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Obstructive sleep apnea and cardiovascular 
morbidity and treatment
Obstructive sleep apnea (OSA) is a highly preva-
lent condition characterized by repetitive episodes 
of partial (hypopnea) or complete (apnea) 
obstruction of the upper airways, resulting in epi-
sodic reductions in oxyhemoglobin saturation fol-
lowed by reoxygenation upon upper airway 
opening during sleep,1 a phenomenon usually 
denoted as intermittent hypoxia (IH). OSA is also 
associated with recurrent intermittent hypercap-
nia, increased intrathoracic pressure swings, and 

with sleep fragmentation, as illustrated by the 
recurring arousals triggered by the respiratory 
perturbations. The actual prevalence of OSA var-
ies tremendously between studies, with more 
conservative estimates of 3% in women and 10% 
in men between the ages of 30–49 years, and 9% 
in women and 17% in men between the age of 
50–70 years.2–8 Among myriad reported associa-
tions on OSA morbidity, untreated OSA has been 
particularly reported to exert adverse conse-
quences, such as excessive daytime sleepiness, 
cardiometabolic complications, neurocognitive 
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and mood disorders, and an increased incidence 
of motor vehicle accidents, along with poor over-
all quality of life and increased overall mortal-
ity.9–13 In Figure 1, we show the impact of OSA 
on end-organ function as being mediated by 
interactions of four different categories (events, 
mechanisms, consequences, and diseases), ulti-
mately leading to unique personal fingerprints of 
OSA in each individual.14 Intermittent hypoxia, 
sleep fragmentation, short sleep duration, and 
circadian misalignment, either individually or in 
combination, can lead to the activation of several 

pathogenetic pathways, ultimately resulting in 
oxidative stress and inflammation, along with 
recruitment of autonomic nervous system imbal-
ance with increased sympathetic outflow and 
reactivity, as well as vagal withdrawal in the con-
text of major activation of stress pathways as 
reflected by the recruitment of the hypothalamic-
pituitary-adrenal (HPA) axis. As consequences, 
increased systemic blood pressure, endothelial 
dysfunction, hypercoagulability, dyslipidemia, 
and insulin resistance are representative elements 
of end-organ dysfunction that ultimately lead to 

Figure 1. Schematic diagram illustrating the systems-based approach to the pathology of OSA, by enunciating 
the major physiologic alterations in OSA, including four different categories of events (intermittent hypoxia, 
sleep fragmentation, short sleep duration, and circadian misalignment), mechanisms (sympathetic activation, 
HPA axis alterations, oxidative stress, and inflammation), consequences (endothelial dysfunction, increased 
blood pressure, islet cell dysfunction, and insulin resistance), and diseases (hypertension, atherosclerosis, 
coronary artery disease, and metabolic disorders).
HPA, hypothalamic-pituitary-adrenal; OSA, obstructive sleep apnea.
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systemic hypertension, atherosclerosis, and asso-
ciated ischemic cardiovascular and cerebrovascu-
lar diseases, and metabolic disorders.15–18 It has 
been proposed that stiffness of endothelial cells is 
closely linked to the function of the vasculature, 
as it regulates the release of vasoactive substances 
such as nitric oxide (NO) and reactive oxygen 
species.19 OSA has been linked with increased 
oxidative stress characterized by increasing super-
oxide anion release from circulating leukocytes, 
leading to reduced nitric oxide bioavailability and 
increased lipid peroxidation.20,21 Associations 
between sleep disturbances, circadian dysfunc-
tion, and adverse outcomes affecting the cardio-
vascular and metabolic systems, in addition to 
multiple other deleterious consequences, have 
been reported, and the evidence continues to gain 
credibility toward causative biological plausibil-
ity. For example, sleep restriction or disruption 
impact molecular mechanisms in peripheral tis-
sues, such as innate immune cells and metaboli-
cally active organs.22–27 Recently, we have shown 
that alternating dark–light cycles mimicking shift 
work in mice altered their fecal microbiota and 
colonic epithelium permeability, ultimately lead-
ing to metabolic dysfunction.28 Several studies 
have explored the diurnal and evening-to-morn-
ing differences in circulating microvesicles, 
including in OSA, and, conversely, the potential 
role of circulating microvesicles in regulating 
peripheral clocks has also been investigated.29–33

