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Abstract: Gynaecological cancers are attributed to the second most diagnosed cancers in women
after breast cancer. On a global scale, cervical cancer is the fourth most common cancer and the
most common cancer in developing countries with rapidly increasing mortality rates. Human
papillomavirus (HPV) infection is a major contributor to the disease. HPV infections cause prominent
cellular changes including alternative splicing to drive malignant transformation. A fundamental
characteristic attributed to cancer is the dysregulation of cellular transcription. Alternative splicing is
regulated by several splicing factors and molecular changes in these factors lead to cancer mechanisms
such as tumour development and progression and drug resistance. The serine/arginine-rich (SR)
proteins and heterogeneous ribonucleoproteins (hnRNPs) have prominent roles in modulating
alternative splicing. Evidence shows molecular alteration and expression levels in these splicing
factors in cervical cancer. Furthermore, aberrant splicing events in cancer-related genes lead to chemo-
and radioresistance. Identifying clinically relevant modifications in alternative splicing events and
splicing variants, in cervical cancer, as potential biomarkers for their role in cancer progression and
therapy resistance is scrutinised. This review will focus on the molecular mechanisms underlying
the aberrant splicing events in cervical cancer that may serve as potential biomarkers for diagnosis,
prognosis, and novel drug targets.
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1. Introduction

Cervical cancer, also known as cervix uteri cancer, is the fourth most frequently
diagnosed cancer globally and the most common malignancy in developing countries [1].
It is the most frequently diagnosed cancer in women in Sub-Saharan Africa (SSA) and the
leading cause of cancer-related mortality in this region (Figure 1) [2,3]. An estimated 90% of
cervical cancer-related mortality occurs in low- and middle-income countries [4]. Cervical
cancer is predominantly categorised into two main histopathological subtypes—squamous
cell carcinoma and adenocarcinoma [5]. Over 75–80% of all cervical cancers are squamous
cell carcinomas [6,7]. Cervical cancer is attributed to a number of risk factors such as
sexually transmitted infections including human immunodeficiency virus (HIV) infection,
human papillomavirus (HPV) infection, socioeconomic factors, obesity, smoking [8], alcohol
consumption [9], unprotected sex and multiple sexual partners, prolonged usage of oral
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contraceptives, and family history of cervical cancer [10]. HPV infection is the major
contributor of cervical cancer [11]. HPV is a circular double-stranded DNA virus with
capsid proteins with more than 200 subtypes identified and categorised as high and low
risk. Of these, about 40 subtypes have an affinity for genital mucosa and are sexually
transmitted. The low-risk subtypes are generally associated with genital warts, whereas
high risk subtypes cause invasive cervical cancer. The most prominent high-risk HPV
genotypes are HPV16 and 18. Persistent infection with these high-risk subtypes contributes
to over 99% of cervical cancers [11]. HPV infections can be prevented by vaccination
that confers protection against HPV 6, 11, 16, and 18 subtypes, and depending on the
vaccine, subtypes 31,33,45,52,58 can also be prevented. The vaccinations are available as
quadrivalent vaccine to target all four subtypes or as bivalent to target only the high-risk
subtypes [12] or a combined 9-valent vaccine that targets nine subtypes [13].
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In addition to HPV infections, dysregulated pathways are a fundamental feature in
cervical cancer development and progression. For this reason, research in elucidating
modifications in cancer-related pathways and alternative splicing is rapidly emerging.
Several studies show aberrant alternative splicing and the dysregulation of gene expression
in cervical cancer [14–17]. The related molecular signatures offer potential therapeutic
targets for novel drug development and improved strategies in cervical cancer management,
particularly for advanced disease in developing countries where HPV infections are the
major contributor of cervical cancer.

