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OBJECTIVE—AMP-activated protein kinase (AMPK) signaling
acts as a sensor of nutrients and hormones in the hypothalamus,
thereby regulating whole-body energy homeostasis. Deletion of
Ampka2 in pro-opiomelanocortin (POMC) neurons causes obe-
sity and defective neuronal glucose sensing. LKB1, the Peutz-
Jeghers syndrome gene product, and Ca2+-calmodulin–dependent
protein kinase kinase b (CaMKKb) are key upstream activators of
AMPK. This study aimed to determine their role in POMC neu-
rons upon energy and glucose homeostasis regulation.

RESEARCH DESIGN AND METHODS—Mice lacking either
Camkkb or Lkb1 in POMC neurons were generated, and physio-
logical, electrophysiological, and molecular biology studies were
performed.

RESULTS—Deletion of Camkkb in POMC neurons does not
alter energy homeostasis or glucose metabolism. In contrast,
female mice lacking Lkb1 in POMC neurons (PomcLkb1KO)
display glucose intolerance, insulin resistance, impaired suppres-
sion of hepatic glucose production, and altered expression of
hepatic metabolic genes. The underlying cellular defect in
PomcLkb1KO mice involves a reduction in melanocortin tone
caused by decreased a-melanocyte–stimulating hormone secre-
tion. However, Lkb1-deficient POMC neurons showed normal
glucose sensing, and body weight was unchanged in PomcLkb1KO
mice.

CONCLUSIONS—Our findings demonstrate that LKB1 in hypo-
thalamic POMC neurons plays a key role in the central regulation
of peripheral glucose metabolism but not body-weight control.
This phenotype contrasts with that seen in mice lacking AMPK in

POMC neurons with defects in body-weight regulation but not
glucose homeostasis, which suggests that LKB1 plays additional
functions distinct from activating AMPK in POMC neurons.
Diabetes 60:735–745, 2011

A
MP-activated protein kinase (AMPK) is an evo-
lutionarily conserved guardian of both cellular
and organismal energy status, regulating whole-
body metabolism through multiple effects in

peripheral tissues (1). Recently, AMPK has emerged as
an important energy sensor and integrator of nutrient
and hormonal signals in the hypothalamus, a key region
for the regulation of whole-body energy homeostasis (2).
We have generated mice deficient in the AMPKa2 cata-
lytic subunit specifically in agouti-related protein (AgRP)-
and pro-opiomelanocortin (POMC)-expressing neurons
(POMCa2KO mice). These studies demonstrated a role
for AMPK in both the acute responses of these neurons to
nutrient signals and in long-term body-weight regulation
(3), thereby implicating this signaling pathway in these
critical neuronal components of the hypothalamic arcuate
nucleus (ARC), which regulates food intake, energy ex-
penditure, and glucose metabolism.

AMPK activity is allosterically regulated by 59-AMP and
by phosphorylation of the a-catalytic subunit. Two major
upstream kinases have been identified: LKB1, the Peutz-
Jeghers syndrome tumor-suppressor gene product (4,5),
and Ca2+-calmodulin–dependent protein kinase kinases
(CaMKKs) (6,7). Evidence is accumulating that these up-
stream kinases also may be involved in the regulation of
energy homeostasis. For example, global deletion of
Camkkb in mice has been suggested to regulate food in-
take and body weight through the neuropeptide Y system
(8). No insights were gained, however, into the role of
CaMKKb in POMC neurons. Global deletion of Lkb1 in
mice is lethal, but tissue-specific gene targeting has im-
plicated LKB1 in the regulation of glucose homeostasis in
peripheral tissues. Deletion of Lkb1 in the adult liver
results in hyperglycemia and lack of response to the anti-
diabetic effects of metformin (9), although recent data
indicate that metformin acts independently of LKB1/AMPK
(10). Disruption of Lkb1 in skeletal muscle has discordant
physiological consequences: either no effect on whole-
body glucose or energy balance while being key for
exercise-stimulated muscle glucose uptake (11) or resulting
in a paradoxical improvement in insulin sensitivity and
glucose tolerance (12). In the adult pancreas, loss of LKB1
in b-cells led to increased b-cell mass, alterations in polar-
ity, and enhanced glucose tolerance (13,14). Collectively,
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these studies suggest a role for LKB1 in glucose metabolism
in peripheral tissues but have not investigated the role of
hypothalamic LKB1 in whole-body energy homeostasis.

