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ABSTRACT

With the rapid development of biotechnology, multi-
dimensional genomic data are available for us to
study the regulatory associations among multiple
levels. Thus, it is essential to develop a tool to iden-
tify not only the modular patterns from multiple lev-
els, but also the relationships among these modules.
In this study, we adopt a novel non-negative matrix
factorization framework (NetNMF) to integrate pair-
wise genomic data in a network manner. NetNMF
could reveal the modules of each dimension and the
connections within and between both types of mod-
ules. We first demonstrated the effectiveness of Net-
NMF using a set of simulated data and compared it
with two typical NMF methods. Further, we applied it
to two different types of pairwise genomic datasets
including microRNA (miRNA) and gene expression
data from The Cancer Genome Atlas and gene ex-
pression and pharmacological data from the Cancer
Genome Project. We respectively identified a two-
level miRNA–gene module network and a two-level
gene–drug module network. Not only have the ma-
jority of identified modules significantly functional
implications, but also the three types of module
pairs have closely biological associations. This mod-
ule discovery tool provides us comprehensive in-
sights into the mechanisms of how the two levels
of molecules cooperate with each other.

INTRODUCTION

Cellular system is complicatedly organized and cellular
functions are mainly carried out in a highly modular man-
ner (1,2). Thus, module discovery is helpful to investigate
the complex regulation mechanisms of how different ele-
ments interact with each other in biological systems. Pre-
vious studies have proposed a number of methods to iden-

tify modular structure. One class is network topology-based
methods, which identify highly connected sub-graphs in bi-
ological networks as modules (3–5). For example, MINE
developed by Rhrissorrakrai and Gunsalus (4) performs an
iterative cluster discovery procedure to find subnetworks
in which nodes have high edge degree and local neighbor-
hood density. OCG clustering method (5) focuses on de-
composing a human protein–protein interaction network
into overlapping modules based on the extension of New-
man’s modularity function (3) to correctly assign multifunc-
tional proteins. Another class is expression-based methods,
which capture groups of genes with similar expression pat-
terns in multiple samples. Existing studies have proposed
many clustering approaches (6,7) such as hierarchical clus-
tering, k-means, self-organizing map and matrix decompo-
sition techniques (8–10) to analyze gene expression data to
capture the global clusters, where a subset of genes exhibit
highly correlated activities under all or a set of samples.
For example, Zhang et al. (9) developed a singular value
decomposition (SVD) tool svdPPCS to identify the con-
served and divergent co-expression modules of two time se-
ries microarray datasets. Kim and Tidor (8) applied non-
negative matrix factorization (NMF) to identify local pat-
terns in gene expression data. In addition, gene expres-
sion profiles could also be used to detect modules by con-
structing a co-expression network. For example, the widely
used tool WGCNA applies hierarchical clustering to the
weighted gene co-expression network, creates a tree with
branches and identifies modules by cutting the branches at
a certain height (11).

Biological molecules also demonstrate multi-layer inter-
action and modular organization at multiple levels. The ad-
vance of genomic technologies makes it possible to simulta-
neously perform multi-platform genomic profiling and pro-
vides us the opportunities to integrate multi-dimensional
genomic data to study the coordinate regulatory mecha-
nisms. For example, in order to investigate the roles of mi-
croRNAs (miRNAs) in post-transcriptional gene regula-
tion, several studies have proposed computational methods
to discover miRNA–gene regulatory co-modules (12–15).
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Such co-module discovery methods have also been adopted
for gene–drug co-modules from pairwise gene expression
data and drug response data (16,17). In addition, there ex-
ist some methods for identifying modules from more than
two levels of molecules (18,19). For instance, joint NMF
(18) was adopted to discover multi-dimensional modules
by integrating DNA methylation, gene and miRNA expres-
sion data across the same set of ovarian cancer samples.
Moreover, network alignment and conserved module dis-
covery across pairwise or multiple species are also popular
paradigms (20–22). For example, Yang et al. (21) developed
OrthoClust to simultaneously detect conserved and species-
specific modules across multiple species. ModuleAlign (22)
is a module-based global alignment of protein–protein in-
teraction networks from two species.

Exploring the complex biological systems from the per-
spective of molecular modules rather than individual ones
is very helpful for us to understand biological network de-
sign and systems behavior. Previous module discovery has
made great progresses in many aspects, but most of them
did not reveal module interactions from the same molecu-
lar level and different levels from a systematic view. Here,
we not only aim to identify modules in one regulatory layer
and co-modules in two different layers, but also the rela-
tionships among these identified modules. Moreover, these
results could be demonstrated by a multi-layer module net-
work, where each node represents a module and each edge
represents existing interaction relationship between the two
modules.

