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Humans express one of two available Ig light chain classes on the surface of B
cells at nearly equivalent percentages (tc 60%; a 40%) . Despite the frequent
expression of each class there is an ordered sequence to L chain rearrangement
in humans in which K generally rearranges before X (1-3). This hierarchy includes
an unexpected deletion of the K locus that precedes X rearrangement during pre-
B cell development. We previously cloned a «-deleting element (Kde)' that
uniformly mediates this elimination of the K locus (4) . Klobeck and Zachau (5)
mapped the Kde to a position 24 kb 3' to CK . In the majority of instances the
Kde rearranged into the JKCK intron at a conserved heptamer (CACAGTG) to
eliminate the CK and enhancer (EK) regions (4, 5) . Moreover, the loss of K genes
in X-producing B cells is also observed in the mouse (6, 7) . The murine counter-
part of the Kde, the recombining sequence (RS) has been characterized by
Durdick et al . (8) and Moore et al . (9).

In this study, we address remaining questions concerning the role of thehuman
Kde. In up to 40% of instances the Kde rearranges upstream to the JK region
and eliminates JK as well as EK and CK. We wished to determine the identity of
this upstream target site and in particular to ask if it might be a VK region .
Moreover, when the Kde rearranges into the J.-C, intron (J,-Kde) it possesses an
additional rearrangement at the 5' end of J. . We wished to know if these were
aberrant attempts at V/J rearrangement that perhaps preceded the introduction
of the Kde; or, whether the Kde was nondiscriminatory and destroyed K alleles
with valid V/J rearrangements . Furthermore, we searched the sequence of the
Kde within its germline form to determine if it might encode a protein that could
be postulated to perform a negative regulatory role in preventing X rearrange-
ment . Alternatively, rearrangements of the Kde always place it in the vicinity of
a VK promoter with its octamer enhancer sequence . This could conceivably
induce the production of a positive trans-acting factor from the Kde that would
W. B. Graninger was supported by a grant from the Max Kade Foundation and the Austrian Research
Fund .

' Abbreviations used in this paper:

	

E, enhancer region ; Kde, K-deleting element; RS, recombining
sequence.
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facilitate X gene rearrangement . In addition to comparing the DNA sequence of
germline Kde, V K/Kde, and V/J-Kde forms, we also searched for corresponding
mRNA transcripts . Finally, we noted an additional genomic fragment that
crosshybridized to the Kde and demonstrated that this conserved and duplicated
locus was present at another chromosomal site .

Materials and Methods
Southern Blot Analysis.

	

High molecular weight genomic DNA or isolated plasmid or
phage DNA was digested to completion with restriction endonucleases, electrophoresed
in agarose gels, and transferred to nitrocellulose filters (10) . Purified, cloned DNA
fragments were radiolabeled with " 2P by random hexanucleotide priming to specific
activities of 1-5 X 108 cpm/Ag for use as probes (11). Blots were hybridized in 10%
dextran sulphate, 30-50% formamide, 4X SSC, 1X Denhardt's solution, and 10 /ag/ml
salmon sperm DNA. Blots were washed three times in 2X SSC, 0.1% SDS at room
temperature and twice in 0.1% SDS with varying SSC and temperature conditions to
control for stringency .

Northern Blots Analysis.

	

Oligo(dT) column-purified poly(A) + RNA was selected from
guanidine thiocyanate-prepared total RNA ofcell lines . 5,ug was denatured in formamide,
electrophoresed on agarose-formaldehyde gels, and transferred to nitrocellulose paper
(12). A -y-actin probe guaranteed that intact, hybridizable RNA was present in each lane
(13).

Genomic and cDNA Cloning.

	

A genomic library of SU-DHL-6 was constructed by
digesting DNA to completion with Bam HI and inserting into charon 28 phage vector
and packaging in vitro (12) . This library, an oligo(dT)-primed Ag10 cDNA library (14) of
SU-DHL-6 and a germline genomic library of human peripheral blood in EMBL 3 were
screened by the Benton and Davis technique (12) . Plasmid subclones of isolates were
restriction mapped and sequenced .
DNA Sequencing.

	

DNA fragments were subcloned into M13 phage vectors and their
sequences were determined by dideoxy-chain termination (15) .

Chromosomal in Situ Hybridization .

	

DNA fragments subcloned into plasmids were nick
translated with ["H]dNTPs and used in a chromosome in situ hybridization of normal
metaphases from PHA-stimulated lymphocytes from several normal males and one female
(16) .

