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ABSTRACT

Defining patient-to-patient similarity is essential for the development of precision medicine in clinical care and

research. Conceptually, the identification of similar patient cohorts appears straightforward; however, univer-

sally accepted definitions remain elusive. Simultaneously, an explosion of vendors and published algorithms

have emerged and all provide varied levels of functionality in identifying patient similarity categories. To pro-

vide clarity and a common framework for patient similarity, a workshop at the American Medical Informatics

Association 2019 Annual Meeting was convened. This workshop included invited discussants from academics,

the biotechnology industry, the FDA, and private practice oncology groups. Drawing from a broad range of

backgrounds, workshop participants were able to coalesce around 4 major patient similarity classes: (1) feature,

(2) outcome, (3) exposure, and (4) mixed-class. This perspective expands into these 4 subtypes more critically

and offers the medical informatics community a means of communicating their work on this important topic.
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INTRODUCTION

The premise of precision medicine is deceptively simple: similar

patients with similar features have similar outcomes. While tradi-

tional clinical trial design creates strong evidence in regard to the

activity of a singular intervention, it does not provide the basis for

personalizing medical care for a specific patient.1 Finding similar

patients furthers the pursuit of precision medicine by identifying key

traits and features of patients that may identify their clinical

course.2,3 Patient matching provides the opportunity to improve pa-

tient care and clinical research by identifying and potentially con-

trolling for key covariates that may help predict a patient’s

outcome.4–6

Previously identified key challenges in the patient similarity

space included data heterogeneity and data-sharing algorithm selec-

tion.7 Significant progress has been made in these areas, especially

within the field of oncology. Efforts by the cancer community, such

as those of Minimal Common Oncology Data Element (mCODE)

and Global Alliance for Genomics and Health (GA4GH), continue

to develop and refine standards for parsing ever-evolving patient

features. Further, data elements like tumor genomics and PD-L1

positivity have rapidly evolved to become commonplace in research

and clinical care. In the domain of data sharing, consortia efforts,

such as the Oncology Research Information Exchange Network and

the American Association for Cancer Research Genie project, have

amassed large volumes of clinico-genomic patient data.8,9 Contin-

ued publication of results of high enrollment, multi-arm treatment

trials, such as the tumor-agnostic National Cancer Institute Molecu-

lar Analysis for Therapy Choice and the lung cancer Alchemist tri-

als, have been anxiously awaited to evaluate the utility of their

patient-matching criteria. Naturally, multi-dimensional patient-

matching algorithms have proliferated in part due to the variety of

use cases, specific features, and outcome variables available.

While the science of patient matching has vastly improved, our

ability to communicate about the type of patient similarity we use

has become a significant challenge.10,11 Advances in multi-

dimensional patient matching have been slow to develop due in part

to the heterogeneous interpretations that exist within similarity

matching.12 A continued lack of consensus regarding terminology,

methods, and data types has resulted in poor consistency of resultant

findings of patient-matching studies.13 While the science of patient

matching has vastly improved, our ability to communicate about the

type of patient similarity we endeavor to accomplish has become a

significant challenge.10,11 Indeed, heterogeneous interpretations ex-

ist within similarity matching.12 A continued lack of consensus re-

garding terminology, methods, and data types has resulted in poor

consistency of resultant findings of patient-matching studies.13

DEFINING THE PROBLEM: AMBIGUOUS
NOMENCLATURE IN THE PATIENT SIMILARITY
SPACE

Identification of common language and methods among the many

efforts of quantifying and improving patient similarity is vital to im-

prove precision patient care.14 In addition to a need for improved

standardization of medical terminology and categorization, there is

further need for an accepted framework for synthesizing data ele-

ments that create a generalizable “computable phenotype” as a basis

for matching similar patients.15 Defining similar patients, therefore,

may require disease- or task-specific methods.

Shifts in the core features of a patient’s disease over time adds

additional complexity to defining similarity. Features such as geno-

mic similarity are distinct from features such as similar response to

therapy. An example of temporal complexity can be seen in the

treatment of cancer where 2 patients diagnosed with early-stage dis-

ease may be quite similar early in their disease trajectories, but if 1

of those patients develops recurrent disease, that patient may subse-

quently be much more similar to a third patient who had advanced

disease at diagnosis (Figure 1). Standardization of language and

methodology when discussing patient similarity is vital to the pro-

gression of its study and implementation.

PATIENT SIMILARITY WORKSHOP DETAILS

To define a common framework for relating patient similarity, a

workshop was convened at the American Medical Informatics Asso-

ciation (AMIA) 2019 Annual Meeting entitled: “What defines a pa-

tient like mine? A collaborative effort to provide clarity into the

computational nomenclature of patient similarity, their requisite

data categories, and associated algorithms.” Open to all registrants

of the meeting, attendees participated in a series of focused presenta-

tions by expert discussants with academic, industry, and regulatory

viewpoints. This perspective builds on the consensus recommenda-

tions presented by discussants and among attendees.