To this end, we develop a novel non-negative matrix fac-
torization method NetNMF to construct the module net-
work by integrating large-scale pairwise datasets in a net-
work manner (Figure 1). We applied NetNMF to a set of
simulated data and compared it with two typical NMF
methods to demonstrate its effectiveness. We further ap-
plied it to the expression profiles of 12 106 genes and 804
miRNAs across the same set of 748 breast cancers from
TCGA (23) and identified a two-layer miRNA–gene mod-
ule network consisting of 69 miRNA–gene co-modules, 99
miRNA module links and 88 gene module links, which aids
us to understand the mechanisms of how the miRNAs and
genes cooperate with each other to perform certain func-
tions. We also applied it to the expression profiles of 17 419
genes and drug response data of 205 drugs across 901 di-
verse types of cancer cell lines from the Cancer Genome
Project (CGP) (24), and identified a two-layer gene–drug
module networks consisting of 88 gene–drug co-modules,
113 gene module links and 122 drug module links. We found
that not only the majority of identified modules have signif-
icantly functional implications, but also the three types of
module pairs (gene–gene, drug–drug, gene–drug). The dis-
covery of gene–drug module network here provides us a new
tool to learn the drug action mechanisms from the gene reg-
ulation level and also predict the drug–target relationships
and potential drug combinations for early clinical trials.

MATERIALS AND METHODS

Data

We downloaded the gene expression data and miRNA ex-
pression data across the same set of 845 samples (748 breast

Figure 1. Overview of the NetNMF for discovering a two-level module
network by integrating pairwise genomic data. Three matrices R11, R12,
R22 are computed via Pearson correlation, representing the similarities
within and between two types of features in the pairwise input data ma-
trices X1 and X2. NetNMF simultaneously decomposes R11, R12, R22 to
get the underlying co-modules and their associations. The ith co-module
is identified based on the ith column vector in factored matrices G1 and
G2; the association degree between the ith and jth modules is determined
by S11(i, j) (or S22(i, j)), where S(i, j) represents the element of the ith row
and jth column in this matrix. Thus, a two-layer module network could be
constructed in which a node represents a module.

cancer samples and 97 normal samples) from TCGA (23).
We first removed the genes and miRNAs whose symbols
could not be mapped to HGNC symbols. Then, we filtered
the genes and miRNAs whose expression values are ze-
ros across more than 90% of samples. Next, we did differ-
ential expression analysis for genes using the limma pack-
age in R (25) with adjusted P-value < 0.01, and log2 (fold
change) > 0.5 in order to pre-filter genes less related to
breast cancer. We obtained the breast cancer dataset includ-
ing gene expression data X1 ∈ R

748×12,106 and miRNA ex-
pression data X2 ∈ R

748×804. At last, we calculated the gene
co-expression matrix (network) R11 ∈ R

12,106×12,106, gene-
miRNA co-expression matrix (network) R12 ∈ R

12,106×804

and miRNA co-expression matrix (network) R22 ∈ R
804×804

by means of Pearson correlation based on matrices X1 and
X2.

We also downloaded the pharmacogenomic data includ-
ing gene expression data (X1 ∈ R

985×17,419) and drug re-
sponse data (X2 ∈ R

985×251) across the same set of 985 cell
lines of various cancer types from CGP (24). For the drug
response data, we first removed the drugs (or samples)
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with missing values across more than 30% of samples (or
drugs) and then imputed the missing data with R pack-
age mice (26). At last, we obtained the pharmacogenomic
dataset with X1 ∈ R

901×17,419 and X2 ∈ R
901×205 and calcu-

lated three correlation matrices R11 ∈ R
17,419×17,419, R12 ∈

R
17,419×205 and R22 ∈ R

205×205 as done for the breast cancer
data. Moreover, we replaced the correlation matrices R11,
R12 and R22 by their corresponding absolute values respec-
tively.

The NetNMF model

NMF and its variants have been increasingly applied to di-
verse fields including bioinformatics (8,13,18,27). The typi-
cal NMF decomposes a non-negative matrix X of size m × n
into two non-negative matrices including the basis matrix
W ∈ R

m×k and the loading matrix H ∈ R
k×n , such that X

≈ WH, where k < min{m, n}. That is, data X is explained
as a positive linear combinations of basis vectors. We could
obtain such a factorization by solving the following opti-
mization problem:

minW,H ‖X − WH‖2
F

s.t. W ≥ 0, H ≥ 0.