Here, we demonstrate that mice lacking CaMKKb in
POMC neurons have no defects in glucose or energy ho-
meostasis. In contrast, mice with specific deletion of Lkb1
in POMC neurons display impaired hepatic glucose me-
tabolism with an underlying reduction in hypothalamic
a-melanocyte–stimulating hormone (a-MSH) release. Our
findings indicate that LKB1 signaling plays a key role in the
central melanocortinergic regulation of peripheral glucose
homeostasis.

RESEARCH DESIGN AND METHODS

An expanded, more detailed section is available in the Supplemental Research
Design and Methods.
Generation of null and conditional knockout mice. The generation and
genotyping of null Camkkb, Camkkb flox, Lkb1 flox, and POMC-Cremice have
been previously described (11,15,16). To generate mice lacking floxed alleles
but expressing green fluorescent protein in cells harboring the deletion event,
mice were intercrossed with Z/EG indicator mice (17). Mice were maintained
on a 12-h light/dark cycle with free access to water and standard murine diet
(RM1, 4% fat; Special Diet Services). Mice were handled and all in vivo studies
performed in accordance to the Animal Scientific Procedures Act (1986).
Insulin sensitivity and hepatic glucose production. Euglycemic-hyper-
insulinemic clamps were performed as previously described (18).
Hypothalamic immunohistochemistry. Hypothalamic immunohistochemis-
try was performed as previously described (19).
Quantitative RT-PCR analysis. Quantitative RT-PCR was performed as
previously described (19).
Hypothalamic explants. Hypothalamic explant studies were performed as
described (20). Mice were killed, and the whole brain was mounted with the
ventral surface uppermost and placed in a vibrating microtome. A 2.0-mm slice
was taken from the base of the brain and immediately transferred to artificial
cerebrospinal fluid (aCSF) equilibrated with 95% O2/5% CO2 and maintained at
37°C. After an initial 2-h equilibration period, the hypothalami were incubated
for 45 min in aCSF. The viability of the tissue was verified by a 45-min ex-
posure to 56 mmol/L KCl. At the end of each period, the aCSF was frozen until
it was assayed for a-MSH by radioimmunoassay (Phoenix Pharmaceuticals).
Experimental groups and statistical analysis. Because of the existence of
a hypomorphic phenotype (11), all relevant controls (wild-type, Cre+/2Lkb1+/+,
and Cre2/2Lkb1fl/fl mice) were included in all the studies, unless otherwise
stated. We did not observe differences between wild-type and Cre+/2Lkb1+/+

mice in any of the studies performed. Therefore, for clarity purposes, data
from these two experimental groups were pooled and referred to as controls.
Data are expressed as means 6 SEM. P values were calculated using non-
parametric (Mann-Whitney U test), paired, two-tailed and unpaired Student t
tests and one-way ANOVA with post hoc Tukey tests, performed as appro-
priate. P values #0.05 were considered statistically significant.

RESULTS

Generation and characterization of POMC-deleted
and global null Camkkb mice. Floxed Camkkb mice
(Supplementary Fig. 1A and B) were bred with mice
expressing Cre recombinase in .90% of POMC neurons
(16) to generate Cre+/2Camkkbfl/fl mice, which lack
CaMKKb in POMC neurons (hereafter referred to as
PomcCamkkbKO). Deletion of Camkkb in POMC neu-
rons was restricted to the hypothalamus (Supplementary
Fig. 2A). Hypothalamic architecture, neuron number, and
distribution within the ARC were normal (Supplementary
Fig. 2B–D). Male and female PomcCamkkbKO mutants
exhibited normal energy homeostasis (Supplementary
Figs. 3A–C and 4A–C and data not shown) and glucose
handling (Supplementary Figs. 3D–F and 4D and E and
data not shown). We further explored the role of Camkkb
in energy homeostasis by studying Camkkb global null
mutants (15). Body weight, feeding behavior, and glucose
metabolism were unaltered in both male and female
Camkkb global mice (Supplementary Fig. 5A–F and data