CONSENSUS RECOMMENDATIONS

Patient similarity can be divided into 4 classes: 1) feature; 2) out-

come; 3) exposure; and 4) mixed-class (Figure 2; Table 1). Each

class has particular characteristics of temporality (snapshot versus

change over time), and whether the feature describes an object or an

action. By object, we refer to features that are properties of physical

objects (ie, people or tumors), also commonly thought of as baseline

characteristics or attributes. By actions we refer to processes per-

formed (ie, various treatment modalities).

Class 1: feature similarity
Feature similarity can be considered as the state of a physical object

or short period of a “snapshot.” This would include the mutational

status of the tumor, the state of the disease, cancer stage, as well as

more complex features, such as past medical history, previous thera-

pies, and allergies. A common example of feature-based similarity in

the biomedical informatics domain is the use of diagnostic billing

codes to define groups of patients. Despite their demonstrated util-

ity, abstracted features are nevertheless problematic due to their im-

precision.16,17 Historically, feature similarity has been well-studied

and implemented in clinical practice. However, developing high-

dimensional feature similarity quickly results in inaccurate or mini-

mal similarities between patients, particularly when dimensionality

exceeds the number of patients in a study.18,19 Methods to identify

features with the greatest predictive value of a given outcome are

necessary to improve the utility of this class of patient similarity

measures.

Class 2: outcome similarity
Outcome similarity focuses on finding matches in temporal-based

endpoints. These metrics try to answer the question, “How did the pa-

tient do?” Outcome measures used to match similar patients can also

be considered a “snapshot” of a patient’s health. These outcome
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measures can be process measures of other related interventions, tox-

icities related to disease or treatment, or classic therapeutic bench-

marking outcome measures, in addition to others. Using these metrics,

it may be possible to find similar patients for a control group, thera-

peutic benchmarking, and granular dynamic “features” of a patient

reflecting “outcomes” of disease control. Outcome similarity metrics

may ultimately be used to develop quintessential real-world evidence

(RWE). As RWE is not without its limitations, developing granular

understanding of its contribution to data from existing clinical trials

can help clinical trialists select patient populations, help companies

prioritize research efforts, or reduce uncertainty for patients and prac-

titioners surrounding treatment decisions.20 Pulling these outcome

measures from systematically mapped sources of structured data

reduces variability and enhances RWE as a modeling tool. Data in

this space are inherently challenging to analyze and are highly subject

to selection bias and confounding.

Figure 2. Patient similarity categories. Classes of patient similarity proposed in this perspective. Drawing from a broad range of backgrounds, workshop partici-

pants were able to coalesce around 4 major patient similarity categories: (1) Feature, (2) Outcome, (3) Exposure, and (4) Mixed-Class.

Table 1. Classes of patient similarity

Similarity Class Temporality Object or Action Examples

Feature Snapshot Object Disease type/status, past medical history, treatments received

Outcome Snapshot Object Adverse event, treatment efficacy

Exposure Change over time Action Prior lines of therapy define a cohort for study and reflect disease status

Mixed-class Snapshot/change over time Object/Action Molecularly and disease-matched patients who exhibit a similar outcome to therapy

Figure 1. Defining patient similarity. These diagrams represent the clinical courses of 3 hypothetical patients with non-small cell lung cancer. Patient A corre-

sponds to a patient who was diagnosed with early stage disease, who underwent surgery and adjuvant chemotherapy and, so far, has not developed recurrent

disease. Patient B had a trajectory that began similarly but developed cancer recurrence, leading their oncologist to order tumor genomic sequencing and pre-

scribe immunotherapy. Patient C had metastatic disease at diagnosis which was treated initially with chemotherapy and, subsequently, with immunotherapy.

Any definition of similarity among these patients must necessarily be time-dependent; early in the cancer trajectory, patients A and B are most similar, but later

in the trajectory, patients B and C are most similar.
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Class 3: exposure similarity
Exposure similarity identifies patients based on the presence or ab-

sence of therapeutic interventions or other exposures which affect

their health status. These exogenously applied “actions” may in-

clude drugs, devices, surgical and radiation therapy, and environ-

mental exposures. Feature similarity addresses patient and disease

characteristics as baseline objects, and outcome similarity treats

these objects as endpoints. In contrast, exposure similarity defines

changes over time, adding a temporal dimension to patient similar-

ity. In an observational cohort study of a therapeutic intervention,

exposure similarity is used to define 1 or more groups for compari-

son. In clinical trials, exposure to prior lines of therapy are used as

inclusion criteria in order to enhance the precision of likely disease

activity status and response to therapy. These prior lines of therapy

are often described in the indications for approved drugs and biolog-

ics. Use of RWE as an external comparator for a single-arm trial pla-

ces special emphasis on temporal issues as well as exposure and

feature similarity. Because the groups are not necessarily ascertained

in the same temporal period with the same background availability

of therapeutic exposures and with the same level of granularity re-

garding the details of the therapeutic interventions, secular trends in

therapeutic patterns, differing availability of therapeutics, or

differential ascertainment of the details of exposure may impact

outcomes.