Besides the two-factor NMF, three-factor NMF (that is,
X ≈ FSG) is also an important class of matrix factoriza-
tion technique (28,29). Such format provides a framework
to perform biclustering of data matrix X by matrices F and
G, respectively. Factored matrix S not only provides an ad-
ditional degree of freedom to make the approximation tight,
but also indicates the relations between the identified clus-
ters. Particularly, for the symmetric similarity matrix R, it
could be factored into GSGT. The similarity matrix captures
the intrinsic module or cluster structure within its origi-
nal feature matrix (30,31). Here, we propose NetNMF to
simultaneously decompose three similarity matrices calcu-
lated from X1 and X2. It combines the idea of two-factor
and three-factor NMF and is formulated as follows:

minG1,G2,S11,S22‖R11 − G1S11GT
1 ‖2

F + λ1‖R12 − G1GT
2 ‖2

F

+λ2‖R22 − G2S22GT
2 ‖2

F

s.t. G1, G2, S11, S22 ≥ 0. (1)

where R11 ∈ R
n1×n1 , R22 ∈ R

n2×n2 are the symmetric similar-
ity matrices corresponding to two types of features, respec-
tively and R12 ∈ R

n1×n2 is for the similarities between them,
which are all non-negative. G1 ∈ R

n1×k, G2 ∈ R
n2×k, S11 ∈

R
k×k and S22 ∈ R

k×k are the non-negative factored matrices.
Here, k is a pre-determined parameter, and �1, �2 are the
parameters to balance the scales of three terms in Equa-
tion (1). In the objective function Equation (1), the term
of ‖R12 − G1GT

2 ‖2
F identifies the one-to-one relationships

between the two types of modules, and it could also be re-
garded as a three-factor NMF version ‖R12 − G1S12GT

2 ‖2
F

under the constraint S12 = I, which is used to enforce the
ith module identified by G1 is only related to the ith module
by G2; the other two terms respectively aim at identifying
one type of modules as well as exploring the relationships
within them via matrices S11 and S22.

The NetNMF algorithm

Obviously, the optimization problem Equation (1) is not
convex. Thus, it is unrealistic to find a global minimal so-
lution. The idea of multiplicative update rules is one of the
mostly used to solve NMF problems (28). By adopting this
strategy, we develop the following algorithm to find a local
minimal solution by updating matrices S11, S22, G1 and G2
alternately (Supplementary Materials).

In addition, parameters �1 and �2 are used to balance the
three terms in the objective function Equation (1) and the
elements of R11, R12, R22 are in [0,1]. Thus, an intuitive way

is to set λ1 = n1
n2

, λ2 = n2
1

n2
2
. To validate this setting, we com-

pared the performance of NetNMF under it with several
other settings when applied to the simulated datasets (Sup-
plementary Materials). It indicates that there is no signifi-
cantly difference between this setting and the optimal one
for (�1, �2). Thus, such a setting could be as the default
in NetNMF. When applying NMF-based methods to real
data, we need to pre-determine the reduced dimension of
the matrix factorization k, which is also the expected num-
ber of identified modules. Here, considering the dimensions
of each dataset, we selected k = 70 from {50, 60, 70, 80,
90} for breast cancer dataset, and k = 90 from {80, 90, 100,
110, 120} for pharmacogenomic data. Under such setting,
we found that the frequency of identified gene modules with
significantly enriched GO terms is highest, indicating that
we could discover the biologically meaningful modules as
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much as possible by classifying these features into this num-
ber of modules. Since this algorithm could not guarantee a
global optimal solution, we repeated it for several times with
different initializations and chose the best one with minimal
objective value as the final decomposition.

Determination of modules

The factored matrices G1 and G2 guide us to identify two
types of modules, respectively. The main idea is to select the
features with relatively large values of each column of G1
(or G2) as the members of each module. Specifically, we cal-
culated z-scores of each column vector g(1)

i (i = 1, ..., k) of
G1 (or g(2)

i of G2) as below:

x∗ = x − x
Sx

, (2)

where x = 1
n

∑
i xi , S2

x = 1
n−1

∑
i (xi − x)2. Based on this

transformation, we determined the ith module members if
g(1)

i

∗
and g(2)

i

∗
are larger than a given threshold T. Here,

we set T = 3.5 for breast cancer dataset from TCGA and
T = 3.7 for pharmacogenomic dataset from CGP to iden-
tify modules with proper resolution (Supplementary Figure
S1). Too small T leads to big size module containing much
redundant information, whereas too large T makes modules
small leaving key molecules out.

Determination of module links

Given the factorization R ≈ GSGT = ∑k
i=1

∑k
j=1 si j gi gT

j
where gi is the ith column vector of G and sij is the ith row
and jth column element of S, the decomposed latent vectors
gis could reconstruct the original relationship matrix R, and
sij could be regarded as the weight of gi gT

j in the reconstruc-
tion of R. That is, under the normalization of gi (i = 1, ..., k),
the larger sij is, the larger the elements of R for all the combi-
nations of the selected features based on gi and gj are, which
indicates high similarity between modules determined by gi
and gj. Thus, we could utilize the diagonal elements in S to
evaluate the quality of identified modules, and use the non-
diagonal elements to determine the possible links between
distinct modules (Supplementary Materials).

