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Abstract: α/β-hydrolase domain-containing 6 (ABHD6) belongs to the α/β-hydrolase fold su-
perfamily and was originally discovered in a functional proteomic approach designed to dis-
cover monoacylglycerol (MAG) hydrolases in the mouse brain degrading the endocannabinoid
2-arachidonoylglycerol. Subsequent studies confirmed that ABHD6 acts as an MAG hydrolase reg-
ulating cannabinoid receptor-dependent and -independent signaling processes. The enzyme was
identified as a negative modulator of insulin secretion and regulator of energy metabolism affecting
the pathogenesis of obesity and metabolic syndrome. It has been implicated in the metabolism of
the lysosomal co-factor bis(monoacylglycerol)phosphate and in the surface delivery of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Finally, ABHD6 was shown
to affect cancer cell lipid metabolism and tumor malignancy. Here, we provide new insights into
the experimentally derived crystal structure of ABHD6 and its possible orientation in biological
membranes, and discuss ABHD6′s functions in health and disease.

Keywords: ABHD6; lipid hydrolase; monoacylglycerol; bis(monoacylglycerol)phosphate; inflamma-
tion; metabolic syndrome; insulin signaling

1. Introduction

Lipids are components of biomembranes, energy storage molecules, and signaling
molecules regulating a variety of biological processes. Considering these essential func-
tions, lipid metabolism must be tightly regulated to achieve homeostasis under changing
environmental conditions. The dysregulation of lipid metabolism has been associated with
rare monogenetic diseases as well as common disorders including obesity-related diseases
and cancer. Therefore, the precise clarification of the molecular pathways regulating lipid
metabolism can improve our understanding of lipid-associated pathologies and unveil
novel treatment strategies. Lipid synthesis and degradation are catalyzed by multiple
enzymes encoded by the mammalian genome. In the postgenomic era, many new lipid
hydrolases and acyltransferases have been discovered. However, currently, it is still un-
clear how many lipid-modifying enzymes exist, and many of the known enzymes remain
insufficiently characterized.

Here, we provide a review on the serine hydrolase α/β-hydrolase domain-containing
6 (ABHD6) belonging to the large α/β-hydrolase fold superfamily, first classified in 1992.
This protein superfamily is found in all domains of life and comprises lipases, proteases,
dehalogenases, esterases, peroxidases, and epoxide hydrolases [1,2]. The structural char-
acteristic of α/β-hydrolases is the core fold consisting of eight mostly parallel strands
connected by helices and loops [2–5]. The loops are carrying the residues of the catalytic
triad formed by a nucleophile-like serine within the consensus sequence Sm-X-Nu-X-Sm
(Sm = small residue, often a glycine, with alanine or serine also possible, X = any residue,
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Nu = nucleophile), an acidic residue (aspartate or glutamate), and a histidine [2,3]. Typ-
ically, two residues form the oxyanion hole, which is crucial to stabilize the negatively
charged transition state during hydrolysis [1,2,4].

ABHD6 was first detected in an activity-based proteomic approach using the general
serine hydrolase inhibitor methyl arachidonoyl fluorophosphonate (MAFP), which broadly
targets serine hydrolases [6]. Subsequent investigations revealed that it is a typical member
of the α/β-hydrolase fold superfamily, and enzyme assays suggested that the enzyme
possesses monoacylglycerol (MAG) hydrolase and other activities. ABHD6 is ubiquitously
expressed, with its highest expression observed in brain, brown adipose tissue, and the
intestine [7,8]. In the last years, substantial progress has been made in the understanding
of the role of ABHD6 in health and disease.

2. Structure of ABHD6

In 2021, A. Nawrotek, A. Talagas, L. Vuillard, and L. Miallau deposited the experi-
mental structure of human ABHD6 obtained by X-ray crystallography [9]. The structure
and experimental details have currently not been described in a publication. As deduced
from the deposited coordinate file, ABHD6 harbors a canonical α/β-hydrolase fold in
the core as predicted, and presented in previously published homology models and the
newest AlphaFold (AF) model [10–12]. The deposited experimental protein data bank
(PDB) structure spans from residue Arg43 to Leu336, in agreement with a predicted N-
terminal transmembrane region omitted in the cloning. This human ABHD6 variant was
expressed in E. coli and crystals diffracting to 1.8 Å were obtained.

The 3D structure (Figure 1) shows a central mostly parallel β-sheet containing eight
strands (β1–β8), whereby only the second strand is antiparallel. Two α-helices on one side
(αA, αF) and four α-helices (αB, αC, αD, αE) on the other side of the sheet connect the
individual strands. A long insertion (Gly175–Ser255) after β6 connects to αD. This region
harbors four helices with interspersed loops, and forms a lid that covers the active site as a
continuous surface (light blue in Figure 1).
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Figure 1. The experimental structure of ABHD6. (A) Cartoon representation of ABHD6 complexed
with octyl beta-D-glucopyranoside (BOG) and oleic acid (OA), both depicted in yellow. The cap/lid
region is colored light blue and the core is slate-blue. The active site residues (please note the S148A
exchange) are depicted as magenta sticks. (B) Surface representation of (A) after approximately
90◦ rotation to the right with αF facing the back. A tunnel is visible that spans through the entire
molecule, approximately between residues M86 and R256 (orange). (C) Surface representation of the
tunnel between residues M86 and R256 (orange). Octyl beta-D-glucopyranoside (BOG) and oleic acid
(OA) are present in chain A; a glycerol molecule (GOL) was fitted into the tunnel only in chain B by
the deposition authors. Other residues are omitted for clarity.