not shown). Therefore, we undertook subsequent studies
in male mice to compare our findings with the reported
phenotypes of this strain in male animals (8). The response
of these mice to the melanocortin 3/4 receptor agonist
melanotan II (MT-II) also was normal (Supplementary
Fig. 6A and B). Furthermore, their response to a low- or
high-fat Surwit diet did not differ from wild-type litter-
mates (Supplementary Fig. 6C and data not shown). These
results indicate that neither global nor POMC-specific de-
letion of Camkkb impacts on whole-body energy balance
and glucose metabolism.
Generation and validation of mice lacking LKB1 in
POMC neurons. In view of these findings, we next used
floxed Lkb1 (11) and POMC Cre animals (16) to gen-
erate Cre+/2Lkb1fl/fl mice lacking LKB1 in POMC neurons
(hereafter referred to as PomcLkb1KO). PCR for the
recombination event demonstrated deletion of Lkb1 spe-
cifically in the hypothalamus (Fig. 1A). Immunostaining
studies demonstrated the expression of LKB1 in 936 3% of
POMC neurons in control animals but only in 12 6 3% of
POMC neurons in PomcLkb1KO mice, indicating that the
specific loss of LKB1 occurred with ~90% efficiency, as
previously described for this allele (3,16) (Fig. 1B and C).
Because of the nature of the targeting event, mice homo-
zygous for the Lkb1 floxed allele (Cre2/2Lkb1fl/fl, hereafter
referred to as hypomorphic) display reduced LKB1 activity
in several tissues ([11] and data not shown). Together, the
hypomorphic Lkb1 mutant line and mice further deleted
for Lkb1 in POMC neurons provided a series of mutant
animals permitting the examination of the effect of re-
duced LKB1 signaling and the specific role of LKB1 in
POMC neurons in whole-body energy homeostasis and
glucose metabolism.

Because LKB1 has been reported to regulate neuronal
structure (21,22), we assessed the effect of deleting Lkb1
upon POMC neuronal anatomy and basic electrophys-
iological parameters. No obvious perturbations in the
hypothalamic architecture were seen in PomcLkb1KO
mice (Fig. 1D). POMC neurons from PomcLkb1KO mice
exhibited normal number (control: 2,630 6 185; hypomor-
phic: 2,834 6 107; PomcLkb1KO: 2,869 6 121), distribution,
cell body structure, and POMC fiber anatomy (Fig. 1E and
Supplementary Fig. 7A). In Lkb1-deficient POMC neurons,
membrane potential (254 6 1 mV, n = 34), input resistance
(2.26 0.1 GV, n = 34), and spike firing frequency (2.46 0.4
Hz, n = 34) were not different from those of control cells
(3,19,23). The POMC-Cre transgene also is expressed in the
pituitary, but both basal and stressed-induced plasma cor-
ticosterone levels were unaltered (Supplementary Fig. 7B).
These results indicate normal POMC neuron development
and anatomy and preserved hypothalamo-pituitary-adrenal
axis function in PomcLkb1KO mice.
Deletion of Lkb1 in POMC neurons does not alter
food intake and energy expenditure. Body-weight
profiles and fat-pad mass in male and female hypomorphic
and PomcLkb1KO mice were normal (Fig. 2A–C and data
not shown). Food intake, both under freely fed conditions
and in response to an overnight fast (Fig. 2D and E), and
basal metabolic rate (Fig. 2F) were not significantly dif-
ferent among the different experimental groups. Plasma
leptin concentration, as well as content, in white adipose
explants, and sensitivity to this hormone, was unaltered in
PomcLkb1KO mice (data not shown).
Deletion of Lkb1 in POMC neurons leads to sexually
dimorphic alterations of glucose metabolism. Fasting
and random-fed blood glucose levels were not different in
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male (Supplementary Fig. 8A) or female mice from all
experimental groups (Fig. 3A). Fasted plasma insulin lev-
els also were equivalent (Fig. 3B). However, on glucose
tolerance testing, female PomcLkb1KO mice exhibited
impaired glucose handling (area under the curve in con-
trol mice: 992 6 53 mmol/L per 120 min; hypomorphic
mice: 1,046 6 36 mmol/L per 120 min; PomcLkb1KO mice:
1,281 6 40 mmol/L per 120 min; n = 9–17, P , 0.01 vs.
hypomorphic, P , 0.001 vs. control) (Fig. 3C). In contrast,
no alterations were found in male mice (Supplementary
Fig. 8B).