The burden of cervical cancer mortality due to HPV infections is felt prominently in de-
veloping nations. Novel therapeutic targets are warranted to address this issue. Moreover,
prevention strategies such as HPV vaccinations and pap smears play a significant role in
cervical cancer prevention. Modifications in cervical tissue are detected through pap smears
and HPV tests, and early diagnosis allows effective management of the disease [1,10]. This
review will focus on the molecular mechanisms underlying the aberrant splicing events in
cervical cancer that may serve as potential biomarkers for diagnosis and prognosis and as
novel drug targets for their therapeutic properties.
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2. Alternative Splicing and Its Implications in Cervical Cancer

Alternative splicing is an important process in gene expression and proteome di-
versity. In this cellular process, introns are spliced to join exons for the production of
proteins through several mechanisms (Figure 2). Alternative splicing maintains cellular
diversity and regulates the synthesis of multiple protein isoforms from the same gene.
These protein isoforms perform several biological functions that are necessary for normal
cellular functionality. Alternative splicing is an intricate process that is closely regulated
by numerous spliceosome factors that aid in recognition of intron and splice sites such
as small nuclear ribonucleoproteins (snRNP) particles and the serine/arginine-rich (SR)
proteins [18]. In this process, proteins are synthesised, when introns are spliced and func-
tional exons are joined together. The negative regulation of alternative splicing is achieved
by heterogeneous ribonucleoproteins (hnRNPs) that block the intron and exon bound-
aries [19]. These two protein families—the SR proteins and the hnRNPs—are important
trans-acting regulatory factors in splicing and are known to be altered in cervical can-
cer [20–23]. Enhanced levels of SR lead to splicing induction, whereas splicing is inhibited
when hnRNPs are overly expressed. Aberrant alternative splicing, resulting from DNA
damage, mutations and expression alterations in splicing factors, miRNA disruptions, and
unregulated gene expression, are implicated in cancer mechanisms, such as sustained cell
proliferation, apoptotic evasion, tumour suppressor inhibition, angiogenesis, metastasis,
and drug resistance [19,24–26]. Evidence suggest that aberrant alternative splicing plays an
important role in the development of cervical cancer. In cervical cancer, alternative splicing
is primarily HPV-mediated. Next generation sequencing (NGS) offers a platform to iden-
tify potential disease-causing splice variants and genomic changes in splicing regulatory
factors/proteins. Elucidating the functions of these splice variants may provide underlying
information on malignant transformation and be beneficial in developing novel strategies
for therapeutic interventions [27]. For these reasons, modifications in alternative splicing
are becoming a significant biomarker with diagnostic and therapeutic potential.

Alternative splicing of key genes may facilitate the development and progression
of cervical malignancy. For instance, the 5′ alternative splicing of the KLHDC7B gene
is closely associated with cellular differentiation and tumour size in 67.5% of squamous
cell carcinoma [28]. Similarly, 35% of exon skipping in the SYCP2 gene was reported
in cervical squamous cell carcinoma and associated with invasion and metastases [28].
Evidence also shows the association of cervical cancer and the aberrant alternative splicing
of the IL1RAP gene. SRSF10 regulates the splicing of IL1RAP gene and promotes the
production of its oncogenic isoform, MIL1RAP. This in turn facilitates the malignant
cell evasion of phagocytosis by macrophages. Therefore, aberrant alternative splicing of
IL1RAP gene promotes immune evasion and promotes cervical cancer [29]. A recent study
by Ouyang et al. (2020) provides evidence that supports the notion that aberrant splicing
events are closely associated with cervical cancer development, and the identification
of these splicing biomarkers may provide useful prognostic and therapeutic tools [30].
The authors identified 2860 alternative splicing events. Of these, SNRPA and CCDC12
were associated with the tumour suppressor gene, p53, and were identified as hub genes
in cervical cancer [30]. These results highlight the need to screen candidate biomarkers
associated with cervical cancer that may have a clinical utility in diagnosis, prognosis, and
therapy. Biomarkers related to cervical cancer are shown in Table 1.
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Figure 2. Frequent types of alternative splicing mechanisms. Alternative spliced mRNA produces
mature transcripts, namely, cassette exons (CEs), mutually exclusive exons (MXEs), alternative 5′ or
3′ splice sites (A5SS and A3SS), intron retention (IR), and alternative polyadenylation (AP). Coloured
boxes: exons; black lines: introns [31–35].