To better understand the implications of OSA 
and its associated morbidities, a substantial search 
for generation of adequate animal models that 
reliably mimic the human disease has been the 
focus of major research efforts for over several 
decades.34–45 A wealth of accumulated evidence 
suggests that chronic intermittent hypoxia (CIH), 
generated during repetitive apneic episodes, is 
one of the major key causal factors linking OSA 
and CVD.46 OSA is clearly an independent mech-
anistically associated factor in the development of 
systemic hypertension, with the risk increasing as 
the severity of OSA increases.47 In light of the 
chronicity of OSA, it becomes apparent that CIH 
exposures mimic OSA more closely than acute IH 
exposures, and the physiological responses to 
acute IH or acute sleep fragmentation can differ 
markedly from the responses to chronic compara-
ble exposures, thereby lending the temporal 
domain of complexity to an already quite com-
plex array of responses to either IH or fragmented 
sleep.48–50 Indeed, the IH profiles can markedly 

vary in severity, cycle frequency, and duration of 
hypoxemia.35 The choice of frequency and pat-
tern of the stimulus results in markedly different 
saturations of oxyhemoglobin, with usual reported 
ranges from 60% to 80% in mice exposed to 
cycles with an inspired fraction of oxygen (FIO2) 
of 5% every 30 s, and from 83% to 86% in mice 
exposed to cycles with FIO2 of 6–10%. In this 
regard, different experimental protocols can be 
generated to simulate different degrees of severity 
of the disease, corresponding to mild, moderate, 
or severe OSA.51

The deleterious metabolic effects of CIH and pro-
longed sleep fragmentation in lean animals are fur-
ther exacerbated by the presence of obesity or 
high-fat diets or the presence or absence of concur-
rent physical activity or nutritional supplements, 
emphasizing the multidirectional relationships and 
interactions between OSA and obesity in meta-
bolic health.39 Several of our previous studies 
showed that mice exposed to a well characterized 
sleep-fragmentation model have demonstrated the 
emergence of hyperphagic behaviors in awake mice 
when exposed to chronic sleep fragmenta-
tion,45,52,53 resulting in accelerated body weight 
and visceral fat mass accruals over time, and ulti-
mately leading to frank obesity.42,54,55 Epidemiologic 
evidence has also identified the presence of a strong 
association between untreated OSA and the mor-
bidity and mortality of various prevalent cardiovas-
cular diseases.16,56 Cardiovascular disease (CVD) 
is the leading global cause of death, and accounts 
for approximately one of every four deaths annu-
ally, thereby posing a great economic burden to 
both society and healthcare systems (see: https://
www.cdc.gov/nchs/fastats/leading-causes-of-
death.htm).57 Identifying and developing new 
diagnostic or therapeutic strategies may provide 
multiple opportunities for reductions in the mor-
tality increases associated with OSA in the context 
of CVD. Furthermore, coronary artery disease 
(CAD) is one of the most prevalent chronic CVD, 
and represents a leading cause of mortality world-
wide.58 More recent implementation of coronary 
computed tomography angiography (CTA) has 
allowed for rapid, noninvasive and direct assess-
ment of the burden of CAD, and is a valid and 
increasingly employed tool in the assessment of 
CAD in the OSA population.59–61