Functional enrichment analysis for co-modules

We utilized the gProfileR package in R (32) to conduct func-
tional enrichment analysis for gene modules. For miRNA
modules, we firstly extracted the target genes of each
miRNA supported by more than two databases of miR-
TarBase (33), TarBase (34) and miRecords (35), and then
we performed the enrichment analysis for target gene set of
each miRNA module. We selected the significantly enriched
GO biological process (BP) and KEGG pathway terms with
less than 500 genes for each identified gene or miRNA mod-
ule if Bonferroni-corrected P-value < 0.05.

RESULTS

Simulation study and comparison

We compared NetNMF with NMF and TriNMF by apply-
ing them to a set of simulated data (Supplementary Mate-

rials). NetNMF simultaneously decomposes three similar-
ity matrices R11, R12 and R22. NMF factors only one ma-
trix R12 into G1 and G2 to identify co-modules; TriNMF
decomposes R11, R22 into three matrices to obtain G1, G2,
respectively.

We adopted purity and the area under receiver operat-
ing characteristic curves (AUC) measures to evaluate the
performance of different methods; purity measures the ac-
curacy of modules identified relative to the real embedded
modules in simulated data. Here, to exclude the impact of
threshold T, we demonstrated the comparison results of
three methods under two different threshold values (i.e. T =
1 and 1.5). Both of them show that NetNMF always per-
forms better than TriNMF and NMF under the increasing
noise levels (Figure 2A and B). Moreover, the AUC scores
without any pre-defined thresholds of NetNMF are also
higher than those of TriNMF and NMF especially for the
data with high noise (Figure 2C). These results suggest that
NetNMF performs better in identifying pairwise modules,
which proves that incorporating much relationships within
and between different types of data is indeed helpful to dis-
cover the hidden co-modular patterns in complex pairwise
datasets.

TCGA breast cancer data

First, we applied NetNMF to miRNA and gene expression
data across the breast cancer samples derived from TCGA
(23) (‘Materials and Methods’ section) and identified 69
matched miRNA–gene modules after removing one empty
miRNA module. The 69 miRNA–gene co-modules cover
179 genes and 11 miRNAs on average (Supplementary Ta-
ble S1 and Figure S1A and B). We also applied hypergeo-
metric test to evaluate the degree of overlap of any two gene
(or miRNA) modules. Only 169 out of 2346 (C2

69) pairs of
gene modules and 16 pairs of miRNA modules have signifi-
cant overlap (FDR < 0.05). Besides, the co-module member
genes and miRNAs exhibit highly co-expression patterns
compared with randomly selected features (e.g. co-module
48 in Figure 3D).

Gene and miRNA modules have significant functions. In to-
tal, 43 (62%) gene modules and 52 (75%) miRNA mod-
ules are enriched in at least one BP term or KEGG path-
way (Supplementary Table S1). These modules are enriched
in 752 distinct GO BP terms and 75 KEGG pathways.
For gene modules, the most frequent enriched BP terms
are microtubule-based process and microtubule cytoskele-
ton organization, which are closely related to cancer cells.
Microtubules are dynamic filamentous cytoskeletal proteins
(36). They are usually present in interphase cells and divid-
ing cells constituting the mitotic spindle. Changes in micro-
tubule stability have been reported for a range of cancers.
Moreover, microtubules binding agents are a key class of
anticancer agents with high activity in patients. For miRNA
modules, the most frequent BP term is cell cycle G1/S phase
transition, which is a key stage in cell cycle. The most fre-
quently enriched KEGG pathways are cytokine–cytokine
receptor interaction for gene modules and miRNAs in can-
cer for miRNA modules. Cytokines are secretory proteins
that mediate intercellular communication in the immune
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Figure 2. Performance comparison of NetNMF, NMF and TriNMF in terms of purity as well as AUC in simulated datasets. (A and B) The boxplots of
purity scores for identified co-modules in 30 realizations on the simulated data with respect to different noise levels. Different thresholds (T = 1 for (A) and
T = 1.5 for (B)) are used for selecting features from both factored matrices G1 and G2. (C) The boxplots of AUC scores without any pre-defined parameters
in the same 30 realizations.