Metabolites 2022, 12, 761 3 of 17

The catalytically active residues in human ABHD6 are Ser148, Asp278, and His306.
The experimental structure (PDB code 7OTS) harbors an amino acid exchange Ser148Ala,
which renders the hydrolase inactive. Similarly, the amino acid exchange Ser148Tyr in
the active serine of human ABHD6 leads to a complete loss of hydrolytic activity [13].
Ala148 is located in the so-called nucleophilic elbow connecting β5 with αC in a sharp turn.
Asp278 is in a loop region connecting β7 with αE, and the conserved His306 of the triad is
positioned at the loop connecting β8 with αF (Figure 1).

Sequence and structure alignments to human monoglyceride lipase (also monoacyl-
glycerol lipase, MGL) suggest that the peptidic N-Hs of residues Phe80 and Met149 form
the oxyanion hole. These main chain N–Hs bind the carbonyl oxygen of the substrate and
stabilize the oxyanion of the tetrahedral intermediates as well as the acyl-enzyme during
the enzymatic reaction [14].

The experimental structure of ABHD6 contains two molecules (chain A, B) in the
asymmetric unit. Chain A was determined in complex with oleic acid (OA) and octyl
beta-D-glucopyranoside (BOG), whereas one OA and three glycerol (GOL) molecules
were fitted into chain B. Interestingly, a tunnel is visible that spans roughly 23 Å through
the entire molecule (Figure 1B,C). Residues of the α/β-hydrolase core line the bottom,
and residues of the cap form the roof of the tunnel, respectively. The tunnel of human
ABHD6 is rather hydrophobic in proximity to the active site towards the smaller entrance
lined by Arg256. Aliphatic residues in this region provide a very good physico-chemical
environment for the alkyl chain of the substrate. A rather polar side-pocket branches off
from the hydrophobic tunnel in the area where the alkyl chain of OA bends upwards
toward the tunnel entrance and reaches the surface. Similar to published MGL structures,
the other side of the active site cavity harbors more polar residues. The deposition authors
of human ABHD6 could model a molecule of glycerol in addition to OA into the long
tunnel of chain B (Figure 1C). With lack of a publication along with the deposited structure,
the source of the glycerol molecule is unknown. Glycerol is a common buffer ingredient
added during protein purification and used as cryoprotectant in the crystal freezing process,
which could explain the glycerol in the structure. Equivalent residues in MGL structures
from different organisms have been discussed to interact with the polar glycerol moiety or
isopropanol found within this area [15–17].

The tunnel has its opening between the cap and the core region, approximately be-
tween residues Arg256 (located after the last helix of the cap) and residues Met86 and
Met310 (Figures 1B,C and 2A,B). Met310 is part of the rim of the widely open tunnel en-
trance. In the structure, Met310 adopts two alternate conformations before Pro313 induces
the bend leading to αF. The large opening of the tunnel on the face of Met86/Met310
is mediated in part by (i) the upward bend of the lid in the region Val220 to Ile237
(Figure 2A,B), and in part because (ii) the sidechain of Met86 is pointing inwards, forming
the floor of the tunnel. In human MGL (PDB code 3HJU [15]), the corresponding lid region
ranges from Arg186 to Arg202 and is positioned much closer by the α/β hydrolase core,
thereby closing off the internal cavity of human MGL (Figure 2). Arg57 of human MGL
corresponds to the Met86 in human ABHD6 and its sidechain points upwards towards the
lid helix, thereby closing off the internal cavity of human MGL. Lys273 of human MGL
(corresponding to the rim residue Met310 in human ABHD6) is located before a sharp bend
in the helix mediated by Pro276 leading to αF (Figure 2C,D).
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Figure 2. Comparison of the experimental structures of ABHD6 and MGL. (A) ABHD6 is complexed
with oleic acid (OA, depicted in yellow). The cap/lid region is colored light blue and the core is
slate-blue. The active site residues (please note the S148A exchange) are depicted as magenta sticks.
(B) Surface representation of (A). The tunnel is visible and spans through the entire molecule, the rim
residues M86 and M310 (orange) are on one face of the molecule, and R256 is located on the other
side. (A,B) These images correspond to an approximately 180◦ rotation to the left of Figure 1B with
αF on the left. (C,D) Cartoon (C) and surface (D) representation of human MGL (P20-A297, PDB
code 3HJU). Human MGL was aligned to human ABHD6 and presented in the same orientation as
ABHD6 in panels 2A and 2B. Residues R57 and K273 are at equivalent spatial positions to K86 and
M310 in ABHD6 and are indicated in orange. The lid of human MGL is shown in salmon and the
core in dark red. Catalytic residues S122, D239, and H269 are colored magenta.