HPV contributes to the development and progression of cervical cancer by disrupting
alternative splicing and other cellular functions. The HPV genome is double-stranded
and circular; it is divided into three regions, namely, the long control region (LCR) and
early and late region. Each region produces proteins that have different functions in
the life cycle of HPV and in cancer development [36]. Persistent HPV infection gives
rise to malignancy by producing viral proteins necessary to maintain virus replication
and oncoproteins. Viral oncoproteins facilitate disease development and progression by
abrogating normal cellular functions such as G1 arrest, cell proliferation, apoptosis, DNA
repair, and chromosomal instability [37]. In addition, HPV oncoproteins bind to splicing
factors and induce aberrant alternative splicing events. Moreover, HPV-related cervical
cancer has a number of genes and splicing factors that are significantly upregulated. These
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include genes with vital functions such as immune surveillance, inflammatory response,
and tumour suppressors [29,37]. Collectively, the interference of HPV in alternative splicing
and cellular function promotes transformation, leading to carcinogenesis.

Table 1. Overview of biomarkers associated with cervical cancer.

Biomarkers Biological Function Modifications in Cervical Cancer Clinical Utility Ref.

HPV E6 p53 degradation Overexpressed in cervical cancer cells Screening and
prevention [38,39]

HPV E7 pRb degradation Overexpressed in cervical cancer cells Screening and
prevention [38,39]

AURKA Genomic stability Overexpressed in precancerous and
cancerous cervical cells Early detection [40–42]

DTL Checkpoint regulation Overexpressed in cervical cancer cells Early detection [41]

HMGB3 Maintain balance in
stem cell population Overexpressed in cervical cancer cells Early detection [41]

KIF2C Cell proliferation Overexpressed in cervical cancer cells Early detection [41]

NEK2 Mitotic and cell
cycle regulation Overexpressed in cervical cancer cells Early detection [41]

RFC4 DNA replication Overexpressed in cervical cancer cells Early detection [41]

p16ink4a Tumour suppressor Overexpressed in precancerous and
cancerous cervical cells

Screening and
diagnosis [43–45]

Ki-67 Cell proliferation Increased expression in proliferating
epithelial cervical lesions

Screening and
diagnosis [43,46]

MCM2/TOP2A DNA synthesis Overexpressed in cervical dysplasia Diagnosis [38,47]

MSI1 RNA binding protein Overexpressed in cervical cancer cells Diagnostic and
therapeutic [48–51]

miR-21, miR-127 and
miR-199a - Increased expression in cervical

cancer cells Prognosis [39]

miR-143, miR214,
miR-218 and miR-34a - Decreased expression in cervical

cancer cells Prognosis [39]

ALDH1 Cellular differentiation
and proliferation Overexpressed in cervical cancer cells Prognosis and

predictive [48,51,52]

EGFR Transmembrane
protein Overexpressed in cervical cancer cells Prognosis and

predictive [53,54]

Oct3/4 Transcription factor Overexpressed in cervical cancer cells Prognosis and
predictive [48,52,55]

Sox2 Transcription factor Overexpressed in cervical cancer cells Prognosis and
predictive [51,55]

CD49f Stem cell marker Overexpressed in cervical cancer cells Prognosis and
predictive [48,51,56]

CD133 Cell surface antigen Overexpressed in cervical cancer cells Prognosis and
predictive [48,57]

CD44 Cellular differentiation
and proliferation Overexpressed in cervical cancer cells Predictive [48,58]

KAT2B Mitotic and cell cycle
regulation Downregulated in cervical cancer cells Predictive [59]
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2.1. HPV-Mediated Disruptions in Serine/Arginine-Rich (SR) Proteins

The spliceosome is crucial in regulating alternative splicing. In addition, other regu-
latory factors that are short DNA sequences, known as exonic splicing enhancers (ESEs),
exonic splicing silencers (ESSs), intronic splicing enhancers (ISEs), and intronic splicing
silencers (ISSs), ensure accurate splicing [60]. The splicing regulators have either a positive
or negative effect on alternative splicing. ESE and ISE are cis-acting elements that are
capable of binding the SR protein family to facilitate recognition of exons and initiate
assembly of the spliceosome prior to alternative splicing (Figure 3) [61]. SR proteins are
also known as SR splicing factors (SRSF) with SRSF1–12 as the major proteins in this family
that have been identified as splicing regulators [62]. SR proteins have other vital cellular
functions that are hallmarks of cancer, namely, cell cycle regulation, apoptosis, genome
stability, cell adhesion and metastasis [27,63], and angiogenesis [64].
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SR proteins bind to exonic splicing enhancers (ESEs), facilitating splice site recognition and stimulating the activation of
splicing. In comparison, splicing is inhibited by the binding of the SR to introns [64–66].