Figure 3. Illustration of the two-layer module network using TCGA breast cancer dataset. (A) The miRNA–gene module network consists of 69 miRNA
modules in the top layer, 69 gene modules in the bottom layer, 69 edges (dash lines with equal weights) of one-to-one matching miRNA–gene co-modules
and 99 edges between gene modules and 88 edges between miRNA modules weighted by the corresponding values in factored matrices S11 and S22,
respectively. gMx (or mMx) indicate a gene (or miRNA) module with index x. (B) The module 48-centered subnetwork. (C) The detailed network for each
module in (B). Some pairs of miRNAs in one miRNA module are linked if the two miRNAs share at least one target. The gene network for one gene
module is constructed based on GeneMANIA (41). (D) Heat map of co-module 48 consisting of 171 genes and 11 miRNAs (squared boxes) based on the
input similarity matrices of NetNMF. We extended the heat map to cover more variables by randomly selecting 171 genes and 11 miRNAs for contrasting.
(E and F) Top biological terms enriched in the gene modules (E) and miRNA modules (F) in (B). The enrichment ratio indicates the functional significance
of a module with −log10 (P-value) (Bonferroni-corrected P-value). Similar setting is used in Figure 5.

system. Previous studies have showed that several cytokines,
such as Interleukin (IL) -1, -6 and transforming growth fac-
tor beta (TGF-�), regulate the inflammatory tumor micro-
environment, and thus stimulate cancer cell proliferation
and invasion (37).

MiRNA–gene co-modules demonstrate regulatory relation-
ships. In 37 of 69 identified miRNA–gene co-modules, the
target genes of miRNAs also exist in their matched gene
modules. Gene and miRNA members in 33 co-modules are
both enriched in at least one BP term or KEGG pathway.
The genes and miRNAs in five co-modules share the same

enriched biological functions. For example, in co-module
41, two miRNA target genes (GIMAP4 for hsa-mir-146a
and CARD11 for hsa-mir-155) are in this gene module.
Meanwhile, this gene module and miRNA module are en-
riched in the same BP––endocytosis.

Besides, although the genes and miRNAs in other 28
co-modules do not share any biological functions, most
of them are enriched in the highly related BPs. For ex-
ample, both genes and miRNAs in co-module 22 are en-
riched in blood vessel development related functions, that
is, gene module is enriched in endothelium development and
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sprouting angiogenesis; miRNA module is enriched in the
terms of positive regulation of vascular endothelial growth
factor receptor signaling pathway and positive regulation of
sprouting angiogenesis. This analysis shows obvious regula-
tory relationships from miRNA level to gene level.

Linked gene (or miRNA) modules perform related func-
tions. Based on the factored matrices S11 and S22, we de-
termined 88 links between gene modules and 99 links be-
tween miRNA modules (‘Materials and Methods’ section).
Among them, 49 pairs of gene modules and 5 pairs of
miRNA modules have significant overlap (hypergeometric
test with FDR < 0.05). A total of 14 of 44 pairs of gene
modules and 25 of 54 pairs of miRNA modules, both of
which are enriched in at least one BP term or KEGG path-
way, possess the common enriched biological functions. For
example, gene modules 38 and 41 share the inflammatory
response function, but focus on different aspects. In gene
module 38, the inflammatory response is mainly related
with the processes of lipid metabolism in blood and foam
cell differentiation. Foam cell is formed when macrophage
tries to destroy the lipid deposit on the blood vessel walls
and this process correlates to inflammatory responses (38).
Another gene module 41 highly involves in the inflamma-
tory response induced by lymphocyte and leukocyte acti-
vation processes. For the pair of miRNA modules 59 and
60 consisting of 12 and 8 miRNAs, in which there is only
one common miRNA. But they are both enriched in sev-
eral KEGG pathways including miRNAs in cancer, cell cy-
cle and so on.

On the other hand, for those gene (or miRNA) module
pairs without any common enriched biological functions,
they also have closely functional associations. For example,
for the pair of gene modules 9 and 15, which are respectively
enriched in 28 and 13 functional terms significantly, they
both involve in cellular metabolic processes. The top sig-
nificantly enriched BPs in gene module 9 are mainly cyclic
nucleotide metabolic process-related categories, including
regulation of cyclic adenosine monophosphate (cAMP)
metabolic process and cyclic nucleotide metabolic process.
The cyclic nucleotides and cAMP are both important intra-
cellular signal transduction molecules, acting as the second
messengers between an extracellular signal and the elicited
intracellular response (39). Interestingly, gene module 15 is
enriched in extracellular matrix (ECM)-related metabolic
terms such as ECM organization and collagen metabolic
process. Collagen is the main structural element of ECM,
playing a key role in cell adhesion and cell-to-cell commu-
nication (40).

In summary, for the detected module pairs by NetNMF,
some of them share certain biological functions, but also
have their own specific roles. Meanwhile, other module pairs
without common enriched functional terms also have dis-
tinct coordinating relationships. Thus, NetNMF not only
identifies gene modules and miRNA modules with highly
co-expression patterns and significant functions, but also
detects the associations between gene modules, miRNA
modules and miRNA–gene co-modules.