Somatic Cell Hybrid Analysis .

	

Genomic DNA from a previously characterized panel of
hamster X human and mouse X human somatic cell hybrids were examined with human
probes to map their location (17, 18) .

Results
Aberrant V/f Rearrangements on ,JKKde Alleles .

	

We noted that K alleles that
had rearranged the Kde into the J,-C . intron also possessed an additional
rearrangement 5' to JK (Fig . 1) . To determine the nature ofsuch rearrangements,
we mapped and sequenced the 5' rearrangements on both K alleles of the pre-13
cell stage acute lymphoblastic leukemia line, Nalm-6 . We wished to determine
whether these were attempted V/J rearrangements and whether they were valid
recombinations or aberrant. Comparison of the two Nalm-6 alleles (Fig. 1, B and
C) with the germline « locus (Fig . 1 A) revealed the rearrangements to be a VK/J3

and a VK/J5 . Upon closer inspection of the sequence the 11 .5-kb allele was a VK

subgroup I juncture with JK3 that was aberrant in nature (Fig . 2) . 8 by of JK3
information had been lost and 4 by (GGGG) that were apparently extranucleo-
tides had been added . These changes resulted in a frame shift and the prediction
of a nonfunctional peptide product . The 8 .8-kb Nalm-6 allele had introduced a
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VK III region into J K5 with the loss of 2 by of JK information and the presence of
8 by of uncertain origin (Fig . 3) . Once again the frame shift resulted in an
aberrant product.
The Upstream Target of the Kde is a VK Segment.

	

In ^-40% of instances when
the K gene is deleted the JK regions are eliminated along with the CK and EK . In
this situation the Kde on the allele is always rearranged . We sought to characterize
the target site of the Kde rearrangement that deleted JK, EK, and CK in the SU-
DHL-6 cell line . Salient features of this cell included the fact that it was a K

chain-producing mature B cell line and that the Kdehad eliminated the excluded
K allele (4). Moreover, it represented the rare example of a K producer that
possessed two rearranged a gene alleles . A genomic library was prepared from
SU-DHL-6 and its rearranged Kde allele was cloned (Fig . 1 D) and sequenced
(Fig . 4) . The site of rearrangement within the Kde was the exact same area that
also mediated its rearrangement with the conserved heptamer (CACAGTG)
within the J .-C . intron . In this instance, the Kde was rearranging site specifically
with a VK region . The site of recombination was cleanly focused at the 3' end of
a V, III region implying that the heptamer-spacer-nonamer helped mediate this
recombination.

Structural Analysis of the Rearranged and Germline Kde.

	

The restriction map
of the germline Kde (Fig . 1 E) and rearranged forms of the Kde (Fig . 1, B, C,
and D) suggested that this unique element repeatedly rearranged at the same
site . The nucleic acid sequence of the Kde in its rearranged form was determined
on a V/J-Kde allele (Fig . 1, B) and a VK/Kde allele (Fig. 1 D), which is presented
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AGC ATT AGC AGC TAT TTA AAT TGG TAT CAG CAG AAA CCA GGG AAA GCC CCT AAG CTC CTG
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------------CDR2--------------------PR3----------------------------------------
ATC TAT GCT GCA TCC AGT TTG CAA ACT GGG GTC CCA TCA AGG TTC AGT GGC AGT GGA TCT
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-------------------------------------------------------------------------------
GGG ACA GAT TTC ACT CTC ACC ATC AGC AGT CTG CAA CCT GAA GAT TTT GCA ACT TAC TAC
Gly Thr Asp Phe Thr Lou Thr Ile Ser Ser Lou Gln Pro Glu Asp Phe Ala Thr Tyr Tyr
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---CDR3-------Vk I-----------

	

Jk 3
TGT CAA CAG ACT TAC AGT ACC CCT GGG GCG GCC CTG GGA CCA AAG TGG AT
Cys Gln Gln Ser Tyr Ser Thr Pro Gly Ala Ala Lou Gly Pro Lys Trp

Germline Jk 3

	

CACTGTGA TTC ACT TTC GGC CCT GGG ACC AAA GTG GAT ATC AAA CGT
AA sequence PR4

	

Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg

FIGURE 2.

