signaling.

Regulation of Integrin-dependent Cell Migration

The heterodimeric complex of integrin α and β is the major receptor for extracellular matrix. 

It play essential roles in cell adhesion, migration and proliferation 25. Cell-surface integrins 

undergo dynamic internalization and recycling processes. In a focused RNAi screen for 

essential GTPases in cell migration in Drosophila S2 cells, Rab1A was identified as a novel 

regulator of cell migration 59. RAB1A knockdown inhibits integrin-mediated cell adhesion 

and spreading on fibronectins, integrin β1 localization to lipid rafts, and recycling of integrin 

β1 to the plasma membrane regions at the leading edge of migrating cells. Among Rab1A 

effectors, the tethering factor p115 is selectively involved in Rab1a regulation of integrin 

recycling and lipid raft localization in cell migration. Interestingly, p115 knockdown also 

affects Rab1A localization to the lipid raft, suggesting that p115 is a specific effector and a 

co-factor for Rab1A in this regard. These results reveal a novel function for Rab1A that 

controls cell motility through regulation of integrin β1 recycling and targeting to lipid rafts 

at the leading edge of migrating cells.
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Regulation of Autophagy

Autophagy (also known as macroautophagy) is an evolutionarily conserved intracellular and 

lysosome-dependent degradation process in eukaryotic cells 20. During autophagy, 

cytoplasmic contents, including ribosomes and mitochondria, are enclosed by double-

membrane vesicular structures called autophagosomes that are then delivered to the 

lysosomes for degradation. This process generates an internal supply of nutrients essential 

for maintaining basic cellular functions and survival during starvation. siRNA-mediated 

knockdown of RAB1B or overexpression of dominant negative Rab1B in CHO cells inhibits 

autophagosome formation, resulting in accumulation of immature autophagosomes 70. The 

same work suggests that Rab1B-mediated ER vesicular transport, independently of Golgi, is 

important for initiation of autophagosomal formation. Consistent with a role of Rab1 in 

autophagy, Trs85, a component of the TRAPP complex, the GEF for Rab1, was shown to be 

necessary for formation of proper pre-autophagosomal structure (PAS) 34. It was further 

shown that that activated Ypt1/Rab1 recruits Atg1 to the PAS, bringing it to the proximity of 

its binding partner Atg17 60. The same study further showed that Ypt1/Rab1 binds and 

activates casein kinase (CK) 1 delta, which in turn regulates membrane trafficking and 

autophagosome biogenesis 61. Overexpression of α-synuclein has been implcated in the 

pathogenesis of Parkinson’s disease (PD). It was shown that in cultured cells and transgenic 

mice, α-synuclein overexpression inhibits autophagy in a Rab1A-dependent manner because 

this blockage can be readily reversed by Rab1A overexpression 63.

Other Notable Rab1 Signaling Functions

Rab1 proteins are known to modulate several cellular processes through targeted cargo 

delivery. In addition to the aforementioned integrin β1 recycling and plasma membrane 

targeting of Notch receptors, several other cell surface molecules have been shown to be 

Rab1-dependent, including human calcium-sensing receptor (hCaR) that controls cellular 

sensitivity to extracellular calcium 69, the G protein–coupled receptors (GPCRs) angiotensin 

II type 1A receptor (AT1R), and adrenergic receptor (AR) 65. Of a large number of cell 

surface proteins, only a small number are known to be regulated by Rab1. It would be of 

great interest to determine whether Rab1 is broadly involved in the presentation of receptor 

proteins on the cell surface or it has a more selective role.

Rab1 and Cancer

Aberrant RAB1 expression in cancer

Given their important regulatory functions in growth, migration and survival, it is not 

surprising that elevated expression of RAB1A and RAB1B has been reported in multiple 

cancer types, including colorectal cancer (CRC) 54, gliomas 6, hepatocellular carcinomas 

(HCC) 66, prostate cancer 1, and tongue squamous carcinomas 51 for RAB1A, and CRC 68, 

HCC 21, 37 and prostate cancer 1 for RAB1B. Alternative splicing of RAB1B has also been 

detected in cervical cancer, although the pathological significance is not known 39. In CRC 

and HCC, analysis of large cohorts of human primary tumor samples indicate that RAB1A 
overexpression is strongly associated with disease progression and poor prognosis 54, 66. 