A two-level modular network reveals the regulatory relation-
ships between genes and miRNAs. Based on these identi-

fied relationships, we could construct a two-layer module
network, in which each node represents a gene module or a
miRNA module at different levels (Figure 3A). Such a net-
work provides us a new way to explore the regulatory mech-
anisms between miRNAs and genes. For example, module
48-centered subnetwork (Figure 3B) contains three miRNA
modules and four gene modules. The detailed network con-
structed for each module (based on GeneMANIA (41)) is
very dense (Figure 3C). Moreover, these modules all in-
volve in angiogenesis related functions (Figure 3E and F).
Angiogenesis is a hallmark of wound healing, cancer and
inflammatory diseases (42). From the gene level, the cen-
tered gene module 48 is enriched in blood vessel morpho-
genesis and endothelial cell proliferation. Endothelial cells
form the inner lining of blood vessels. Based on the com-
puted matrix S11, gene module 43 and 63 link to gene mod-
ule 48 with high weights. Gene module 63 is enriched in the
positive regulation of cell differentiation process. In the ini-
tialization of vascular growth, angioblasts migrate to dis-
crete locations, differentiate in situ and assemble into solid
endothelial cords and then form a plexus with endocardial
tubes (43). The most four enriched BPs with gene module
43 are respectively inflammatory response, leukocyte acti-
vation, lymphocyte activation and cytokine-mediated sig-
naling pathway. This module likely function during organ-
ismal injury recovery such as wound healing, in which the
inflammatory response is activated to produce a number of
immune cells and new blood vessels occur (42). In such a
process, cytokines and small proteins play important roles
in cell signaling transition. Majority of them act as stimu-
lus for cell proliferation and differentiation, especially for
immune cells. Besides, they could also induce vascular cell
growth and migration (44). Another gene module 62 with
weak link to gene module 48, has no significantly enriched
BPs, but has overlap with gene module 63, which indicates
that this module is likely to involve in the regulation of an-
giogenesis. From the miRNA level, the target gene set of
centered miRNA module 48 is also enriched in vasculature
development. It links to another two miRNA modules––1
and 49. These two modules are both enriched in the path-
way of miRNAs in cancer. They target several genes in-
cluding BRCA1, GATA3 and NOTCH1, which are closely
related to cancers such as breast or ovarian cancers. It is
well known that angiogenesis plays an important role in tu-
mor development, growth and metastasis (45). New blood
vessels could supply adequate nutrients, oxygen and re-
move waste products for cancer cells. There have been some
antiangiogenic therapy for cancer patients. Therefore, the
module 48-centered subnetwork demonstrates highly coop-
erative biological functions. It enables us to have a compre-
hensive understanding for the angiogenesis process.

Comparison with other methods. To demonstrate the effec-
tiveness of NetNMF, we also compared it with TriNMF
and NMF when applying to the TCGA breast cancer data
(Figure 4) as well as the CGP data (Supplementary Figure
S3). We compared the modules identified by the three meth-
ods in terms of biologically functional enrichment when ap-
plied to TCGA breast cancer dataset (Figure 4) and CGP
dataset (Supplementary Figure S3). The enriched BP terms
by NetNMF have more significant P-value than those of
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signed rank tests. (A) Comparison for gene modules. For each GO BP, we
compute enrichment scores (−log10(P-value)) and the highest score among
all modules is taken as the final score of this GO BP for each method. The
scores for NetNMF are plotted against those of TriNMF and NMF. Ma-
jority of terms are above the central diagonal line, that is, they are more
significantly enriched using NetNMF than TriNMF (59%) or NMF (66%).
(B) Comparison for the target gene set of miRNA modules. Similar setting
with (A). About 60 and 57% of terms are above the central diagonal line
comparing NetNMF with TriNMF and NMF, respectively.

TriNMF and NMF: for gene modules, 59% (NetNMF ver-
sus TriNMF, P < 0.001, one-sided Wilcoxon signed rank
tests) and 66% (NetNMF versus NMF, P < 9.09e −7) BP
terms are above the diagonal line, respectively (Figure 4A);
for miRNA modules, 60% (NetNMF versus TriNMF, P <
5.88e −10) and 57% (NetNMF versus NMF, P < 9.44e −4)
BP terms are above the diagonal line, respectively (Figure
4B). The advantages of NetNMF indicate that NetNMF is
superior to TriNMF and NMF in identifying more biolog-
ically relevant gene or miRNA modules.

CGP dataset

We also applied NetNMF to the gene expression data and
drug response data from the same set of cancer cell lines
(24) (‘Materials and Methods’ section), and extracted 88
matched gene–drug modules (after removing two empty
ones) consisting of 200 genes and 3 drugs in each one on
average (Supplementary Table S2 and Figure S1C and D).
Only 298 out of 3828 (C2

88) pairs of gene modules and no
pair of drug modules have significant overlap with hyperge-
ometric test (FDR < 0.05), indicating the identified mod-
ules tend to be distinct with each other. We found 66 out
of 88 (75%) gene modules are enriched in at least one BP
term or KEGG pathway. In total, they cover 984 different
BP terms and 110 KEGG pathways respectively, in which
the most frequent ones are leukocyte activation and lym-
phocyte activation.