	

DNAsequence of 11 .5-kb Nalm-6 K allele at site of J, rearrangement reveals an
aberrant VKI/JK3 juncture . These sequence data have been submitted to the EMBL/GenBank
Data Libraries under the accession number Y00646 .

in Fig. 4. The juxtaposition of the Kde with a VK region and its promoter
suggested the possibility of a fusion transcript and the generation of a potential
fusion peptide. However, sequence analysis of this rearrangement indicates that
only eight amino acids of Kde origin would be added to the VK region before a
stop codon was encountered (Fig. 4) . The remaining sequenced portion of the
rearranged Kde also possessed numerous stop codons in all three potential
reading frames . Thus, no attractive protein product was predicted from this
portion of the rearranged Kde when introduced into either a VK or the JKCK
intron .
To further analyze the mechanism of recombination and to structurally char-

acterize the native form of the Kde we obtained germline clones of the Kde from
an EMBL3 genomic library prepared from human peripheral blood cells . A
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.IVS
GOT AGC TCA CCT CCA TOT ACA CCTTCGGCCkAGGGACAC GAC TOO AGA TTAAAC GTA . . . . .
Gly Ser Ser Pro Pro Cys Thr Pro Ser Ala Lys Gly His Asp Trp Arg Lou Asn Val

GERMLINE Jk5 . . . . CTCTGTG ATC ACC TTC GGC CAA GGG ACA CGA CTG GAG ATT AAA COT
AA FR4

	

Ile Thr Phe Gly Gln Gly Thr Arg Lou Glu Ile Lys Arg

FIGURE 3.

	

DNA sequence of 8 .8-kb Nalm-6 K allele at site ofJ. rearrangement reveals an
aberrant V,111/J,5juncture . These sequence data have been submitted to the EMBL/GenBank
Data Libraries under the accession number Y00646 .

restriction map of the germline Kde is shown in Fig. 1 E. DNA sequence of the
Kde surrounding the breakpoint site has been reported (5, 19) and will not be
represented here in detail other than to note that the most highly conserved
areas with the mouse RS (9) are the heptamer (CACTGTG), a 23-bp spacer, a
nonamer (AGTTTCTGC), and an adjacent 3' region (Fig . 5) .

Search for a Transcriptional Unit.

	

We wished to determine if any portion of
the Kde was transcriptionally active within either its germline or rearranged
form . Probes representing the 1 .0-kb Sac I (a), 1 .8-kb Sac I-Hind III (b), and
2.5-kb Bam HI-Hind III (c) were derived from the cloned Kde (Fig . I C) . Probes
were hybridized with Northern blots possessing 5 ug of pA-RNA from one pre-
B cell with germline Kde, three pre-B cells with rearranged Kdes, four K-
producing B cells with germline Kde, one a-producing B cell with rearranged
Kde, six X-producing B cells with rearranged Kde, three T cells with germline
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FIGURE 4 .

	

DNA sequence of the
VIII/Kde juncture of the SU-
DHL-6 cell line . These sequence
data have been submitted to the
EMBL/GenBank Data Libraries
under the accession number
Y00646 .

Recombnatlon pans

9me(

	

7mer
i if

AGCTCTTACCCTAGAGTTTCTGCACGGGCAGCAGGTTGGCAGCGCACACTGTGGGAGCCCTAGTGGCAGCCCAGGGCGACTCCTCATGAGTCTGCAGC
I II IIIIIIIIIIIIIIIII III III II 1 1111111 I IIIIIIIIIIII1111111 I II 1 I 1111111
ACTGCTCTTGACCCAGTTTCTGCACGGGCAGTCAGTTAGCAGCACTCACTGTGAGGACCCTAGTGGCAGCCCAGGGTGGATCTCCCTAGGACTGCAGT

FIGURE 5.

	

Comparison of the human Kde and mouse RS sequence (9) at its region ofhighest
conservation and localization of sequence breakpoints (arrows) .
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FIGURE 6.