Interestingly, RAB1A and RAB1B was reported to be down-regulated in metastatic 

prostate 53 and triple negative breast cancers 26, suggesting that loss of RAB1 expression is 
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associated with metastasis. However, these observations contradict aforementioned studies 

in CRC, HCC and breast cancer in which RAB1A overexpression was found to promote 

tumor invasion and metastasis. A possible explanation for the discrepancies is that the role 

of RAB1 in metastasis is dependent on specific tumor type and/or other oncogenic events. In 

HCCs, RAB1A overexpression can be attributed in part to gene amplification, rather than 

epigenetic changes by DNA methylation 66. MicroRNAs (miRs) may contribute to the 

dysregulated RAB1 expression of in human cancer. miR-15b-5p was reported to be down-

regulated in HCC, which results in overexpression of its target gene RAB1A in HCC 67. On 

the other hand, Rab1A was reported to be negatively regulated by miR-221 in androgen 

independent prostate cancer 53.

Role of Rab1 in cancer

The consequence of aberrant RAB1 expression has been investigated. Ectopic RAB1A 
overexpression is sufficient to transform NIH3T3 cells at a potency stronger than the 

oncogene H-RASV12 in colony and xenograft tumor formation assays 54. Ectopically 

expressed Rab1A activates mTORC1 and promotes tumor growth, invasion and progression. 

Consistently, CRC and HCC tumors with high RAB1A expression exhibit hyperactive 

mTORC1 signaling and poor overall survival 54, 66. Conversely, RAB1A knockdown in CRC 

and HCC cell lines with high endogenous Rab1A level attenuates mTORC1 signaling, and 

tumor growth and invasiveness 54, 66. Interestingly, growth of CRC cells with high RAB1A 
levels is more dependent on AA, suggesting that aberrant RAB1A expression elevates AA-

mTORC1 signaling and renders cancer cells addictive to AAs. Consistently, CRC and HCC 

cells with high Rab1A levels are also very sensitive to rapamycin, the highly selective 

mTORC1 inhibitor, further supporting the notion that such cancer cells are addictive to 

hyperactive AA-mTORC1 signaling for their oncogenic growth.

Compared with Rab1A, the role of Rab1B in human cancer is less well studied. In CRC 

cells, RAB1B was shown to be a target for miR-502 68. miR-502 is frequently down-

regulated, which is correlated with high RAB1B expression. Ectopic expression of miR-502 

causes down-regulation of RAB1B, resulting in blockage of autophagy flux, tumor growth 

and proliferation, while knockdown of miR-502 enhances RAB1B expression, autophagy 

and tumor growth 68. In another study, increased expression of RAB1A and RAB1B was 

found to be associated with neoplastic reprograming of adipose-derived stem cells (pASCs), 

which may be important for prostate cancer development 1. More recently, loss of RAB1B 
expression was found in triple-negative breast cancer (TNBC), which is correlated with 

enhanced metastasis 26. The altered metastasis appears to be mediated by the TGF-β/Smad 

pathway. Thus, Rab1 proteins may have distinct roles in different types and subtypes of 

tumors, which appears to be mediated by distinct downstream oncogenic signaling 

pathways.

Cardiomyopathy

Cardiac hypertrophy is the thickening of heart muscle in response to extrinsic and intrinsic 

stimuli. In a dilated cardiomyopathy mouse model with cardiac muscle-specific 

overexpression of β2-adrenergic receptor (AR), RAB1 was found to be highly expressed 64. 
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To investigate the significance of RAB1, the authors generated heart-specific RAB1A 
transgenic mice and found that the animals develop dilated cardiomyopathy in a RAB1A 
dosage-dependent manner. The hearts of mice carrying high copy number of RAB1A 
transgene are dilated with prominent signs of cardiac hypertrophy within 6 weeks 64. The 

level of MAP kinases did not change but the expression of several protein kinase C (PKC) 

isoforms increases. In cardiac myocytes, increased Rab1A level facilitates cardiomyocyte 

hypertrophic growth in response to stimulation by angiostensin II (Ang II) and 

phenylephrine (PE) 17. More recently, it was shown that up-regulation of miR-101 in a rat 

model of cardiac hypertrophic model protects against Rab1A-induced myocardial 

hypertrophy and heart failure, suggesting that miR-101 is potentially useful for therapeutic 

intervention of cardiomyopathy 62. Thus far, the precise mechanism of Rab1A in cardiac 

pathogenesis remains unclear. Because hyperactive mTORC1 is known to cause cardiac 

hypertrophy 49, it would be interesting to determine if Rab1A-driven cardiac hypertrophy is 

mediated through activated mTORC1 signaling.