Many human diseases, including OSA, are the 
end-result of many dynamic and lifelong gene–
environment interactions that are modulated by 
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multilevel biological networks.62 CPAP treatment 
of OSA, particularly if adhered to, can improve 
cognitive function, reduce insulin resistance, and 
is the most effective approach to lower blood 
pressure in OSA patients with refractory hyper-
tension. However, and to the substantial surprise 
of the sleep research community, the use of CPAP 
was not associated with reduced risks of cardio-
vascular outcomes, diabetes mellitus, or death for 
patients with OSA in recent randomized con-
trolled trials.63–68 Therefore, it is essential to 
develop novel pharmacological agents to counter-
act the pathophysiological mechanisms responsi-
ble for OSA-related adverse consequences, 
namely oxidative stress, sympathetic activation, 
and low-grade inflammation.63 Beneficial effects 
of CPAP therapy on the level of microparticles 
(MPs) were reported in a small trial that consisted 
of the withdrawal of CPAP therapy for 2 weeks. 
Discontinuation of CPAP and re-emergence of 
OSA were associated with a significant increase in 
endothelial MPs levels, providing evidence that 
MPs formation may be causally linked to OSA, 
and may be promoting endothelial activation and 
dysfunction in these patients.69 The increased 
CVD risk of patients with OSA might be due to 
elevated platelet-derived MPs (PDMPs), as illus-
trated by decreases in plasma levels of PDMPs 
following treatment with CPAP.70 Of note, 
PDMPs can be released via platelet activation by 
various agonists, including inflammatory 
cytokines, adenosine degradation products, or 
high shear stress.70–75 Microvesicles (MVs) have 
been implicated in the pathogenic mechanisms of 
OSA; however, the data have been somewhat 
inconsistent, possibly due to circadian and tem-
poral variation in the levels of circulating MVs.29 
Furthermore, it has been reported that, in OSA 
patients, circulating MPs can induce endothelial 
dysfunction by promoting reductions in endothe-
lial-derived NO production.71 It has also been 
reported that OSA is associated with upregulation 
of circulating sCD40L levels and increased pro-
pensity for platelet-monocyte to aggregate that 
may account for the increased incidence of car-
diovascular events in this population.76

Noteworthy, circulating levels of extracellular ves-
icles (EVs) derived from blood vessel cells are 
increased in CVD, including acute myocardial 
infarction (AMI), leading to the assumption that 
such EVs may serve not only as prognostic or 
diagnostic biomarkers, but in addition due to their 
ability to carry and transfer biological information 

at the level of the organism they present the poten-
tial to serve as biological vectors.77,78 As such, and 
as a corollary to the major objectives of the present 
review, a succinct description of EVs and their 
potential usefulness in OSA will be developed.

Circulating extracellular vesicles
EVs were initially described over 30 years ago 
when two independent groups observed that mul-
tivesicular bodies in reticulocytes released such 
vesicles into the extracellular space.79,80 Since 
then, EVs have been purified from nearly all 
mammalian cell types. Importantly, the secretion 
of EVs is not restricted to mammalian cells, but 
has also been identified in lower eukaryotes and 
prokaryotes.81–83 EVs have been classified based 
on their cellular origin and their biological 
function(s). There are three main classes of EVs 
as determined based on their biogenesis: exosomes 
(30–120 nm), microvesicles (100–1000 nm), and 
apoptotic bodies (1000–5000 nm). Exosomes are 
classified as a well specified subtype of EVs, and 
are distinct from other types of EVs as they con-
tain a lipid bilayer on their envelope secreted by 
many cell types.84,85 Exosomes carry a large diver-
sity of cargos including messenger RNA (mRNA), 
micro-RNA (miRNAs), proteins, and lipids, and 
play key roles in intercellular communication.86–88 
Exosomes can be isolated from many types of 
body fluids and conditioned cell culture 
medium.86,90 Due to the important role of 
exosomes in intercellular communication, 
exosomes have the potential to be used clinically 
in a variety of different ways, such as to be har-
nessed as pharmacological delivery agents, refined 
as noninvasive biomarkers for early diagnosis of 
disease states or disease-associated consequences, 
and as biologic reagents to treat diseases as well as 
to enhance tissue repair and regeneration.90,91 
Several methods that have been proposed as pro-
viding optimal approaches to EVs isolation, but 
each of them is fraught with limitations, particu-
larly in the context of epidemiological studies, 
where thousands of samples need to be analyzed. 
Therefore, further improvements in EV purifica-
tion, isolation, and content characterization are 
required to refine their applicability and minimize 
interassay variability.92–95 In addition, current iso-
lation technologies make it difficult to distinguish 
different EV subpopulations. Furthermore, con-
tamination from protein aggregates, RNA–protein 
complexes, and other particles may affect the EV 
quantification and characterization results.96 
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Therefore, further research is crucial to develop 
simple technologies that carry a reasonable cost 
to isolate highly purified EVs for downstream 
application analysis (transcriptomics, proteomics, 
and lipidomics).96 We and others believe that fur-
ther improvements of EVs isolation and charac-
terization methods, and in Omics technologies 
including transcriptomics, proteomics, and lipid-
omic analyses of EVs biological contents, will 
enable clinicians to adopt and refine the use of 
EVs and their cargos to diagnose and monitor 
CVDs.97 The composition and the quantity of 
EVs would provide additional information on the 
severity of the disease.85,98,99 Recently, we showed 
exosome isolation and characterization proce-
dures as a general application pipeline that incor-
porates several methods for isolation, validation, 
and characterization.100