	

Southern blot of Hind III-digested and Barn HI-digested human genomic DNA
from SU-DHL-6 (a used producing B cell line with a rearranged Kde allele), CEM and 8402
(T cells), and U937 (monocyte) . Probes utilized were the 2.5 Kb Barn HI-Hind III "c" and 0 .6
Kb Bam HI-Sac I "d".
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FIGURE 7 .
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of the 2.5 Kb Bam HI fragment
sssssws'

	

cross-hybridizing with the Kde. The
Afro offtmoiopy

	

area of homology with the Kde is
indicated while the 0.6 Kb Bam HI-
Sac I fragment utilized as probe "d"

40

	

did not share homology.

with Kde

Kde, and two nonlymphoid cells with germline Kde. All examinations failed to
reveal unique Kde transcripts while a y-actin probe confirmed that intact,
hybridizable RNA was present (data not shown) . Moreover, a cDNA library was
prepared in Xgt10 from SU-DHL-6 which possessed a VK/Kde rearrangement
(Fig . 1 D, Fig. 4) . 75 X 10' plaques were screened with a VKIII probe as well as a
Kde probe and no unique VK/Kde fusion or Kde cDNAs were identified .

Duplication and Dispersion ofthe Kde.

	

Southern analysis using the 2 .5-kb Hind
III-Bam HI region of the Kde (probe c in Fig. 1 C) recognized its native 15-kb
genomic fragment, but also routinely crosshybridized to a 2 .5-kb Bam HI
fragment (Fig . 6) . When this same probe c was used upon Hind III-digested
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Histogram of chromosomal in
situ hybridization ofprobe c and d to chro-
mosome 2 . Probe c recognized segment 2p1
where 3 .1 % of all grains localized, while on
a size-calculated basis only 0.84% would be
predicted by random distribution ; and 2q1
where 2.8% was observed and 0.67% ex-
pected . In contrast, probe d was present at
2q1, 4.4% observed, 0 .67% expected. A
secondary site may be present at 2q3 .

DNA it recognized its native 8.9-kb fragment as well as an additional 24-kb
crosshybridizing fragment (Fig . 6) . These data suggested that this additional
crosshybridizing region was not simply a tandemly linked duplication of the Kde.
To prove that this extra band represented a duplicated and dispersed region we
cloned the 2 .5-kb Bam HI crosshybridizing genomic fragment . Portions of this
region that related to the Kde were identified and areas were found that were
unique (Fig . 7) . A 0.6-kb Bam HI-Sac I probe d was prepared from this area
(Fig . 7) that recognized its native 2 .5-kb Bam HI genomic fragment, but not the
original Kde . However, probe d recognized two additional Bam HI fragments
of 2 .3 and 4.1 kb . Examinations of Hind III-digested DNA also revealed two
additional crosshybridizing bands (Fig . 6) . This implied that the unique portion
of the 2.5-kb Bam HI genomic region (Fig . 7) had also been duplicated and
dispersed .
To determine the chromosomal location of these genetically related regions

we performed a series of chromosomal in situ hybridizations . The 2.5-kb Hind
III-Bam HI Me probe c was nick translated with [3H]dNTPs and hybridized to
metaphase chromosomes from PHA-stimulated lymphocytes from normal sub-
jects . Analysis of 314 metaphases revealed primary peaks at 2p11-13 and 2811-
13 (Fig . 8) . When the 0.6-kb Bam HI-Sac I probe d was used it recognized its
native location of 2q I I-13 as a primary site, but only a potential secondary site
at 2q3 (Fig . 8) . The same 0.6 kb Bam HI-Sac I probe d was hybridized to Hind
III and Bam HI-digested genomic DNA from a well-characterized panel of
somatic cell hybrids (Fig. 9) . This panel confirmed the assignment of the 2 .5-kb
Bam HI fragment to chromosome 2 . The 2.3-kb Bam HI fragment and 4.1-kb
Bam HI fragment were located on chromosome 2 as well (Fig . 9) . These data
indicate that the original 15-kb Bam HI Me is localized to 2p11-13 as would
be expected . The duplicated 2.5-kb Bam HI region resides at 2ql I-13 . The
duplicated but perhaps not contiguous derivatives of the 2811 region also reside
on chromosome 2 .
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M I A Hybridization
D D C

Chr: 1 2 Y 1 P1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Kb Kb Kb

70MIC*E - _ _ _ _ _ + _ _ _ _ _ _ _ _ P _ _ _ _ _ _ _ + _ + _ _ _

7UM2C*E - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ + _ + _ _ _

IUM3C*D - - - - - - M - M - - - - - - P - - M - - - - + _ + _ _ _

70M4C + + + + M + + _ + + + + + + + p + _ p + + + M p p + + + +

70M5C _ _ _ _ + _ _ _ M + p _ p _ + _ _ _

70M6C - _ _ _ _ _ _ + _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ + _ + U U U