For each drug module, we summarized their targets or
target pathways. For 68 drug modules including more than
one drug, the drugs in 33 modules (49%) share the same
targets or pathways. For example, GSK690693 and MK-
2206 in the 10th drug module, both have effects on PI3K
signaling pathway; the five drugs (RDEA119, CI-1040, PD-
0325901, Selumetinib and Trametinib) in the 72th drug

module are all MEK inhibitors and target ERK MAPK sig-
naling pathway.

Matched gene–drug modules demonstrate close associations.
The enriched BPs in gene modules and the signaling path-
way targeted by matched drug modules demonstrate strong
relevance. In 10 gene–drug co-modules, the drug targets ap-
pear in the corresponding gene module. For example, in the
18th gene–drug co-module, the gene module and drug mod-
ule are both related to cell-cycle arrest. The 197 genes in
this module are significantly enriched in the negative reg-
ulation of G1/S transition of mitotic cell cycle, preventing
the commitment of a cell from G1 to S phase of the mi-
totic cell cycle; positive regulation of cell cycle arrest by p53-
mediated DNA damage response, resulting in the stopping
or reduction in rate of the cell cycle; and some other neg-
atively regulation of cell cycle phase transition. Nutlin-3a,
one of the two drugs in this module, targets genes MDM2
and tumor suppressor p53, which are included in this gene
module. Nutlin-3a inhibits the interaction between MDM2
and p53, which stabilizes p53 and then selectively induces
senescence in cancer cells. Another drug, XMD15-27, tar-
gets CAMK2, which was reported as regulators of the cell
cycle machinery. CAMK2 involves in the cell cycle associ-
ating with multiple cell signaling pathways. Its inhibition
has various effects (promotion or suppression) on cell-cycle
progression in various cancers (46).

For another example, the 60th gene–drug module in-
cludes 211 genes and four drugs. The genes in this mod-
ule have significantly functional relevance with pigmenta-
tion such as development pigmentation, melanin metabolic
and biosynthetic process. The four drugs are respectively
PLX4720, SB590885, selumetinib and dabrafenib, where
PLX4720, SB590885 and dabrafenib target BRAF, and
selumetinib targets MEK1 and MEK2. These drugs all
target ERK MAPK signaling pathway. BRAF has been
an attractive target for melanoma drug development (47);
MEK1 and MEK2 are key components in the MAPK sig-
naling pathway. Moreover, a V600E mutation of the BRAF
serine/threonine kinase (S/T kinase) is found occurred in
more than 50% of all melanoma (48). Combination of
BRAF and MEK inhibition in melanoma with BRAF V600
mutation, compared with BRAF inhibition alone, can delay
the emergence of resistance and reduce toxic effects in pa-
tients, thereby improves the rate of progression-free survival
(49).

Linked gene (or drug) modules have similar functions. We
identified 113 links between gene modules, where 58 pairs
have significant overlap (hypergeometric test, FDR < 0.05)
and 122 links between drug modules. Among 113 pairs of
gene modules, the two gene modules in 65 pairs are both en-
riched in at least one GO BP term or KEGG pathway and
28 of these 65 pairs share the same biological functions; 14
pairs of drug modules have the common targets or target
pathways. For example, gene modules 11 and 29 are both
enriched in cell cycle phase transition. However, there is lit-
tle difference: gene module 11 involves in G2/M phase tran-
sition, whereas gene module 29 focuses on G1/S phase tran-
sition.
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Figure 5. Illustration of the two-layer module network using the CGP dataset. (A) This gene–drug module network includes 88 gene–drug co-modules,
122 edges between drug modules in the top layer and 113 edges between gene modules in the bottom layer. (B) The module 37-centered subnetwork. (C)
Both drug module 37 and 84 contain only one drug; drug module 10 includes two drugs targeting the same pathway (F). (D) Heat map of co-module 37
consisting of 44 genes and one drug (squared boxes). (E) Top enriched biological terms in gene modules in (B). (F) The details about drug modules in (B).

In addition, for the gene module pairs with no common
enriched GO terms, we also found they tend to involve in
the related BPs, such as the gene modules 10 and 36. They
are respectively enriched in B-cell receptor (BCR) signal-
ing pathway and lipid raft assembly. Recent studies have re-
ported that lipid rafts participate in many of the cell sur-
face events involved in B cell activation, including BCR sig-
naling. Lipid rafts act as platforms for BCR signaling and
might facilitate amplification of the BCR signaling after lig-
and binding (50).