The SRSF regulates splicing by determining the cycle of phosphorylation of SR pro-
teins. CDC-like kinases (Clks), SR protein-specific kinases (SRPKs), and Topoisomerase
1 modulate the activation of SRSFs through a cycle of phosphorylation and dephospho-
rylation [18]. In the event of dephosphorylation, SRSFs begin to accumulate in the cy-
toplasm [64]. In comparison, phosphorylated SRSFs are transported to the nucleus to
stimulate splicing. The SRPKs are capable of splicing regulation by the binding action to
Clks in the nucleus and the cytoplasm [21]. In addition to splicing regulation, evidence
suggests that SRPKs are able to modulate viral genomic material such as the HPV [18,21,31].
Evidence shows the binding of HPV E4 protein to SRPK1 [18]. This binding action im-
pedes activation of SR protein by inhibiting the phosphorylation of SRSF1, SRSF3, SRSF4,
and SRSF7 and impedes the pre-mRNA processing (Figure 4) [67]. This leads to aberrant
cellular splicing that results in oncoprotein production and cervical cancer [18].
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Evidence sheds light on the oncogenic role of SRSF1 [68] and a recent report shows
its involvement in cervical malignancy [21]. Mole et al. (2020) showed enhanced levels
of SRSF1 in cervical cancer cells. The authors showed the trans-activation of the SRSF1
gene promoter by the high-risk HPV16 E2 protein, with differing levels in the nucleus and
cytoplasm [21]. Modifications of SRSF1 abrogate alternative splicing and facilitate genomic
instability and cervical malignancy. Henceforth, the results suggest that the increased
cytoplasmic levels of SRSF1 are associated with early tumour progression [21]. Other
evidence shows the interaction of SRSF1 binding to long non-coding RNAs (lnRNA) to
regulate expression levels of keratin 17. Cervical cancer cells display enhanced levels of
keratin 17. Dong et al. (2019) showed the interplay between SRSF1 and lnRNA to modulate
expression of keratin 17 through alternative splicing in cervical cancer [22]. In addition
to SRSF1, SRSF3 regulates the expression of a number of genes and the overexpression of
SRSF3 has been shown to modulate cell proliferation by inducing G2/M cell cycle arrest
and apoptosis [69,70]. SRSF3 induces production of interleukin enhancer binding factor 3
(ILF3) isoform 1 and 2 through aberrant alternative splicing. These isoforms are involved in
malignant transformation [71]. Furthermore, SRSF3 regulates expression of p300, a tumour
suppressor, and induces cell proliferation [70]. In HPV-infected cervical cells, SRSF3 plays a
significant part in the E6* splicing that is vital for E7 production [72] and in E1ˆE4 for viral
replication [73]. Silencing SRSF3 in HPV-infected cells shows downregulation of viral E6
and E7 [72] and suppresses the E1ˆE4 splicing [73]. These results highlight the oncogenic
potential of SRSF3 that may lead to cellular transformation and may contribute to cervical
cancer [69].

DNA damage response plays a vital role in maintaining genomic stability and pre-
venting carcinogenesis. Several important genes are involved in DNA damage pathways
such as RAD51, ATM, p53, and ERCC1 [74]. Detecting modifications in DNA repair genes
could be beneficial as biomarkers for diagnosis, prognosis, and targets for therapy. For
instance, evidence shows the upregulated RAD51 mRNA levels in cervical cancer, which
are associated with poor prognosis [75]. In addition to somatic mutations, HPV induces
DNA damage in cervical cancer cells [76] and the resulting DNA damage response gene
expression serves as prognostic biomarkers [77]. New evidence shows the association
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between SRSF6 and DNA damage genes. Yang et al. (2020) evaluated the function of SRSF6
in cervical cancer cells and showed that overexpressed SRSF6 influenced the alternative
splicing of DNA damage genes [78]. SRSF6-induced aberrant alternative splicing of DNA
damage genes is associated with the hallmarks of cancer such as cell proliferation, tumour
progression, and apoptosis [78]. Elucidating the functional impact of SRSF6 in alternative
splicing of DNA damage genes could offer a target for cervical cancer therapy.