7UM7C*D - _ _ _ _ + _ _ _ _ _ _ _ _ _ _ _ _ _ - _ r _ _ _ _ _ _ _

IUMSC*D - - - - - + + + + + _ + + + _ _ + _ + _ + - - + + + _ _ _

7UM9C*D _ _ _ _ _ _ + _ + + + + M + _ _ + _ _ + _ + M + M +

70MIUC - _ _ _ + _ M _ + p _ _ + _ M M + _ _ M + + _ M M +

7UM11C - _ _ _ _ + _ _ M + _ M _ _ _ _ + M _ _ + p + + _ + _ _ _

7UM12C - _ _ _ _ _ _ _ _ _ _ _ p _ _ _ _ _ _ _ _ _ _ _ _ +

70M13C - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ + p p P

70M14C - - - _ _ + + _ + + + + + _ _ M M - - M M - - + M + - - -

7UM15C*D - _ _ _ _ _ _ _ M _ _ - + _ _ _ + _ _ _ _ _ _ + p +

70M16C*D + + + + + + + + + + + + + p p p + M M M + - _ _ _ + + + +

80HID _ _ _ _ _ _ _ _ + _ _ _ _ _ _ _ _ _ p _ _ _ M M

8DH2C*D - _ _ _ _ _ _ _ + _ + + _ _ p + + + _ _ M M + _ + + _ _ _

80H3C*D - _ _ _ _ _ _ _ _ _ + _ _ _ _ + + _ _ _ _ M _ M M + _ _ _

8UH4D*E + M _ _ _ P _ _ + _ + + _ + + _ _ _ _ _ + + _ _ _ + p M p

80H5U _ _ _ _ _ _ _ _ _ _ _ _ _ _ + + _ _ _ _ _ _ M _ _ + _ _ _

8UH6D _ _ _ _ _ _ p _ + _ _ _ _ _ _ p p _ + _ _ - P P M P _ _ _

8UH7E - M + + + _ _ + _ + _ _ _ + + _ _ + + _ + _ _ + _ + + + +

80H80*C - _ _ _ _ + + _ _ _ _ _ _ + _ + + _ _ _ _ _ _ + _ + P P p

8UH9C _ _ _ _ _ _ _ _ _ _ _ _ _ + _ _ _ _ _ _ _ - _ _ + + _ + _

8UHlUC*E - _ _ _ _ _ _ _ _ _ _ _ _ + _ _ _ _ _ - _ _ _ _ _ + _ _ _

SUH11D - _ + _ _ _ _ _ _ + _ _ p _ _ _ _ _ _ _ _ + _ _ _

8DH12D*F - _ _ + _ _ + _ + _ P M _ _ _ _ M + _ _ + - _ _ _ + p p _

81PIE _ _ _ _ _ _ _ _ _ _ + _ _ _ _ _ + _ _ _ + _ + _ _ _ _ _ _

81P2E *D - + + + + + + _ + + _ + _ + + + M + + - + + _ + + + + + +

SIP3F _ _ _ _ p + + _ _ _ _ _ p + _ _ + + _ _ + _ + _ + + _ _

SIP4F + _ _ _ p _ _ _ _ _ _ _ _ + _ _ + _ _ _ _ _ _ + _ + _ _

81PSC*D - _ _ _ _ _ M _ _ _ _ _ _ _ + + _ + _ _ _ _ _ _ _ +

8060 _ _ _ _ _ _ + _ + p _ _ _ + _ _ _ _ _ _ + _ + p M +

SIP7C*D P _ _ _ _ _ M _ _ P _ _ _ _ _ _ _ _ + _ + _ + + _ + _ _

808E *G - P + - M - + - - - - - + + _ P + M + _ + + + + +

81PlUE + + _ _ + _ _

S1P11E*D - - - - U - + - - - - M - - - + + + + + _ + + _ _

8012E + _ _ _ + + + _ + + _ _

8013E*G - - - M - + - U U - + + _ + U U + + _ U U + + _ _ + p +

8014E*F - _ _ _ + _ _ _ _ _ _ + _ + _ P _ + _ _ _ _ + _ + + _ _

81P15E*D - _ _ _ _ _ M _ _ _ _ _ _ _ + _ _ _ _ M _ _ _ _ _ + _ _

8IP16D - - - - U + + _ _ _ + _ p + _ _ + + - _ + _ + _ + + _ _

8IP17E _ _ + _ + _ + _ P _ + _ M M + + _ _

S1P18C - _ + + _ + _ _ + _ + M _ _ _ + _ _

7, Discordancy 2 .5 Kb
Ba.HI 17 7 7 7 17 23 32 17 30 23 27 21 23 30 19 26 41 24 23 17 30 17 42 33 34 70