In the AF model of human ABHD6, the first 43 amino acids, which are missing in the
experimental structure, are also computed (Figure 3A). In the rest of the model, the C-alpha
backbone alignment between the AF model and the experimental structure shows a high
similarity with a root-mean-square deviation (RMSD) of 0.424Å over 218 aligned residues.
Owing to these additional modeled parts, the large entrance to the tunnel is more restricted
at the face of Met86 by an N-terminal helix Ser32 to Thr45. Here, the tunnel entrance is
reformed by lid region Val220 to Ile237 (as observed in the experimental structure) and this
additional helix. Furthermore, the AF model also includes the N-terminal transmembrane
(TM) helix that is predicted to stretch out of the molecule in an almost perpendicular
orientation to the tunnel entrance. However, the orientation of the TM helix with respect to
the rest of the protein has to be interpreted with caution, as reflected in the high predicted
aligned error for this region.
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Figure 3. Predicted models of ABHD6 and possible membrane insertion. (A) Cartoon representation
of ABHD6 AlphaFold model. The cap/lid region is colored light blue and the core is slate-blue. The
active site residues are depicted as magenta sticks. Both sides of the tunnel entrance are marked with
the residues M86 and R256 in orange. The additional helix (S32-T45) and the cap region (V220-I237)
forming a part of the tunnel entrance are depicted in green and cyan, respectively. The transmembrane
(TM) helix in light yellow. (B) Model of ABHD6 embedded in a di-oleoylphosphatidylcholine (DOPC)
membrane. ABHD6 (same orientation as in A) is represented in surface mode. Electrostatic surface
calculation was performed with the ABPS electrostatics plugin in PyMOL [18]: red—negative and
blue—positive. The DOPC membrane model [19,20] is presented as sticks.

Based on the 3D structure and the predicted TM helix, we also generated a first model
of ABHD6 embedded in a phospholipid-containing membrane (Figure 3B). In this model,
the wide entrance to the tunnel is oriented towards the membrane. The electrostatic surface
properties of ABHD6 reveal a rather positively charged face of the protein interacting
with the surface of the membrane. This model suggests that human ABHD6 can attach to
charged membrane surfaces, and may explain the preference for the negatively charged
lipid substrate bis(monoacylglycerol)phosphate (BMP). It should be kept in mind, however,
that this model must be interpreted with caution because the relative position of the
TM helix to the rest of the protein is uncertain and awaits experimental verification on
different membranes.

The comparison of ABHD6 with structures from human MGL or from Bacillus species
H257 (bMGL; [16]) opens further interesting questions. In some structures, the substrate
binding pocket on one side leads to the smaller opening on the other side of the molecule,
which was termed the ‘glycerol exit hole’. It has to be noted here that this opening correlates
to the wide tunnel entrance (on the face of Met86/Met310) in ABHD6. It was postulated
that the smaller reaction product glycerol would leave via this exit path after the first
part of the hydrolytic reaction is completed. Clearly, more structural studies are required
to determine whether the large tunnel observed in human ABHD6 is a requirement to
accommodate the rather large substrate BMP or lyso-phospholipids (compare with Figure 4).
This would provide a very distinctive element when comparing MGLs with ABHD6—and
possibly other members of the ABHD family, e.g., ABHD12. More studies are needed to
experimentally observe the orientation of different uncleaved substrates of ABHD6 in the
binding tunnel. It will also be interesting to see whether the large openings of the tunnel on
either side can be entirely closed, or whether the lid itself can adopt an open conformation,
as observed in some structures of human MGL.
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Figure 4. Substrate specificity of ABHD6: ABHD6 is capable of hydrolyzing sn-2 and
sn-1(3) monoacylglycerols (MAGs) releasing glycerol and a fatty acid, the phospholipid
bis(monoacylglycerol)phosphate (BMP) generating lyso-phosphatidylglycerol (LPG) and a fatty
acid, and LPG releasing a fatty acid and glycerophosphoglycerol. The red star indicates the cleavage
site and R indicates an acyl chain.

Detailed research is necessary to gain knowledge about the substrate entrance, product
exit, and about potential reorientation or conformational changes in the cap during the
process of substrate binding and product release.

3. Substrate Specificity of ABHD6

ABHD6 acts as a lipid hydrolase and degrades a variety of MAGs esterified with
saturated, monounsaturated, and polyunsaturated fatty acids. The highest activities were
detected in MAGs esterified with saturated fatty acids (C8:0–C14:0) and arachidonic acid
(AA; C20:4). Thereby, ABHD6 showed a preference for the sn-1(3)- over sn-2-isomers [21].
This positional preference was confirmed in a very recent study [22]. In addition to
MAGs, ABHD6 cleaves lyso-phospholipids with a preference for lyso-phosphatidylglycerol
(LPG), while fully acylated phospholipids are not hydrolyzed [8,13]. Additionally, ABHD6
hydrolyzes BMP at a similar rate as observed for MAGs [13]. This negatively charged
phospholipid, also known as lyso-bisphosphatidic acid, is a structural isomer of phos-
phatidylglycerol and exhibits an unusual sn-1-glycerophosphate-sn-1′-glycerol backbone
stereo-configuration, while acylated glycerol backbones of all other mammalian phos-
pholipids exhibit sn-3 configuration (Figure 4). ABHD6 is capable of hydrolyzing BMP
independent of its stereo-configuration and does not show positional preferences for fatty
acids [13]. Finally, recent observations suggest that ABHD6 is involved in diacylglycerol
(DAG) degradation [23].