2.2. HPV-Mediated Disruptions in Heterogeneous Ribonucleoproteins (hnRNPs)

The ESS and ISS act as negative regulators to repress alternative splicing and bind to
the hnRNP family of proteins. Similar to SR proteins, the hnRNPs can either positively or
negatively regulate splicing by binding to ESS and ISS, negatively prompting exon defini-
tion (Figure 5). There are currently at least 20 hnRNPs identified with several important
cellular functions including alternative splicing [31]. Loss of regulation in hnRNPs leads to
modified gene expression of tumour suppressors and other cancer-related genes [27,79].
Henceforth, hnRNPs are implicated in malignant transformation and could be scrutinised
as potential cancer-related biomarkers.
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showing the RRM (RNA recognition motif), KH (K homology domain), and other RNA binding domain that is structurally
different from RRM. hnRNP negatively regulates this process by binding to either exonic splicing silencers (ESSs) or
intronic splicing silencers (ISSs). In addition, hnRNP blocks the activity of exonic splicing enhancers (ESEs) by binding to
it [34,65,80].

Alternative splicing events are frequent in cervical cancer and are significantly associ-
ated with diagnosis and prognosis. Major splicing factors promote cervical malignancy
by facilitating the production of HPV mRNAs and oncoproteins required. In addition,
cellular oncogenic protein production is favoured to enhance the development of cervical
cancer (Table 2). Cervical cancer cells have elevated expression of hnRNPs. For instance,
hnRNPA1 is highly expressed in cervical cancer cells and can disrupt cancer-related genes.
The alternative splicing of pyruvate kinase mRNA is induced by hnRNPA1 and favours
aerobic glycolysis, resulting in uncontrolled cell proliferation. In the event where hnRNPA1
is downregulated, cancer-specific apoptosis is induced. hnRNPA1 is thus a good biomarker
for cervical cancer diagnosis [23]. Another recent study investigated prognostic biomarkers
of alternative splicing in cervical cancer and revealed hnRNPA1, ubiquitin C, and RNA
polymerase II subunit L as effective prognostic biomarkers [81]. As a crucial component
in alternative splicing, scrutinising the aberrant splicing induced by hnRNPA1 in cervical
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cancer is critical. Additionally, during the HPV infection-related differentiation of cervical
epithelial cells, hnRNPA1 is further upregulated and enables oncoviral protein transcrip-
tion. Deleterious mutations in hnRNPA1 have been identified and may alter expression
levels contributing to aberrant alternative splicing, mRNA processing, and translation [82].

Table 2. The role of major splicing factors, the human papillomavirus (HPV) binding region, and function of transcripts in
cancer progression.

Splicing Factor HPV Binding Region HPV16 mRNA Cancer Promoting Function

SRSF1 E4 Production of E6/E7 mRNA Apoptotic regulation

SRSF3 E4 Production of E6/E7 mRNA Increased cell proliferation

SRSF9 E4 Production of late mRNAs Increased cell proliferation and
suppressed apoptosis

hnRNPA1 L1 Production of the isoform E6*I/E7 Apoptotic regulation

hnRNPA2/B1 E4 Production of the isoform E6*I/E7 Apoptotic regulation

hnRNPC Early 3′-UTR Production of L1 mRNA -

hnRNPD E4 Production of late mRNAs -

hnRNPE1/E2 L2 Inhibition of L2 mRNA -

hnRNPG E4 Production of late mRNAs -

hnRNPH L2 Inhibition of late mRNAs -

hnRNPI Early 3′-UTR Inhibition of late mRNAs Cell proliferation and cell invasion

hnRNPK L2 Inhibition of L2 mRNA Cell cycle regulation

hnRNPL E4 and L1 Inhibition of late mRNAs -

UTR: Untranslated region. Reviewed in [31].