Physiological and pathological functions of 
extracellular vesicles
As mentioned, EVs act as important mediators of 
intercellular communication that influence both 
physiological and pathological conditions to 
change cell phenotype. Most of the studies regard-
ing the possible physiological roles of EVs have 
been based on indirect in vitro evidence, especially 
in the context of immune system and cell-to-cell 
communication.101 Furthermore, several physio-
logical functions of exosomes have been identified 
in vitro when different types of mRNAs, miRNAs, 
or lncRNA change their abundance inside the vesi-
cles.102,103 Exosomes also exhibit proangiogenesis, 
procoagulant and pro- or anti-inflammatory effects 
as well as altering effects on vascular tone and ves-
sel wall, most likely related to exosome capability 
of transporting and cell–cell transferring of pro-
teins, mRNAs, and miRNA, among others.104 All 
these features make EVs strong candidates as 
reporters and effectors of disease. In the context of 
CVD, EVs are involved in cell proliferation and 
differentiation, inflammation, stress response, 
angiogenesis, senescence, stem cell maintenance, 
tissue repair, and cardiovascular remodeling,105–110 
which are associated with many cardiovascular 
pathologies such as cardiac hypertrophy, heart fail-
ure, hypertension, atherogenesis, and diabetic 
cardiomyopathy.111–116

Extracellular vesicle uptake and function
EVs from donor cells can be taken up by recipient 
cells. The unique structure and outer envelope of 

EVs protects their cargo from enzymatic degrada-
tion during transit through the extracellular envi-
ronment.85,117 The most common method for 
detecting EV uptake involves the use of fluores-
cent lipid membrane dyes (lipophilic dyes), 
including PKH67, PKH26, rhodamine B, DiI, 
and DiD, to stain EV membranes.50,118,119 EVs 
have been suggested to be internalized into target 
cells by various uptake mechanisms, including 
membrane fusion and different endocytic path-
ways including phagocytosis, receptor-mediated 
endocytosis, lipid raft–mediated endocytosis, 
caveolin-mediated endocytosis, clathrin-mediated 
endocytosis, and micropinocytosis.85,100,120–122

EVs derived from mononuclear blood cells 
(MBCs) have been involved in horizontal mRNA 
transfer and induce proangiogenic effects in vitro 
and in vivo.123 In addition, EV-mediated cross-
talk between endothelial cells (ECs) depends on 
miR-214, which was shown to activate angio-
genic programming in target cells while EC 
senescence was suppressed.107 Moreover, 
increased understanding of the role of EVs in 
vascularization has opened up the potential use 
of EVs in vascular therapeutics, with emerging 
concepts focused on the development of EVs for 
pro- or antiangiogenic therapies used for organ 
regeneration or cancer treatments,  respectively.124 
In the context of OSA, we have shown that 
plasma exosomal miRNAs play an important 
role in endothelial dysfunction in both children 
and in adults.119,125,126 The mechanism by which 
miRNAs are received and processed by target 
cells in a biologically active state is, as yet, 
undefined.