4. Tools for the Investigation of ABHD6 Function

The availability of chemical and genetic tools strongly facilitated the investigation of
ABHD6 function in vitro and in vivo. Genetic tools include mutant mouse and rat lines,
whereby mouse lines allow the characterization of animals with global and tissue-specific
deletion of ABHD6 [24–29]. Table 1 summarizes the different animal models and the most
important findings of respective studies (Table 1). Furthermore, several small molecule
inhibitors for ABHD6 have been developed, which can be used to investigate ABHD6
function in cell culture and in in vivo studies (reviewed in [30]). In 2017, Abide Therapeutics
patented compounds that inhibit ABHD6 and lipoprotein-associated phospholipase A2
(patent WO2017059135A1) for the treatment of various diseases. All reported inhibitors
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interact irreversibly with the enzyme forming adducts with the nucleophilic Ser148 of
ABHD6. These inhibitors are active in the nanomolar range and show selectivity over other
serine hydrolases. Notably, a very recent study reported the development of potent ABHD6
inhibitors with more than 1000-fold selectivity over other endocannabinoid (EC)-degrading
enzymes [31]. Finally, ABHD6 can be efficiently silenced using antisense oligonucleotides
(ASO) [8].

Table 1. Mouse and rat lines with global or tissue-specific deletion of ABHD6.

Organism/Strain Knockout/Knockdown Observation Reference

ABHD6-ko (mouse) global increased glucose stimulated insulin secretion; [24]

ABHD6-ko (mouse) global increased circulating
bis(monoacylglycerol)phosphate levels; [27]

ABHD6-flox/Ins1-Cre/ERT
(mouse) β-cell-specific enhanced glucose stimulated insulin secretion

in vivo and ex vivo; [24]

ABHD6-flox/AdipoQ-Cre/ERT2
(mouse) adipocyte-specific

elevated energy expenditure in cold and
resistance to cold-induced hypothermia;
protected from diet-induced obesity;

[28]

ABHD6-ko (rat) global (CRISPR/
Cas9-mediated)

shorter intervals between bladder contractions,
hyperalgesia and increased PGE2; [29]

ABHD6-ASO (mouse) 1
liver-specific
(ASO-mediated
knock down)

protected from diet induced obesity and
liver steatosis; [8]

VMHKO (mouse) 2 VMH neuron-specific
(AAV-mediated)

altered food intake, reduced energy
expenditure, prone to diet-induced obesity; [26]

1 ASO, antisense oligonucleotide; 2 VMH, ventromedial hypothalamus.

5. The Role of ABHD6 in Endocannabinoid Signaling

ABHD6 hydrolyzes the MAG 2-arachidonoylglycerol (2-AG) belonging to a class of
signaling lipids, termed ECs [6]. 2-AG is synthesized from membrane phospholipids by the
action of phospholipase C and two diacylglycerol lipases, DAGLα and DAGLβ. ECs are
endogenous ligands of the so-called cannabinoid receptors and their effects are mimicked
by the natural cannabinoid ∆9-tetrahydrocannabinol (∆9-THC), the major psychoactive
component of the plant Cannabis sativa [32]. In contrast to other signaling lipids, ECs are
produced “on demand” in response to depolarization and Ca2+ influx, and act in close
proximity to their site of synthesis. 2-AG is a full agonist of the two major cannabinoid re-
ceptors CB1 and CB2, which are Gi/o-protein-coupled receptors. CB1 receptor is expressed
throughout the central nervous system as well as in peripheral neurons. Additionally, low
expression has also been observed in non-neuronal cells. In contrast to CB1, CB2 receptor
is predominantly expressed on hematopoietic cells and important for the regulation of
immune response [33]. Activation of CB receptors initiates a signaling cascade that includes
the activation of K+ channels and mitogen-activated protein kinase (MAPK), as well as the
inhibition of voltage-gated Ca2+ channels and of adenylate cyclase, leading to lower cAMP
levels. After receptor activation, ECs are taken up by cells and degraded by lipid hydrolases.
Studies from the early 2000s demonstrated that MGL is the main enzyme hydrolyzing
2-AG in the brain, thereby terminating EC signaling [34]. However, in 2007, Blankman et al.
suggested that ABHD6 contributes to 2-AG hydrolysis in the brain [6]. MGL-independent
2-AG hydrolysis was observed in the microglial cell line BV2, attributed to ABHD6 in
subsequent studies [35,36]. Supporting evidence for a role of ABHD6 in 2-AG degradation
was provided by the finding that the dual pharmacological inhibition of ABHD6 and fatty
acid amide hydrolase increased 2-AG concentrations in neurons, even in the presence of
MGL activity [37]. ABHD6 expression was detected in several cell types, including neurons
and microglia. ABHD6 locates postsynaptically at the site of 2-AG synthesis. Therefore, it
can be assumed that ABHD6 counteracts 2-AG production at postsynaptic terminals. In
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contrast, MGL co-localizes with CB1 receptor presynaptically and terminates 2-AG signal-
ing (Figure 5) [35]. Thus, ABHD6 and MGL control EC signaling by degrading different
2-AG pools.
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Figure 5. ABHD6 in endocannabinoid signaling. 2-arachidonoylglycerol (2-AG) is synthesized on
membranes of postsynaptic neuron terminals by the degradation of phospholipids by phospholipase
C (PLC) generating diacylglycerol (DAG). These are hydrolyzed by diacylglycerol lipase (DAGL) α
and DAGLβ to form 2-AG. 2-AG is then either hydrolyzed by α/β-hydrolase domain-containing
6 (ABHD6) to arachidonic acid (AA) and glycerol or released from the cell. On postsynaptic neurons,
2-AG activates cannabinoid receptor 1 (CB1R) and is subsequently hydrolyzed by monoglyceride
lipase (MGL) to AA and glycerol, terminating endocannabinoid signaling. Figure was generated
using BioRender.