For the drug modules, drug modules 10 and 14, respec-
tively, target AKT1/AKT2 and mTOR, all of which are the
components of their common target pathway––PI3K sig-
naling pathway. Drug modules 1 and 15 affect distinct sig-
naling pathways, which are ERK MAPK pathway and RTK
pathway, respectively, but these two pathways are highly
related. RTK and ERK MAPK signaling pathways both
function in cell proliferation and differentiation regulation
(51). Cross-talk occurs between these two pathways. The
stimulation of RTKs triggers the activation of MAPKs in a
multi-step process (52). All these analysis has suggested that
NetNMF can reveal biologically meaningful links between
modules, which provides deep insights into their organiza-
tion.

A two-layer module network predicts the potential relation-
ships between genes and drugs. Similarly, for the CGP
dataset, we also constructed a two-layer module network
(Figure 5A), which enables us to comprehensively explore
not only the associations between gene modules with spe-
cific biological functions from the gene level (or drug mod-
ules with distinct drug targets and target pathways from
the drug level), but also the multi-to-multi relationships
between drugs and genes. For example, the module 37-
centered subnetwork (Figure 5B and C) includes three gene

modules and three drug modules, where the centered co-
module 37 member genes and drug exhibit distinct co-
expression patterns (Figure 5D). These gene modules are all
involved in mRNA transcription-related BPs (Figure 5E).
Module 37 including 44 genes are significantly enriched in
regulation of histone H3K4 methylation. Classically, H3K4
methylation is implicated in activation of transcription (53)
such as H3K4-me1, -me2 and -me3. This module links to
two gene modules––87 and 28. Gene module 87 mainly
participates in the process of spliceosomal complex assem-
bly, which could catalyze nuclear mRNA splicing (54). The
spliceosome is composed of small nuclear RNAs and pro-
tein factors. It plays the role of scissor to remove introns
from a transcribed pre-mRNA. For another gene module
28, its top two enriched functions are respectively mRNA
processing and mRNA splicing via spliceosomem (54). Be-
sides, it is significantly enriched in mRNA surveillance path-
way, which is a quality control mechanism that detects and
degrades abnormal mRNAs (51). In short, these three gene
modules show significant functional associations, partici-
pating in different aspects of mRNA transcription process.

For the drug level, the centered drug module 37 contains
only one drug––Navitoclax, targeting apoptosis suppressor
proteins BCL-2, BCL-XL and BCL-W (Figure 5F). Thus,
Navitoclax could trigger apoptosis in tumor cells, especially
for the cancers with overexpressed BCL-2, BCL-XL and
BCL-W. The drug FMK in module 84 targets RSK pro-
tein family, which is a group of highly conserved Ser/Thr
kinases. As the downstream effectors of the ERK MAPK
signaling cascade, RSKs play the roles of translational con-
trol in various stages (55). Another drug module 10 includes
two drugs––MK-2206 and GSK690693, both of which are
Akt inhibitors, but with different mode of action. MK-2206
is a kind of allosteric Akt inhibitor whereas GSK690693 is
an adenosine triphosphate-competitive Akt inhibitor. Their
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combination displays a synergistic and cytotoxic effect, af-
fecting PI3K-Akt signaling pathway at much lower concen-
tration than using single drug (56). Akt lies at a critical sig-
naling node downstream of PI3K-Akt pathway, and is im-
portant in regulating fundamental cellular functions such as
transcription and translation (51). Moreover, ERK MAPK
pathway and PI3K-Akt pathway are functionally correlated
in tumorigenesis, and extensive cross-talk between these two
pathways has been reported (56,57). Thus, all the four drugs
have effects on the transcription activities, which are the
main functions enriched by the corresponding gene mod-
ules (Figure 5E). The analysis above concludes that the
members in module 37-centered subnetwork have distinct
biological relevance. We could further make use of such a
two-level subnetwork to predict new drug target candidates
or potential drug combinations for clinical cancer therapy.

DISCUSSION

Module detection in complex biological networks is a cru-
cial problem, which simplifies a complex system into sev-
eral small parts with specific functions and thus aids us
to study the mechanisms of molecular actions. With the
dramatic advance of biotechnologies, large-scale genomic
data from multiple dimensions are available, providing us
the opportunities to detect modules from different levels
together. Meanwhile, since a biological process is accom-
plished successfully by the cooperation of individual mod-
ules, thus identifying the relationships between different
modules are also essential. Using the identified individual
modules from different levels and their associations, we are
able to construct multi-layer module networks to under-
stand how the biological system functions. In this study, we
present a method NetNMF to construct a two-layer module
network via integrating three similarity matrices within and
between two types of biological features. Compared with
other two NMF-based methods, NetNMF can simultane-
ously discover the modular patterns and their relationships
in a more accurate manner. This model could also be ex-
tended to integrate more than two types of features. Be-
sides, prior interaction knowledge between molecules could
be incorporated into the NetNMF framework in the form
of network-based penalty terms (13) to make the linked fea-
tures in the network more likely to be placed into the same
module, which will improve the accuracy of module discov-
ery and biological interpretability of modules.
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