In physiological conditions, EVs may bind to the 
membrane proteins of the surface of target cells 
through receptor–ligand interactions, resulting in 
intracellular stimulation of signal transduction 
scaffolds and gene pathways. Upon EV binding 
and active mRNA and miRNA loading inside the 
recipient cell, gene expression through de novo 
translation and post-translational regulation of 
target mRNAs is effectively regulated.127–130 The 
ability of EVs to alter the transcriptome and sign-
aling activity within recipient cells allows them to 
induce highly specific and circumscribed pheno-
typic changes.131 Intravenously injected exosomes 
disappear rapidly from blood circulation and 
accumulate in the liver, spleen, and lung.132 
Furthermore, following exosomes injection via 
different routes showed that intraperitoneal 
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injection resulted in higher accumulation in the 
pancreas and gastrointestinal tract compared with 
intravenous injection, whereas subcutaneous 
injection resulted in much lower accumulation of 
exosomes in all measured organs.133 Figure 2 pre-
sents a schematic diagram illustrating the release 
of EVs in the context of the perturbations elicited 
by sleep-disordered-breathing that target many 
tissues through either autocrine, paracrine, or 
endocrine mechanisms and affect heterogeneous 
cell populations in tissues from different organs. 
Recently, we showed that exosomes derived from 
children or adult subjects were internalized by 
endothelial cells.119,125,134 We also showed that 
exosomes from the plasma of mice exposed to 
either intermittent hypoxia or sleep fragmentation 
were internalized in mouse adipocytes in vitro and 
delivered their miRNA, protein, or lipid cargo.50

Dual effects of extracellular vesicles on 
cardiovascular diseases
A very large degree of variability in the effect of 
CPAP treatment on blood pressure (BP) levels has 
been observed, likely because of the multifactorial 

nature of systemic hypertension.135 Actually, 25%–
30% of patients who use CPAP treatment for >4 
h/night do not experience a positive effect on 
BP.136,137 Such disappointing outcomes could also 
reflect the fact that the criteria for adherence to 
therapy may not necessarily translate to optimal 
outcomes, since evidence supporting more exten-
sive regular use of CPAP throughout the duration 
of sleep is more likely to results in better sympto-
matic improvements.138,139 Furthermore, it is pos-
sible that some degree of irreversibility is present in 
OSA patients, particularly among those who have 
sustained the sleep-associated perturbations for 
very long periods of time before seeking treatment. 
Indeed, in recent studies, we and others have 
focused specifically on this issue. Short-term inter-
mittent hypoxia during sleep that mimics OSA 
leads to structural alterations in the vasculature 
that appear to be reversible.140 In contrast, long-
term exposures to similar models of OSA are asso-
ciated with either partial or minimal function and 
structural recovery.141–143

Over the last a few years, the role of EVs has 
changed from being only a marker of vascular 