Increased hepatic glucose production and expression
of gluconeogenic genes in livers from PomcLkb1KO
mice. Defects in pancreatic b-cells or in peripheral meta-
bolic tissues may cause abnormal glucose homeostasis.
Pancreatic morphometric analysis revealed no alterations
in islet architecture, b-cell area, or in vivo glucose-stimulated
insulin secretion in PomcLkb1KO mice (Supplementary
Fig. 9A–C). However, female PomcLkb1KO mice displayed
a significant reduction of glucose clearance after an insulin
tolerance test (area under the curve in control mice: 444 6
21 mmol/L per 120 min; hypomorphic mice: 3956 19 mmol/L

FIG. 1. Lkb1 deletion, neuron integrity, and hypothalamic anatomical studies in PomcLkb1KO mice. A: Detection of the deletion of the Lkb1 allele
in PomcLkb1KO mice. DNA was extracted from different tissues (C, cerebral cortex; F, fat; H, heart; Hy, hypothalamus; K, kidney; L, liver; M,
skeletal muscle) and recombination of the floxed Lkb1 allele detected by PCR. Recombination was only detected in the hypothalamus of PomcLkb1KO
mice. Il-2 internal control PCR reaction also is shown. B: Immunofluorescence analysis for LKB1 (red) and POMC (green) expression in the hypo-
thalami of control Cre+/2Lkb1+/+ZEG and PomcLkb1KO ZEG mice. LKB1 staining colocalized with POMC neurons in control sections (indicated by
arrows) and reduced colocalization was seen in PomcLkb1KO sections. Confocal images of representative ARC fields are shown. C: Quantification of
LKB1 loss in POMC neurons. A minimum of 225 neurons from 2–3 mice per group were analyzed. D: Representative images of hypothalamic sections.
POMC staining (red) is shown. E: POMC neuron distribution throughout the ARC in control, hypomorphic, and PomcLkb1KO female mice (n = 2–3). 3V,
third ventricle. Scale bars: 50 mm. Data are means6 SEM. **P< 0.01. (A high-quality digital representation of this figure is available in the online issue.)
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per 120 min; PomcLkb1KO mice: 541 6 21 mmol/L per
120 min; n = 20–22, P , 0.01 vs. hypomorphic, P , 0.001
vs. control) (Fig. 3D), suggesting insulin resistance. We
next assessed whole-body insulin sensitivity by euglycemic-
hyperinsulinemic clamp studies using insulin concentra-
tions of 18 mU $ kg21 $ min21 (18). Whole-body glucose
disposal was significantly reduced in female PomcLkb1KO
mice (Fig. 3E). This alteration was not associated with
changes in the rate of glycolysis (Fig. 3F), but whole-body
glycogen synthesis was reduced (Fig. 3G). Together, these
results demonstrate that the deletion of Lkb1 in POMC
neurons alters peripheral glucose metabolism. Consistent
with previous reports (11), widespread partial knockdown

of Lkb1 did not impact on whole-body glucose homeosta-
sis (Fig. 3A–G).