Parkinson’s Disease (PD)

PD is the second most common neurodegenerative disease, which is characterized by over-

accumulation of the presynaptic protein α-synuclein in neurons 12. In a yeast genomic 

screen, Ypt1 was identified as a suppressor of α-synuclein-induced toxicity 10. It was 

subsequently shown that α-synuclein overexpression impairs Rab1A activity and thus 

hinders the formation of autophagosome by interfering with Atg9 function 63. Moreover, 

increased Rab1 production is sufficient to correct α-synuclein-mediated Golgi 

fragmentation, dopaminergic (DA) neuron loss, and motor deficits in mammalian animal 

models of PD 10, 11. These observations suggest that Rab1A plays a crucial role in the 

pathogenesis of PD and is a potential therapeutic target for a disease currently lacking 

effective medicine.

Other Rab1-related Diseases

Infections of Intracellular Pathogens

Pathogenic intracellular bacteria such as Legionella pneumophila residing in host membrane 

vesicles have evolved survival mechanisms by targeting Rab1 proteins. This allows 

alteration of the destination of pathogen-occupied vacuole to avoid fusion with lysosomes 

for destruction, and to acquire nutrients to support bacterial propagation. These processes 

are the subjects of several excellent reviews that detail the role of Rab1 proteins in bacteria-

host cell interactions 50, 52.

Retinitis pigmentosa (RP)

RP is a degenerative retinal disease characterized by progressive loss of vision caused by 

photoreceptor degeneration followed by retinal pigment epithelium abnormalities. Genetic 

linkage analysis of autosomal recessive RP in an Indian family mapped the susceptibility 

locus to Chromosome 2p14-15 that contains the RAB1A gene 29. Interestingly, a recent 

study showed that Rab1A is selectively expressed in the rod bipolar cells in the inner retina, 

which is highly dependent on ambient light 23. This finding suggests a role of Rab1A in dark 
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adaptation, which is consistent with the pathological phenotype of defective dark adaptation 

in RP patients 3.

Aspirin-exacerbated respiratory disease (AERD)

AERD is a type of asthma triggered by aspirin (acetyl salicylic acid) and other nonsteroidal 

anti-inflammatory drugs (NSAIDs). A recent study analyzed a large cohort of 1,197 

asthmatic patients. Single-nucleotide polymorphisms (SNPs) in RAB1A gene, +14444 T > 

G and +41170 C > G, were found to be significantly associated with the AERD group 

compared with the aspirin-tolerated asthmatic group 40. The molecular basis for RAB1A in 

this disease association is currently unknown.

Concluding Remarks

Over the past decade or so, progress has been made in the understanding of Rab1 functions 

beyond its canonical role in ER-Golgi membrane trafficking, showing that Rab1 is also 

involved in a myriad of cell signaling and regulatory functions. Moreover, Rab1 proteins 

have been implicated in human diseases such as cancer, cardiomyopathy and Parkinson’s 

disease. These new findings provide new insights into their physiological and pathological 

functions. Importantly, modulation of Rab1 expression/activity has been shown to have 

therapeutic benefits toward Parkinson’s disease, colorectal cancer and hepatocellular 

carcinoma, suggesting that Rab1 is a potentially useful drug target. Despite of these 

advances, research on Rab1’s non-canonical functions is still limited and many basic 

questions remain. For examples, Rab1 have two isoforms, Rab1A and Rab1B, which share 

92% amino acid sequence homology. It is unclear whether they are merely functionally 

redundant or have unique functions. Targeted deletion of RAB1A or RAB1B has not been 

reported in animals. Their roles in development and organ/tissue functions are largely 

unknown. Because Rab1 proteins play key roles in cancer, cardiomyopathy and Parkinson’s 

disease, it would be of great interest to identify small molecule agonists and/or antagonists, 

which would be useful for therapeutic development or as chemical probes to study Rab1-

dependent cellular and physiological processes. Addressing these questions may open up 

new research frontiers in biology and medicine.
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Figure 1. Domain Structure of Rab1A and Rab1B
Shown is the domain structure of Rab1A and Rab1B. The G box is involved in guanine 

nucleotide binding and GTP hydrolysis domain. The CC motif, containing two cysteine 

residues, targets membranes through geranylgeranyl modification. .
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Figure 2. Role of Rab1 in Cell Signaling and Regulatory Functions
Rab1 has key roles in regulating mTORC1, Notch and integrin cell signaling pathways, as 

well as autophagy and localization of cell surface receptors. The ER-Golgi system appears 

to be particularly important for amino acid (AA) signaling into the nucleus and regulating 

gene expression. During carcinogenesis, RAB1 is up-regulated in part by copy number 

variation (CNV) or microRNAs, which promotes cancer initiation and development through 

activation of mTORC1 signaling and other mitogenic pathways.
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