Figure 2. Schematic diagram illustrating release in sleep-disordered breathing of EVs that target many 
tissues through either autocrine, paracrine or endocrine processes to selectively target cells from different 
organs. EVs carry active component cargos, which, in turn, modulate or mediate many OSA-associated 
morbidities.
EVs, extracellular vesicles; OSA, obstructive sleep apnea.
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integrity toward being a functionally relevant 
effector in the context of intercellular vascular 
signaling.144 The potential of exosomes as diag-
nostic biomarkers or therapeutic agents for CVD 
has attracted significant attention since the first 
study in isolating exosomes from cultures of car-
diomyocytes grown in vitro.145,146 Furthermore, 
EVs are released from most cell types in the circu-
lation including erythrocytes, leukocytes, plate-
lets, and endothelial cells, and carry a multitude 
of biological information to alter the pathophysi-
ological processes of CVD.77,147 Various studies 
showed that EVs act in an autocrine or paracrine 
fashion and mediate cardioprotection, while 
another study showed that stimulation with 
hypoxia resulted in the release of EVs that were 
enriched in miR-30.148,149 EVs that were taken up 
by endothelial cells induced their proliferation 
and angiogenesis in vitro.150 Patients with vascular 
diseases with evidence of systemic endothelial 
damage, such as atherosclerosis, show signifi-
cantly increased levels of circulating EVs.151 In 
addition, EVs from various cellular sources con-
tribute to vascular inflammatory processes includ-
ing endothelial activation, monocyte adhesion, 
and transmigration,152,153 and certain subtypes of 
EVs can mediate vascular protection and endothe-
lial regeneration.77,154,155 On the one hand, EVs 
contribute to development and propagation of 
atherosclerosis by promoting endothelial dys-
function, while, on the other hand, evidence of 
the beneficial effects of certain EVs on vascular 
function and endothelial regeneration has also 
emerged.154 Indeed, stem cell-derived EVs exert a 
protective effect against cardiac myocyte (CM) 
apoptosis during myocardial infarction and 
ischemia/reperfusion injury.156,157 In addition, 
exosomes derived from heat shock protein 20 
(HSP20)-overexpressing CM also protect against 
the hyperglycemia-induced CM death through 
increased levels of HSP20.158 Furthermore, EVs 
secreted by stem cells play not only critical roles 
in repairing CM function and in restoring angio-
genic potential of endothelial cells (ECs), but also 
mesenchymal stem cells (MSCs) exposed to 
hypoxia release EVs, which promote neo-angio-
genesis and preserve cardiac performance after 
myocardial infarction.159,160

Recently, we showed that circulating exosomes 
derived from untreated patients with OSA induce 
significant increases in endothelial cell senescence 
markers with reciprocal decreases in sirtuin expres-
sion, which are only partially reversed upon 

long-term adherent CPAP treatment (average of 
6 h CPAP use per night every night for 
12 months).161 Our findings suggest that circulat-
ing exosomes contribute to the senescence of 
endothelium in OSA, and are amenable to 
improvements, at least in part, after treatment of 
OSA with adherent CPAP.161 In regards to OSA 
patients, plasma exosomes obtained before OSA 
treatment induce endothelial dysfunction in naïve 
endothelial cells. In obese or OSA children with 
evidence of endothelial dysfunction, but not 
among those with preserved endothelial function, 
plasma exosomes induce marked in vitro and  
in vivo functional and structural alterations in 
naïve endothelium that are mediated by selective 
components of the exosomal miRNA cargo.126 
Plasma-derived exosomes in otherwise healthy 
subjects exposed to 4 days of intermittent hypoxia 
mimicking OSA are constitutively altered in their 
miRNA cargo, and exhibit the ability to induce 
endothelial dysfunction in vitro. We further dem-
onstrated that such properties are reversed upon 
normoxic recovery.125 In patients suffering from 
the obstructive hypoventilation syndrome (OHS) 
(the most severe form of sleep-disordered-breath-
ing) as well as in mice exposed to intermittent 
hypoxia or sleep fragmentation as seen in moder-
ate to severe OSA, plasma exosomes lead to 
reduced insulin sensitivity in naïve adipocytes  
in vitro, and such effects were attenuated by CPAP 
treatment, particularly after long-term adherent 
therapy. In contrast, the beneficial effects of CPAP 
on exosome-induced insulin resistance were unde-
tectable among OSA patients who opted not to 
receive any treatment.50,162 Figure 3 shows how 
during untreated OSA, EVs can be released from 
different cell types and effect endothelial dysfunc-
tion. At this point, we have not tested if EVs can 
induce endothelial protection either in vitro or in 
vivo studies if they are released from specific 
 progenitor cells or are generated under specific cir-
cumstances afforded by age, gender, genetic vari-
ance, severity of hypoxia, etc.163–166