Class 4: mixed-class similarity
When considering the 3 previous classes of patient similarity, the

last significant class of similarity is the interaction of these classes,

or a mixed-class similarity. For example, the interaction of comor-

bidity status and diuretic therapy exposure in a patient creates a

mixed metric more complex and indicative of true patient similar-

ity.21 In the case of 3 different cancer patients outlined in Figure 1,

the interaction of baseline feature, exposure, and outcome provided

vastly different similarity possibilities temporally. In modern clinical

medicine, attempting to derive general phenotypes for patient

matching may be extremely challenging; in effect, suffering from a

“curse of dimensionality” would imply no 2 patients are similar in

any meaningful way given the near infinite data necessary to accu-

rately portray a patient.22 Mixed-class similarity represents a chal-

lenge computationally that has yet to be well-addressed. It is likely

that computable similarity efforts that are task- and setting-

dependent will improve its applicability.

OPPORTUNITIES FOR IMPROVEMENT

Ultimately, multiple sources of data derived from the previously dis-

cussed classes of patient similarity must be integrated to adequately

construct patient cohorts that are similar in phenotype and geno-

type. Previous studies have demonstrated a preference for study of

molecular measures of patient similarity; however, multi-class phe-

notype calculation is also necessary.5,23–25 One approach to harmo-

nizing the collection and sharing of data is the creation of networks

between stakeholders in order to agree on key parameters, such as

patient consent and data dictionaries.26 Recognizing that patients’

diseases are heterogeneous and molecularly evolve following treat-

ment, may require sequential clinical and molecular analysis to ac-

curately assign patients to the most similar patient cohort.

Approaches based on sequence alignment may provide promising

solutions for matching patients while considering important tempo-

ral information.27–29 The application of machine learning (ML) to

analyze observational cohorts also has the potential to improve clin-

ical decision making but will require very large populations followed

prospectively throughout the clinical course for each patient.30 Pa-

tient similarity will also be key to a type of ML called reinforcement

learning (RL). In contrast to traditional supervised learning methods

that usually rely on single-episode training, RL tackles clinical ques-

tions with sequential decision-making problems using sampled, eval-

uative, and delayed feedback.31

Identifying common health variables is a vital element of bio-

medical research. Currently utilized general ontologies for medical

concepts (eg, SNOMED, ICD) provide mechanisms for structuring

the often-unstructured data contained in health records.32–35 These

coding systems have improved the structure of the medical record

but lack the ability to define key clinical characteristics for many

aspects of clinical care. Newer frameworks, such as mCODE, are

specifically designed to capture such key concepts and may serve to

further standardize the language of medical data and provide a plat-

form to improve the computation of patient similarity.36,37

CONCLUSION

In many respects, it is easier to sequence a whole cancer genome in

2020 than to readily and reproducibly define a group of “similar”

patients. Similarity classes create a framework for defining groups

of patients who are likely to have similar defining traits, outcomes,

and/or temporal experiences. This aids clinicians in their treatment

decisions and patients in anchoring themselves to a defined wellness

or illness group. While every patient is unique and every journey is

different, practically, treatments are targeted toward a group of

patients with similar characteristics for whom we reasonably would

expect a similar response. This is the same reason nomenclature has

moved from personalized medicine to precision medicine. This ob-

jective approach to similarity has major advantages.38 First, people

want to develop kinship with patients facing similar medical issues

as themselves—as demonstrated through the development of cancer

biomarker-defined patient advocacy groups (eg, ROS1ders, EGFR

Resisters).39,40 These groups demonstrate how patient similarity can

provide a community for patients while also serving as a launchpad

for further research. Second, reproducible similarity metrics are also

used in drug development as industry and regulatory bodies ap-

proach drug approvals in defined patient cohorts, with biomarkers

and prior treatment-specific indications granted by the FDA.

Taken together, this perspective represents a nascent effort to

bring together a variety of stakeholders in patient similarity to define

common nomenclature. Communities that centralize stakeholders,

such as AMIA, must continue to unify future clinical and research

efforts in this space. We believe these aforementioned classes will

provide a clear and useful basis for communicating work surround-

ing patient similarity.
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