Hepatic glucose production (HGP) by gluconeogenesis
is a key metabolic pathway involved in glucose homeo-
stasis and has been suggested to be under neuronal con-
trol by melanocortin pathways (24–26). We assessed HGP
initially by administrating pyruvate, a gluconeogenic sub-
strate, and observed that blood glucose levels were signif-
icantly higher in PomcLkb1KO mice (Fig. 4A), suggesting
enhanced gluconeogenesis. We next measured HGP by
euglycemic-hyperinsulinemic clamp studies using insulin
concentrations of 4 mU $ kg21 $ min21 (18). PomcLkb1KO
mice exhibited significantly increased HGP (Fig. 4B).

FIG. 2. Unaltered energy homeostasis in PomcLkb1KO mice. Weight curves of male (A) and female (B) control (n = 9–14), hypomorphic (n = 13–
14), and PomcLkb1KO (n = 17–25) mice on a standard diet. C: Fat-pad weights in control, hypomorphic, and PomcLkb1KO female mice (n = 4–10).
iBAT, interscapular brown adipose tissue; mWAT, mesenteric white adipose tissue; rWAT, reproductive white adipose tissue. Daily food intake
under ad libitum conditions (n = 7–12) (D) and cumulative 24-h food intake after a fast-refeeding test in 10- to 11-week-old control, hypomorphic,
and PomcLkb1KO female mice (n = 13–21) (E). F: Basal metabolic rate in control, hypomorphic, and PomcLkb1KO female mice (n = 7–12). Data
are means 6 SEM.
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These results demonstrate that the lack of LKB1 in POMC
neurons impairs the ability of insulin to suppress hepatic
gluconeogenesis.

mRNA levels of key gluconeogenic enzymes, such as
glucose 6-phosphatase (G6Pase) and phosphoenolpyru-
vate carboxykinase (Pepck), were increased in the liver of
PomcLkb1KO female mice (Fig. 4C). mRNA levels of sup-
pressor of cytokine signaling-3 (Socs-3) and peroxisome
proliferator–activated receptor-a (Ppar-a) also were sig-
nificantly upregulated in the liver of these animals (Fig. 4C).
However, liver interleukin-6 (Il-6) mRNA expression, which
has been implicated in the central regulation of hepatic
gluconeogenesis by insulin (27), was unaltered (Fig. 4C).

Likewise, no abnormalities in the expression of glucoki-
nase (Gck), diacylglycerol acyltransferase-2 (Dgat-2),
forkhead transcription factor-1 (Foxo1), hepatic nuclear
factor 4-a (Hnf4-a), and PPAR-g coactivator-1a (Pgc-1a)
were observed (Fig. 4C). Expression of a panel of meta-
bolic genes in white adipose tissue (Glut-4, lipoprotein
lipase [Lpl], Pepck, and Ppar-g) and skeletal muscle
(Foxo1, Glut-4, Il-6, and Pgc1-a) was not altered in
PomcLkb1KO mice (Supplementary Fig. 10A and B).
Collectively, these data indicate that Lkb1 deletion in
POMC neurons impairs the regulation of HGP and al-
ters gene expression of the key enzymes involved in
gluconeogenesis.