Prolonged HPV infections influence cellular and viral alternative splicing to enhance
viral oncogene production, leading to malignant transformation of the cervix. Malignant
transformation is initiated and sustained by the high-risk HPV16 E6 and E7 proteins that
interact with tumour suppressor genes p53 and retinoblastoma protein (pRb), respectively.
The interaction of E6 with p53 results in apoptosis, whereas E7 steers cell proliferation by
interacting with pRb [83,84]. Moreover, E6 and E7 are essential in viral replication [85].
Zheng et al. (2020) showed splicing regulation of E6 and E7 by cellular hnRNPA1 and
hnRNPA2 [20]. This study revealed the direct interaction of hnRNPA1 and hnRNPA2
with high-risk HPV16 splice site SA742 and SA409. The authors showed the inhibition of
SA409 when hnRNPA1 is overexpressed and favouring viral E6 mRNA production. In
comparison, when hnRNPA2 is upregulated, the viral E6Ê7, E1, and E4 mRNA transcripts
are favoured [20]. Adequate amounts of both E6 and E7 transcripts are required for the
development of cervix carcinoma. Furthermore, evidence also shows that HPV interacts
with hnRNPA1 and the silencing of hnRNPA1 suppresses E6 intron retention [73]. Hence,
targeting hnRNPA1 and hnRNPA2 to modulate viral E6 and E7 mRNA transcripts may
provide novel therapeutic strategies.

3. Alternative Splicing and Therapy Resistance

Drug resistance is a considerable hurdle in cancer treatment and management. Aberrant
alternative splicing events are a common theme in cancer drug resistance and, therefore,
strategies targeted to silence variants that promote drug resistance are highly warranted.
Aberrant splice variants can promote resistance to chemotherapy and radiotherapy [24,86–88]
by mechanisms that include apoptotic regulation, modified drug metabolism, response
to DNA damage, and regulation of cell proliferation (Figure 6) [89]. Radiotherapy is an
important therapeutic modality for the management of advanced cervical cancer and
radioresistance may be detrimental. In cervical cancer, a splice variant of nucleophosmin
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(NPM) protein resulting from alternative splicing causes radioresistance [86]. NPM func-
tions in mRNA processing, genome stability, and apoptotic regulation [90]. Enhanced
expression of the NPM2 variant is correlated with a radio-protective function. Evidence
shows that silencing the NPM2 splice variant decreases radioresistance in cervical cancer
cells in a dose-dependent manner [86]. Similarly, enhanced levels of ∆Np73, a splice
variant of p73, have anti-apoptotic functions and display radioresistance in cervical cancer
cells [91]. p73 (i) is a p53 homologue that expresses the oncogenic isoform ∆Np73 [92];
(ii) functions in DNA damage repair, cell cycle regulation, and apoptosis with p73 polymor-
phism closely associated with cervical cancer [93]; and (iii) is a prognostic biomarker for
cervical cancer [94]. Cervical cancer cells exposed to high-LET radiation degrade ∆Np73
to exhibit enhanced apoptosis and cell cycle arrest at the G2/M phase when compared
with low-LET radiation [91]. In addition, ∆Np73 promotes malignant transformation by
interacting with RAS and inducing drug resistance to chemotherapy and radiotherapy [87].
Furthermore, the HPV oncoprotein, E6, suppresses the activity of p53 expression and alters
sensitivity to radiotherapy. The overexpression of the splice variant, p73α, in p53 deficient
cervical cancer cells, enhances sensitivity to radiotherapy [95]. These results highlight the
importance of targeting aberrant splice variants to reverse radioresistance in cervical cancer,
which is significantly relevant in treating advanced metastatic disease.

Cervical cancer is often managed with chemotherapy and radiotherapy concurrently.
An estimated 50% of patients do not attain a complete response to therapy due to resis-
tance. Alterations in molecular pathways that promote drug resistance are potential drug
targets to counteract resistance [96]. For instance, the CRK-like (CRKL) adapter protein is
overexpressed in approximately 50% of cervical cancers. Moreover, evidence shows that
CRKL significantly regulates alternative splicing of pre-mRNA in cancer-related genes in
cervical carcinoma to promote malignant transformation, metastases, and chemoresistance
by binding to BCR-ABL and activating the Src and Akt signally pathway through phospho-
rylation [97,98]. Additionally, recent evidence shows the role of AKT3 mRNA in inducing
cisplatin resistance [99]. By blocking the activity of Src and Akt through pharmacological
inhibitors such as dasatinib [97] and fucoxanthin [100], respectively, aberrant splicing
events that facilitate chemoresistance in cervical cancer can be reversed and promote a
complete therapy response in advanced metastatic disease.
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4. Clinical Utility of Biomarkers in Cervical Cancer