Of note, ASO-mediated knockdown or genetic deletion of ABHD6 in mice did not
result in increased 2-AG levels in any tissue investigated [8,27]. However, it cannot be
excluded that ABHD6 deficiency causes locally increased 2-AG levels that are not detected
on an organ level. Chronic inhibition or genetic deletion of MGL affects EC signaling, which
is accompanied by severe desensitization of CB1 receptors [38–41]. Conversely, ABHD6-
knockout (ko) mice have not been reported to exhibit a behavioral phenotype or altered
CB receptor signaling [25,27]. Together, studies suggested a rather minor contribution
of ABHD6 to the regulation of 2-AG levels in vivo, possibly restricted to cells lacking
MGL expression.

6. The Role of ABHD6 in Inflammation and Neurological Diseases

ABHD6 has been suggested to affect neurotransmission by EC-dependent and -
independent mechanisms. The hydrolase has been implicated in a variety of neurological
disorders, which are related to neuroinflammation. In fact, ABHD6 has been shown to con-
trol 2-AG levels in macrophages and to attenuate their activation by reducing lipopolysac-
charide (LPS)-induced prostaglandin production in vitro and in vivo [42]. The underlying
mechanisms are complex and not completely understood. First, ABHD6 might control 2-
AG levels to activate CB2 receptors on immune cells, playing a central role in inflammatory
processes [43,44]. Second, ABHD6 could control the availability of AA, the main precursor
of pro-inflammatory prostaglandins [45] (see also Figure 5). Third, ABHD6 inhibition
was shown to enhance the levels of the anti-inflammatory prostaglandin-D2-glycerol ester,
which is generated by oxygenation of 2-AG by cyclooxygenase 2 (COX-2) [42]. Furthermore,
ABHD6 might be implicated in systemic and tissue-specific inflammation by the regula-
tion of (lyso)-phospholipid levels. Interestingly, lyso-phosphatidylinositol (LPI) levels are
significantly increased upon systemic LPS-induced inflammation, as well as in dextran
sodium sulfate- and trinitrobenzenesulfonic acid-induced colitis. Masquelier et al. showed
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that inhibition of ABHD6 in LPS-activated macrophages caused the accumulation of C20:4
LPI [46], which in turn can activate the non-classical CB receptor G-protein coupled recep-
tor 55, and thereby modulate the inflammatory response [46–48]. Inhibition of ABHD6
has also been shown to counteract acute lung inflammation. WWL70, an ABHD6-specific
inhibitor [49], significantly attenuates LPS-induced leucocyte recruitment into the lungs.
This is associated with reduced expression of proinflammatory cytokines as well as in-
creased 2-AG and lyso-phospholipid levels in bronchoalveolar lavages and lung tissue [50].
Whether the protective effect of ABHD6-inhibition is due to 2-AG mediated CB receptor
activation, altered prostaglandin production or lyso-phospholipid signaling remains to
be investigated.

Pharmacological inhibition of ABHD6 using the specific inhibitor WWL123 [51] ex-
erted antiepileptic effects in mouse models of pentylenetetrazole-induced and spontaneous
seizures independent of CB1 and CB2 receptor activation. Accordingly, it is reasonable to
assume that the antiepileptic effect of ABHD6 blockade is mediated by a molecular species
other than 2-AG [52]. These studies identify ABHD6 as an interesting therapeutic target for
the treatment of epilepsy.

Other studies investigated the role of ABHD6 in models of brain injury, multiple
sclerosis (MS), and neuropathic pain. Tchantchou and colleagues showed that post-injury
chronic treatment of mice with traumatic brain injury using the ABHD6-inhibitor WWL70
improved motor coordination and deficits in working memory performance. ABHD6-
inhibition attenuated blood–brain barrier dysfunction and neuronal degeneration by CB1
and CB2 receptor-dependent mechanisms, and reduced the generation of pro-inflammatory
mediators [53]. Inhibition of ABHD6 was also protective in a mouse model of experimental
autoimmune encephalomyelitis (EAE), a model for MS. MS is a chronic inflammatory
disease characterized by the appearance of focal lesions with demyelination, axon degener-
ation, and inflammation. Treatment of mice with the ABHD6-inhibitor WWL70 elevated
2-AG levels in the cerebral cortex, downregulated the expression of pro-inflammatory mark-
ers, and attenuated macrophage and T cell infiltration in the spinal cord of EAE mice. These
protective effects were at least partially mediated by the activation of CB2 receptors [44].
More recently, a protective role of ABHD6 for the treatment of MS was investigated by
Manterola et al. in two studies revising the role of ABHD6 in the cuprizone model of
non-immune-dependent demyelination and in EAE [54,55]. In the cuprizone model of
MS, inhibition of ABHD6 using the specific inhibitor KT182 reduced demyelination and
inflammation only mildly, but did not protect from oligodendrocyte excitotoxicity and
maturation [54]. In this model, the protective effect of ABHD6-inhibition was less pro-
nounced compared with the effects observed after MGL-blockade [56]. In a follow-up study,
KT182 administration improved the neurological signs of EAE during disease progression;
however, inflammation was not attenuated. Instead, CB1 receptor desensitization upon
chronic ABHD6-blockade was observed in some brain regions, suggesting that ABHD6
might play a role in fine-tuning EC signaling under inflammatory conditions [55]. Targeting
ABHD6 was also considered to be an interesting therapeutic option for the treatment of
inflammatory and neuropathic pain, a complex chronic neurological disorder. Several
studies emphasized a role for the EC system in the alleviation of neuropathic pain [43]. The
ABHD6 inhibitor WWL70 significantly attenuated thermal hyperalgesia and mechanical
allodynia induced by chronic constriction injury (CCI) in mice, independent of CB1 and
CB2 receptor activation. WWL70 also reduced the inflammatory response by reduced
production of pro-inflammatory cytokines, attenuated astrocyte and microglia activation,
and macrophage infiltration in the central and peripheral nervous system of CCI mice. The
authors proposed that the beneficial effect of WWL70 was rather caused by a reduction of
prostaglandin E2 (PGE2) production than inhibition of 2-AG hydrolysis [57].