Potential roles of extracellular vesicles as 
therapeutic applications and biomarkers
EVs convey biological cargos derived from parent 
cells to the destination cell targets and their func-
tions are intrinsically dependent on the functional 
status of the original cells.85 The bilayer lipid mem-
brane of EVs acts as an efficient protection barrier 
for their inner molecules, thus contributing to their 
stable measurements in body fluids.85,100,167 EVs 
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can readily become novel minimally invasive (using 
blood samples) or noninvasive diagnostic markers 
(based on analysis of urine and saliva) to overcome 
the current setbacks of traditional needle or excision 
biopsies.168 In addition, EVs provide several unique 
advantages over the use of cells for therapeutic 
applications, which include the absence of conser-
vation of activity between species, lower immuno-
genic potential, and theoretically improved tissue- or 
cell-targeting potential.169,170 The use of EVs for 

therapy of human disease is becoming a central 
focus of nanomedicine for their ability to deliver 
biologically active material to target cells.90,171 
Several investigators demonstrated that overexpres-
sion of miRNAs enhanced the therapeutic effects of 
exosomes, and also showed that overexpression of 
proteins that can change the expression profile of 
targeted miRNAs and proteins may improve the 
therapeutic profile of exosomes.172,173 Furthermore, 
EVs from MSCs have been used to stimulate tissue 

Figure 3. Schema illustrating the potential for dual effects of EVs whose cargoes have been modified in 
patients suffering from OSA. EVs can be released from several cell types, including endothelial cells, stem 
cells, immune cells and other cell types, which can then promote damage to cardiovascular systems, resulting 
in the induction or acceleration of cardiovascular diseases. Alternatively, the effects of EVs derived from OSA 
patients can confer protection of cardiovascular targets. Studies are needed to delineate more specifically the 
major operators of these two EVs-related effects.
EVs, extracellular vesicles; OSA, obstructive sleep apnea.
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repair following myocardial infarction, and EVs 
derived from tumor antigen-pulsed dendritic cells 
(DCs) have been exploited for cancer immunother-
apy, suggesting that these vesicles serve as potential 
drug delivery vehicles.174,175 EVs can be engineered 
to have certain tissue- or cell-type-specific targeting 
ligands present on their surface by expressing plas-
mid fusion constructs comprising targeting ligands 
fused to extracellular vesicle transmembrane pro-
teins. Loading cargoes into EVs can be divided into 
two basic approaches: exogenous loading (with 
incorporation of small molecules/proteins/RNA into 
or onto isolated EVs) and endogenous loading (pro-
viding cells with the means to incorporate small 
molecules/proteins/RNAs into EVs during their bio-
genesis).88 The ability of EVs to shuttle proteins and 
nucleic acids from one cell to another may be 
applied for therapeutic purposes, particularly as cer-
tain EVs preferentially bind to specific cells and 
could thus deliver a drug, a ligand mediating a 
receptor-induced signal, an altered protein, or an 
RNA, in order to affect the desired cellular 
processes.176

Several studies have reported increased sensitivity 
for EVs-based biomarkers compared with whole 
serum or other body fluid biomarkers.176,178 
Furthermore, repeated evidence has emerged of 
EVs enrichment with specific molecular compo-
nents (RNAs, proteins, and lipids) that reflect the 
status of the parental cell or tissue source,177 and, 
as indicated, EVs might represent not only robust 
vehicles of disease-specific biomarkers, but may 
also be engineered as uniquely effective therapeu-
tic targets. However, efforts in that direction have 
not yet been specifically addressed to date.

Conclusion
OSA is a major public health concern attributable 
mainly to its significant link with cardiovascular 
morbidity and mortality. The benefit of CPAP 
therapy on cardiovascular outcomes remains uncer-
tain, and it is unclear whether such benefits can be 
potentiated via precision-based selection of the 
candidate patients most likely to benefit from such 
intervention rather than apply a one therapy fits all 
approach. EVs are important players of exchanges 
between cells, through the transmission of various 
proteins, bioactive lipids and genetic information to 
alter the phenotype and function of recipient cells. 
Thus, EVs have not only been implicated in numer-
ous biological and pathological processes but are 
emerging as robust candidates for integration with 

sleep disorders such as OSA in the quest to develop 
improved predictive biomarkers and innovative tar-
geted therapies, ultimately enabling attenuation or 
reversal of OSA effects on the cardiovascular sys-
tem and other end-organ systems affected by this 
condition.
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