Altered expression of splicing regulators, deleterious mutations in splicing regulators
and splicing regulatory sequences, and suppressed activity of splicing regulators can cause
aberrant alternative splicing, which may result in tumourigenesis and therapy resistance
(Figure 7). However, alternative splicing biomarkers have been studied extensively as
potential targets of novel therapy [24,27]. The current diagnostic and prognostic indicators
of cervical cancer are largely clinicopathology and HPV screening intensive. With the
introduction of NGS, large-scale RNA sequencing can be clinically utilised to identify
tissue-specific molecular biomarkers. Subsequent to the identification of onco-biomarkers,
functional biological assays are imperative to characterise the properties of effective and
clinically significant biomarkers for novel clinical utility in diagnosis, prognosis, and
therapeutic interventions [27].

Genes 2021, 12, x FOR PEER REVIEW 12 of 17 
 

 
Figure 7. Overview of clinical biomarker identification. Aberrant alternative splice variants are often expressed in signifi-
cantly higher levels compared with normal splice variants that can be identified through next generation sequencing 
(NGS). These aberrations can contribute to the development of tumourigenesis, therapy resistance, and poor prognosis. 
The effects of aberrant alternative splicing can be addressed by identifying cervical cancer-specific genomic and splicing 
aberrations that are clinically relevant for novel diagnostic, prognostic, and therapeutic purposes [24,81]. 

Reversing aberrant alternative splicing or silencing oncogenic variants could offer 
therapeutic strategies in managing cervical cancer. Pharmacological agents are frequently 
evaluated for their splicing inhibitory or silencing effects in cancer cells. The current alter-
native splicing modulators studied are small molecule splicing inhibitors, transsplicing, 
antisense oligonucleotides, and gene therapy. These modulators can regulate alternative 
splicing by controlling the functioning of spliceosomal activity [27]. For instance, caffeine 
suppresses the expression of SRSF2/3 and p53α, while upregulating the alternative spliced 
variant of p53β. Caffeine regulates cellular functions such as cell cycle arrest, DNA dam-
age, and apoptosis by modulating the SRSF3 [101,102]. Cervical cancer cells treated with 
caffeine showed tumour suppression through the modulation of splicing factors. In addi-
tion, the recent evidence shows that pladienolide B inhibits the splicing factor SF3b1, 
which is a subunit of the spliceosome, to induce the G2/M cell cycle arrest, apoptosis, and 
p73 splicing in cervical cancer cells [103]. Other small molecules evaluated in cervical can-
cer include RI-1, a RAD51 inhibitor [104]. Modified gene expression is a central character-
istic of cancer cells such as the altered expression of RAD51 mRNA in cervical cancer cells 
compared with healthy cells [75]. RI-1 promotes cell cycle arrest from G0/G1 to S phase 
and inhibits the RAD51-induced cell proliferation in cervical cancer cells [104]. These re-
sults indicate the potential of pharmacological agents to regulate alternative splicing in 
cervical cancer and their therapeutic potential. 

Inhibiting splicing factors can evoke a tumour suppressive function. For instance, 
blocking the function of SRSF1 may contribute to apoptotic activity. Cervical cancer cells 
treated with an AURKA kinase inhibitor, such as the pharmacological agent VX-680, 
downregulate the post-transcriptional expression levels of SRSF1 [105]. AURKA kinases, 
part of the aurora family of proteins, are cell division regulators. Dysregulation of these 
proteins leads to uncontrolled cell division and proliferation, resulting in malignancy [42]. 
Cervical cancer cells treated with VX-680 promote aberrant alternative splicing of apop-
totic regulating genes, Bcl-x and Mcl-1, and inhibit the anti-apoptotic function of SRSF1, 
leading to apoptosis [105]. Silencing of SRSF1, therefore, signifies a novel therapeutic tar-
get for cervical cancer. 