7< Discordancy 4 .1 Kb
BamHI 20 10 9 7 19 26 35 17 32 25 29 22 25 28 20 28 43 24 25 17 32 1S 42 37 31 69

7 Discordancy 2 .3 Kb
Ba.HI 16 7 7 10 16 21 36 14 33 23 28 21 23 27 17 24 40 27 23 15 33 14 39 33 33 72
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Discussion
We analyzed the structure of germline and rearranged Me alleles to gain

potential insights into the functional role of the Kde. We observed that whenever
the Kde rearranges into the J.-C, intron there is also a rearrangement present 5'
to J. . We examined two such alleles and found both to be aberrant attempts at
V./J. junctures in which nucleotides were lost and unexpected extranucleotides
were present. While we cannot exclude the possibility that unusual bases existed
immediately 3' to these particular VK regions in their germline form; the
composition of these extranucleotides suggests that they may be "N" segment
additions (20) . While the addition of N segments is typical of V�/D � and D./J.
junctures it is atypical of light chain assembly . All (5/5) upstream V/J rearrange-
ments on alleles with rearranged human Kde and murine RS loci (8, 9) have
been aberrant . The presence of extranucleotides suggests that the initial V/J
rearrangements were abortive rather than altered by secondary somatic muta-
tion . While the number of V/J rearrangements analyzed in detail is small, these
results raise the possibility that the Me may selectively eliminate preexisting
aberrant V/J attempts . This may reflect a proof-reading mechanism. Alterna-
tively, such an association could be probabilistic ifattempted V/J rearrangements
occurred at a much faster rate than Kde rearrangements .
We noted that the Me could also rearrange to upstream sites resulting in the

elimination of JK as well as EK and CN regions. We showed here that this target
site was a VK region, and the murine RS also uses VK regions at times (9). The
heptamer-11 by spacer-nonamer flanking VK regions is a more highly matched
target site for the heptamer-23 by spacer-nonamer that flanks the germline
Kde. However, the lone heptamer within the J.-C . intron would presumably be
more proximal to the Me than VK regions. If we compare the site of Kde
rearrangement in the 18 alleles we assessed and the 11 assessed by Klobeck and
Zachau (5) there is a slight preference for theJKCK intron (63%) versus VK regions
(37%) (Fig. 10) . However, either VK/Kde or V/J-Kde rearrangements can be
found in X light chain-producing B cells . This indicates that if Kde rearrange-
ment generates a positive signal for X rearrangement either Me form would be
effective . Examples exist in which only a single Me allele is rearranged and the
other is germline (4) ; this observation argues against a negative regulatory role
for the germline Me in preventing X rearrangement . To date, all X-producing

FIGURE 9.

	

Chromosomal phenotype ofChinese hamster xhuman (80 + 81) series and mouse
x human (70 series) somatic cell hybrids . Chromosome scores indicate consensus results of G-
banding and isoenzyme assessment (17, 18) . Data for chromosome 2 isoenzymes malate
dehydrogenase 1 (MDH1), isocitratedehydrogenase I (IDH-1),andacid phosphatase-1 (ACP1)
are shown. (P) present at low frequency ; (M) uncertain negative due to broken chromosome
or presence in 1/20 spreads ; (U) not performed. Percent discordancy valves indicate that all
three Bam HI (2 .5 kb, 4.1 kb, and 2.3 kb) fragments recognized by probe d mapped to
chromosome 2. In addition, data for any fragment (2 .5, 4.1, or 2.3 kb) were highly concordant
with the other two in a range of 2-5% discordancy . The three discordancies (70M13c,
80H8DC, 80H12DF) all displayed hybridizable bands that were very submolar . This may
represent a difference in sensitivity between G-binding and isoenzyme markers versus DNA
hybridization .
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FIGURE 10 . Schematic presentation of the germline Kde, the frequency and sites of its
rearrangement, and rearrangement products . 24-kb distance from C,Kde determined by
Klobeck and Zachau (5).

cells have had at least one rearranged Kde . Identical observations have been
made for the mouse RS (21) . We also characterized a rare example of a Ic-

producing cell line (SU-DHL-6) with two X gene rearrangements . Of note, this
cell possessed one rearranged Kde in a VK/Kde configuration, further suggesting
a positive role in progression to A rearrangement .