Overall, inhibition of ABHD6 produced protective effects in different mouse models
of neuroinflammation-associated diseases. However, the results depend on the use of
different inhibitors implicating the contribution of off-target effects, which can partially
explain controversial outcomes.



Metabolites 2022, 12, 761 10 of 17

Finally, ABHD6 gene expression was associated with an increased risk of systemic
lupus erythematosus (SLE) in Europeans [58]. Subsequent studies revealed that ABHD6 is
highly upregulated in peripheral blood mononuclear cells of SLE patients. SLE is a hetero-
genic autoimmune disease characterized, among others, by the presence of anti-nuclear
antibodies, inflammation, vasculitis, immune complex deposition, and vasculopathy. The
systemic induction of type I interferons (IFNs) plays a crucial role in SLE, and inhibition of
IFN pathways is a common treatment strategy. Functional studies revealed that WWL70
significantly impaired IFNα induction by 2-AG-mediated activation of CB2 receptors [59].
These studies suggest that targeting ABHD6 in SLE might be a promising therapeutic strat-
egy. However, it has to be considered that WWL70 has anti-inflammatory properties owing
to considerable off-target inhibition of COX-2 and microsomal PGE2-synthase (PGES-1/2)
mediating PGE2 biosynthesis [60]. Functional studies using ABHD6-ko mice, which would
support the concept of ABHD6 inhibition as a treatment strategy for SLE, have thus far not
been performed.

7. ABHD6 Controls Surface Delivery of AMPA-Type Glutamate Receptors

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate re-
ceptors are major post-synaptic receptors at excitatory synapses that mediate neurotrans-
mission and synaptic plasticity. Mammalian cells express four types of AMPA receptor
subunits (GluA1-4) and mature receptors form tetramers composed of different subunits.
In addition to these central pore-forming subunits, predominantly permeable for sodium
and potassium ions, AMPA receptors are associated with a variety of auxiliary proteins.
AMPA receptors are responsible for the fast, immediate postsynaptic response to gluta-
mate, whereby the composition of the pore-forming subunits and auxiliary proteins affect
receptor function. In 2012, Schwenk and colleagues identified ABHD6 as component of this
multiprotein complex [61]. Subsequent studies revealed that ABHD6 negatively regulates
the surface delivery and affects the synaptic function of these receptors. Notably, studies
using loss-of-function mutants suggested that this effect was independent of the enzymatic
activity of ABHD6. Pull-down experiments confirmed that ABHD6 binds to GluA1-3,
and deletion of the C-terminal domain of GluAs abolishes the interaction [62]. Overall,
these observations unveiled an unexpected role of ABHD6 in receptor trafficking, which
is independent of its lipid hydrolase activity. Up to now, however, these studies have not
been extended to ABHD6-ko animal models, which could provide important insights into
the physiological role of the enzyme in AMPA receptor-dependent synaptic transmission.

8. ABHD6 Affects Insulin Secretion

Insulin secretion from pancreatic β cells occurs upon fusion of insulin granules with
the plasma membrane. This process is regulated by glucose and other metabolites including
free fatty acids and acylglycerols. Zhao et al. investigated the role of MAGs in glucose-
stimulated insulin secretion (GSIS), revealing that supplementation of cells with MAGs
esterified with saturated fatty acids (C16:0 and C18:0) promote insulin release. Glucose
also led to an increase in saturated MAG levels in β cells, which further increased in the
presence of the ABHD6 inhibitor WWL70. This inhibitor also increased GSIS, suggesting a
role of ABHD6 in the regulation of cellular MAG levels and insulin secretion. The authors
suggested that MAGs bind and activate Munc13-1, a key exocytotic effector that orchestrates
membrane fusion events. This activation process promotes the fusion of secretory granules
with the plasma membrane, and thereby facilitates insulin secretion. GSIS was also elevated
in vivo and ex vivo in mice globally lacking ABHD6 [24]. Using β-cell-specific ABHD6-ko
mice, Zhao et al. demonstrated that ABHD6 is not only implicated in GSIS, but also in
the control of insulin secretion promoted by various fuel stimuli (e.g., amino acids or
2-ketoisocaproate) and non-fuel stimuli such as hormones (e.g., glucagon like peptide 1
and acetylcholine) [63].