5. Conclusions 

Figure 7. Overview of clinical biomarker identification. Aberrant alternative splice variants are often expressed in
significantly higher levels compared with normal splice variants that can be identified through next generation sequencing
(NGS). These aberrations can contribute to the development of tumourigenesis, therapy resistance, and poor prognosis.
The effects of aberrant alternative splicing can be addressed by identifying cervical cancer-specific genomic and splicing
aberrations that are clinically relevant for novel diagnostic, prognostic, and therapeutic purposes [24,81].

Reversing aberrant alternative splicing or silencing oncogenic variants could offer
therapeutic strategies in managing cervical cancer. Pharmacological agents are frequently
evaluated for their splicing inhibitory or silencing effects in cancer cells. The current
alternative splicing modulators studied are small molecule splicing inhibitors, transsplicing,
antisense oligonucleotides, and gene therapy. These modulators can regulate alternative
splicing by controlling the functioning of spliceosomal activity [27]. For instance, caffeine
suppresses the expression of SRSF2/3 and p53α, while upregulating the alternative spliced
variant of p53β. Caffeine regulates cellular functions such as cell cycle arrest, DNA damage,
and apoptosis by modulating the SRSF3 [101,102]. Cervical cancer cells treated with caffeine
showed tumour suppression through the modulation of splicing factors. In addition, the
recent evidence shows that pladienolide B inhibits the splicing factor SF3b1, which is a
subunit of the spliceosome, to induce the G2/M cell cycle arrest, apoptosis, and p73 splicing
in cervical cancer cells [103]. Other small molecules evaluated in cervical cancer include
RI-1, a RAD51 inhibitor [104]. Modified gene expression is a central characteristic of cancer
cells such as the altered expression of RAD51 mRNA in cervical cancer cells compared
with healthy cells [75]. RI-1 promotes cell cycle arrest from G0/G1 to S phase and inhibits
the RAD51-induced cell proliferation in cervical cancer cells [104]. These results indicate
the potential of pharmacological agents to regulate alternative splicing in cervical cancer
and their therapeutic potential.
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Inhibiting splicing factors can evoke a tumour suppressive function. For instance,
blocking the function of SRSF1 may contribute to apoptotic activity. Cervical cancer
cells treated with an AURKA kinase inhibitor, such as the pharmacological agent VX-680,
downregulate the post-transcriptional expression levels of SRSF1 [105]. AURKA kinases,
part of the aurora family of proteins, are cell division regulators. Dysregulation of these
proteins leads to uncontrolled cell division and proliferation, resulting in malignancy [42].
Cervical cancer cells treated with VX-680 promote aberrant alternative splicing of apoptotic
regulating genes, Bcl-x and Mcl-1, and inhibit the anti-apoptotic function of SRSF1, leading
to apoptosis [105]. Silencing of SRSF1, therefore, signifies a novel therapeutic target for
cervical cancer.

5. Conclusions

The mortality associated with cervical cancer is increasing at an alarming rate. The
development of cervical cancer is largely influenced by HPV infections in low- and middle-
income countries that add to this encumbrance. Vaccination programs addressing HPV
have been successful in lowering HPV infections in high-risk women. Moreover, screening
and prevention programs are useful in early detection and treatment. In addition to
HPV infections, molecular alterations at the RNA level contribute to cervical carcinoma.
These include modifications in cellular alternative splicing induced by HPV. RBPs like SRs
and hnRNPs are essential in maintaining the stability and packing of mRNAs, as well as
transport to the cytoplasm for further processing. These processes are intricately balanced
by several splicing factors and proteins to ensure accurate alternative splicing. Despite the
stringent regulation, SR proteins and hnRNPs are often dysregulated in cervical cancer and
lead to aberrant alternative splicing of many important cancer-related genes, including
therapy resistance. For these reasons, SR proteins and hnRNPs are ideal candidates for drug
targets. Hence, identifying biomarkers crucial to the development of cervical malignancy,
its pathogenesis, and splice variants that are highly expressed in cervical cancer will be
beneficial in developing novel therapeutic targets, especially in low- and middle-income
countries where the burden of cervical cancer is rapidly increasing.
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