These rearrangement findings prompted a detailed sequence analysis of the
rearranged Kde of both VK/Kde and V/J-Kde varieties as well as the germline
Kde near the breakpoint region . No attractive long open reading frames common
to both VK/Kde and V/J-Kde were found. Furthermore, the longest open reading
frame of the germline Kde was limited to 300 by spanning the breakpoint region
but lacked an ATG initiation codon and obvious promoter elements . When
compared with the murine RS, this open reading frame region approached 50%
DNA homology . However, the amino acid homology between RS and Kde for
any reading frame comparison was much less (<30%) . A dot matrix comparison
of Kde and RS germline DNA sequences revealed that the most homologous
regions were the rearrangement signals and an immediately 3' region (Fig . 5) .
Consistent with this, the only highly conserved amino acid stretch was within this
signal region . Moreover, we found no significant homology of the Kde with Ig
V regions, arguing against its being a vestigial VK region . These data argue that
the open reading frame surrounding the rearrangement signals does not initiate
or encode a complete protein, although it could represent a conserved exon . Of
note, the majority (4/6) of determined breakpoints in mouse and man fell within
the conserved region located 3' to the heptamer (Fig . 5) . This may relate to this
region or simply reflect exonuclease activity at the time of recombination.
To search for a Kde transcriptional product that might serve a putative trans-

acting effect upon the X locus we used the cloned Kde to search for a specific
mRNA within pre-B cell, KB cell, XB cell, T cell, and nonlymphoid cell types.
None displayed evidence of transcripts off of germline or rearranged Kde loci .
Furthermore, no unique isolates were found when we screened a cDNA library
from the unusual u-producing cell that possessed a VK/Kde with X gene rearrange-
ments. This search included a relatively wide variety of cell types, however, it is



GRANINGER ET AL .

	

499

conceivable that a transiently expressed product might exist only at the time of
Ig gene joining.
We noted a 2.5-kb Bam HI fragment that consistently crosshybridized with

the Kde. We cloned, mapped, and localized this region to 2811, indicating that
this duplicated region was also dispersed. A comparative analysis of high resolu-
tion chromosomes from orangutan, gorilla, chimpanzee, and man suggested that
a pericentric inversion occurred at the evolutionary emergence of the chimpan-
zee (22) . The apparent chromosome segments involved would correspond to the
current human 2p1 and 2q1 . This raises the possibility that an ancestral portion
of the Kde may have moved and been duplicated by a pericentric inversion
event. None of the antigen receptor genes of B or T cells isolated to date map
to 2q11 and this region was not rearranged in B or T cell lines (Fig . 6 and data
not shown) . However, the fact that this region is duplicated and retained in man
suggests it serves a functional role .

Summary
Human light chain genes are used in a K before X order. Accompanying this

hierarchy is the rearrangement of a u-deleting element (Kde) which eliminates
the K locus before X gene rearrangement. In ^-60% of rearrangements the Me
recombines at a conserved heptamer within theJ.-C . intron . We demonstrated
that aberrant V/J rearrangements possessing apparent "N" nucleotides existed
5' to the JKKde rearrangements . This suggests that the Kde may selectively
eliminate nonfunctional V/J alleles. Arc-producing cell that displayed the unusual
finding of X gene rearrangement demonstrated a rearranged Kde. This rear-
rangement was a Vrc/Kde recombination and the heptamer-11 by spacer-
nonamer flanking the Vac is the target site of the Kde 40% of the time . The
mouse possesses a counterpart to the Kde (recombining sequence [RS]) and the
highly conserved regions surround the heptamer-spacer-nonamer signals. No
complete protein product was predicted from the germline Me near its break-
point and no consistent fusion product was predicted from either the V/Kde or
V/J-Kde rearrangements . A distal portion of the Kde is duplicated and is present
at 2gII as well as 2p11 . The evolutionary conservation of the K-elimination
event, the duplicationandmaintenance of the Kde indicates that it has a function .
A portion of the Me may still prove to encode a trans-acting factor that directly
affects X rearrangement. A certain role for the Kde is its site-specific rearrange-
ment, which destroys ineffective K genes and sets the stage for X gene utilization .

Received for publication 13 July 1987 and in revisedform 23 September 1987.
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