ABHD6 is highly expressed in β cells and seems to represent a major MAG hydrolase
in these cells. It accounts for approximately 40% of total MAG hydrolase activity, and
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inhibition of ABHD6 leads to significantly increased MAG levels. However, the effect of
ABHD6 inhibition on MAG accumulation is rather moderate and limited to saturated fatty
acid-containing sn-1(3)-MAGs, clearly indicating that other hydrolases also contribute to
MAG catabolism. Notably, Berdan et al. reported that inactivation of MGL, the major MAG
hydrolase in many tissues, also affects insulin secretion in a rat insulinoma cell line (INS-1)
and in rat islets. In contrast to ABHD6 inhibition, MGL blockade significantly inhibited
GSIS and depolarization-induced insulin secretion. MGL-inhibition was associated with
increased MAG and diacylglycerol levels, while long-chain Acyl-CoA levels were reduced
in INS-1 cells [64]. These observations indicate that ABHD6 and MGL degrade different
MAG pools, which contrarily affect GSIS.

9. The Role of ABHD6 in BMP Metabolism

BMP is a major constituent of intraluminal vesicles (ILVs) of late endosomes/lysosomes
and is also present in the circulation at low concentrations [65]. It plays a key role in lipid
sorting of late endosomes/lysosomes, acting as a co-factor for many lysosomal hydrolases
and lipid transport molecules. Thereby, BMP can promote lysosomal lipid degradation
and cholesterol export [66]. BMP is specifically important for sphingomyelin catabolism.
High sphingomyelin levels can induce lysosomal damage and membrane permeabiliza-
tion, ultimately leading to cell death. By stimulating acid sphingomyelinase activity, BMP
can increase lysosomal stability and prevent cell death [67]. Based on these functions, it
is reasonable to assume that increased BMP levels counteract the pathological accumu-
lation of other lipids in lysosomes and lysosomal membrane permeabilization. Under
pathological conditions, BMP accumulates in many genetic and drug-induced lysosomal
storage disorders, as well as in the steatotic liver of mice fed a high-fat diet (HFD) [27,68].
Recent data also suggest that BMP is involved in the pathogenesis of antiphospholipid
syndrome (APS), an autoimmune disease associated with arterial and venous thrombosis
and pregnancy-related complications. APS is characterized by high levels of antiphos-
pholipid antibodies, which activate coagulation pathways and induce pro-inflammatory
pathways. Müller-Calleja et al. identified BMP presented by endothelial protein C receptor
as a pathogenic cell surface antigen, which interacts with antiphospholipid antibodies.
The authors proposed that this interaction is a central mechanism in the development and
progression of autoimmune disease in patients with APS [69].

Although BMP is highly relevant for metabolic homeostasis and human disease,
very little is known about the molecular basis of BMP metabolism. This lipid is resistant
to lysosomal hydrolases, but efficiently degraded in the neutral pH range. ABHD6 is
capable of hydrolyzing BMP at neutral pH with considerable high specific activity [13].
Furthermore, studies in mice demonstrate that ABHD6 is responsible for most of the BMP
hydrolase activity detected in liver lysates, and a lack of ABHD6 increases circulating BMP
levels [27]. Overall, these observations suggest a complex role of ABHD6 in BMP catabolism.
ABHD6 co-localizes with late endosomes/lysosomes and the ER, suggesting that it is
involved in membrane remodeling of these organelles. Yet, it is located at the cytosolic side
of membranes, while BMP is enriched in the lumen of acidic vesicles. Therefore, BMP has
to be exported from vesicles before being degraded by ABHD6. ILVs are very dynamic
vesicles, which are produced from invaginations of the limiting membrane of endosomes.
During organelle maturation, ILVs undergo substantial changes in composition and can also
back-fuse with the limiting membrane. This back-fusion process represents an export route
for endosomal cargo. BMP is then present at the limiting membrane and, likely together
with other lipids, accessible for ABHD6. Mice lacking ABHD6 show increased circulating
BMP levels, indicating that non-hydrolyzed BMP is released into the circulation, which
can occur either via HDL/ApoA1-dependent mechanisms or exosomes. However, ABHD6
deficiency does not cause hepatic BMP accumulation, implicating that other intracellular
enzymes are also capable of catalyzing BMP hydrolysis [27].
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10. The Role of ABHD6 in Metabolic Syndrome

Obesity is associated with several pathological conditions, increasing the risk of
developing type 2 diabetes and cardiovascular disease. In 2013, Thomas et al. showed that
ABHD6 gene expression was upregulated upon HFD feeding in the liver and intestine.
Antisense oligonucleotide (ASO)-mediated knock down of ABHD6 in murine liver and
white adipose tissue of mice protected them from HFD-induced obesity, hepatic steatosis,
and insulin resistance [8], suggesting a role of ABHD6 in the pathogenesis of metabolic
syndrome. In line with this, pharmacological inhibition and global genetic deletion of
ABHD6 in mice resulted in reduced body weight gain as well as improved insulin sensitivity
and glucose tolerance when fed an HFD [8,25]. Mechanistically, Zhao et al. proposed that
ABHD6 regulates energy homeostasis by increasing energy expenditure through adipose
tissue browning and upregulation of uncoupling protein 1 in brown and white adipose
tissue. Peroxisomal proliferator-activated receptor (PPAR)-α antagonists slightly reversed
the observed phenotype [25]. The authors suggested that this phenotype is caused by the
accumulation of sn-1-MAG in ABHD6-deficient adipose tissue activating PPARα and γ.
Further evidence for a role of ABHD6 in the regulation of energy homeostasis was provided
by a study using adipose tissue-specific ABHD6-ko mice. These mice show increased
whole-body insulin sensitivity, while glucose homeostasis and body composition remained
unchanged. After cold exposure, adipose tissue-specific ABHD6-ko mice show increased
energy expenditure and resistance to hypothermia [28].

The EC system plays an important role in the control of feeding and energy expenditure
in the ventromedial hypothalamus (VMH) [70]. Based on this observation and the ability of
ABHD6 to degrade 2-AG, Fisette et al. investigated the role of the enzyme in VMH neurons
in the control of energy balance. Deletion of ABHD6 in this brain area increased VMH
2-AG levels in fasted mice, but not in fed mice, and this was associated with metabolic
deficits. VMH-specific ABHD6-ko mice showed blunted basal and fasting-induced food
intake. Notably, some effects were contrary to the phenotype observed in global or adipose-
specific ABHD6-ko mice. Mice exhibited reduced energy expenditure and cold-induced
thermogenesis, and were prone to HFD-induced obesity. The authors suggested that the
EC system in VMH neurons regulates the adaption to metabolic challenges and the lack of
ABHD6 in these neurons blunts the metabolic flexibility of mice [26]. These observations
could be important for the development of ABHD6 inhibitors and for the interpretation
of their therapeutic effects in metabolic disorders. Apparently, inhibition of ABHD6 in
peripheral tissues counteracts obesity and co-morbidities, while ABHD6 inactivation in
VMH neurons induces opposite effects.

11. ABHD6 and Cancer

Even before its biochemical characterization, ABHD6 was found to be differentially
expressed in tumor cell lines, ranging from very high expression in U2OS (bone), PC-3
(prostate), and Jurkat (leukocyte) cells, to absent expression in Hela (cervical) and U251
(brain) cells [71]. Subsequent studies suggested that ABHD6 is highly abundant in Ew-
ing family tumor cell lines and might be an interesting new diagnostic or therapeutic
target. However, knock down of ABHD6 did not affect the growth of Ewing tumor cells
in vitro [72].

Grüner et al. used the murine pancreatic ductal adenocarcinoma (PDAC) cell line
(0688M) to study the effect of hydrolase inhibitors on pancreatic cancer metastatic seeding
in vivo. By screening ~700 hydrolase inhibitors, they identified several hits reducing the
metastatic fitness of PDAC cells [73]. Interestingly, among the top hits was a compound
targeting ABHD6. Subsequent investigations using more selective inhibitors and genetic
approaches confirmed that ABHD6 promotes metastatic seeding. Evidence for a pro-
oncogenic function of ABHD6 also came from a study investigating the role of ABHD6
in the pathogenesis of non-small cell lung carcinoma (NSCLC) [74]. ABHD6 silencing
and pharmacological inhibition reduced migration and invasion of NSCLC cells in vitro.
Furthermore, ABHD6 inhibition blunted metastatic seeding and tumor growth in mice.
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The authors observed substantial upregulation of ABHD6 in tumor tissues and proposed
that lack of ABHD6 leads to the accumulation of MAG, promoting cancer aggressiveness.
Overall, these studies identify ABHD6 as an interesting target for the development of
anti-metastatic and anti-tumor therapies.

12. Conclusions

ABHD6 is a ubiquitously expressed enzyme, and its biochemical and physiological
functions are only now being characterized in detail. It hydrolyzes a variety of lipid sub-
strates such as MAGs, lyso-phospholipids, and BMP, and has been implicated in different
physiological processes including insulin secretion, receptor trafficking, membrane remod-
eling, and synaptic transmission (Figure 6). It must also be considered that ABHD6 is a
membrane-associated protein and likely plays a role in lipid remodeling of membranes.
Structural data indicate that ABHD6 preferentially localizes at negatively charged mem-
brane sites. The phospholipid composition and the charge of membranes can substantially
affect the interaction of membranes with proteins. Negatively charged lipids play a critical
role in regulating vesicular transport and endosome maturation. Thus, it remains to be
investigated whether changes in membrane composition and charge also contribute to the
multiple effects on metabolism, trafficking, and inflammation.
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Figure 6. ABHD6 is involved in multiple (patho)-physiological processes. ABHD6 has been shown to
be implicated in various (patho)-physiological processes, including lipid degradation, lipid signaling,
inflammation, obesity, and cancer.

Pharmacological inhibition of ABHD6 causes beneficial metabolic effects in mice such
as enhancement of insulin secretion and energy expenditure, thus qualifying ABHD6 as a
promising target for the treatment of the metabolic syndrome and its comorbidities. Fur-
thermore, blockade of ABHD6 has neuro-protective, anti-inflammatory, and anti-oncogenic
effects, identifying the enzyme as also being an interesting pharmacological target for the
treatment of (neuro)-inflammatory and neurodegenerative disorders. Current evidence
suggests that these effects are mediated by lipid signaling molecules accumulating in the
absence of ABHD6 activity. However, some of these observations possibly derive from
off-target effects of ABHD6 inhibitors and have to be confirmed in genetic ABHD6-ko
models. Moreover, detailed structural analysis of ABHD6 will support the development of
highly specific inhibitors. In summary, the therapeutic potential of ABHD6 inhibition for
various disease treatments is vast and promising, but warrants further research.
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