FIG. 3. Altered glucose metabolism in female PomcLkb1KO mice. Overnight-fasted and randomly fed blood glucose (n = 15–33) (A) and plasma
insulin (B) levels in 12-week-old control, hypomorphic, and PomcLkb1KO female mice (n = 6–9). C: Glucose tolerance test performed in control
(n = 16), hypomorphic (n = 9), and PomcLkb1KO (n = 16) female mice. At 30 min, **P< 0.01 vs. hypomorphic and ***P< 0.001 vs. control mice. At
60 minutes, **P < 0.01 vs. control and *P < 0.05 vs. hypomorphic mice. At 120 min, *P < 0.05 vs. control mice. D: Insulin tolerance test performed
in control (n = 22), hypomorphic (n = 20), and PomcLkb1KO (n = 21) female mice. At 30, 60, and 120 min, **P < 0.01 vs. control and ***P < 0.001
vs. hypomorphic mice. E: Glucose turnover. F: Glycolysis rate. G: Whole-body glycogen synthesis in control, hypomorphic, and PomcLkb1KO female
mice (n = 6–12) determined by euglycemic-hyperinsulinemic clamps. All data are means 6 SEM. *P < 0.05; **P < 0.01; ***P < 0.001.
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Interestingly, Lkb1 mRNA was significantly reduced
in the hypothalami from high-fat diet (HFD)-fed female
mice when compared with standard diet–fed counterparts
(Fig. 4D). Consistent with the sexual dimorphic phenotype,

hypothalamic Lkb1 expression was equivalent in male mice
fed with either the standard or HFD (Fig. 4E).
POMC neurons lacking LKB1 exhibit normal glucose
sensing. Deletion of Lkb1 in POMC neurons could impair

FIG. 4. Deletion of Lkb1 in POMC neurons leads to increased HGP and gluconeogenic gene expression levels. A: Pyruvate tolerance test in control
(n = 13), hypomorphic (n = 6), and PomcLkb1KO (n = 6) female mice. At 60 min, *P< 0.05 vs. control and hypomorphic mice. B: Assessment of HGP
by euglycemic-hyperinsulinemic clamp in control, hypomorphic, and PomcLkb1KO female mice (n = 4–7). C: Expression analysis of key hepatic
genes involved in glucose metabolism and transcriptional regulation in control, hypomorphic, and PomcLkb1KO female mice (n = 6–22) assessed
by quantitative RT-PCR and expressed relative to controls (dashed line). Probes for either glyceraldehyde-3-phosphate dehydrogenase (Gapdh)
or hypoxanthine guanine phosphoribosyl transferase (Hprt) were used to adjust for total RNA content. D and E: Lkb1 mRNA expression in the
hypothalamus from control female (D) and male (E) mice fed with a standard diet or HFD. All data are means 6 SEM. *P < 0.05; ***P < 0.001.
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peripheral glucose homeostasis via different mechanisms,
including alteration in the responses of these neurons to
nutrient and hormonal inputs, alterations in intrinsic sig-
naling mechanisms such as AMPK, and reduced melano-
cortin output. Given that the majority of POMC neurons
express LKB1 and that POMC neurons lacking AMPKa2
fail to respond to changes in extracellular glucose con-
centration (3), we next examined the electrophysiological
properties of PomcLkb1KO neurons. However, the ma-
jority of PomcLkb1KO neurons responded normally to
a reduction in extracellular glucose from 2 to 0.1 mmol/L
by reversible hyperpolarization (211.9 6 3.6 mV, n = 7 of
10 neurons; P, 0.05) (Fig. 5A), which was associated with
a reduction in spike firing frequency (2.36 0.6 Hz vs. 0.46
0.3 Hz, n = 7 of 10 neurons; P, 0.05) (Fig. 5A). Insulin and
leptin action upon melanocortin circuits also has been

implicated in the regulation of peripheral glucose homeo-
stasis. However, similar to control POMC neurons, insulin
hyperpolarized a subpopulation of PomcLkb1KO neurons
by 25.4 6 1.7 mV (n = 5 of 12 neurons; P, 0.05) (Fig. 5B),
and this was subsequently occluded by bath-applied tol-
butamide (200 mmol/L), suggesting the activation of ATP-
sensitive K+ channels (Fig. 5B). Like control POMC neu-
rons, leptin depolarized a proportion of PomcLkb1KO
neurons by +7.3 6 2.4 mV (n = 7 of 12 neurons; P , 0.05)
(Fig. 5C).

The lack of a defect in POMC neuron glucose sens-
ing, together with the phenotypic differences between
PomcLkb1KO and POMCa2KO mice (3), suggested that
altered AMPK activity in LKB1-deficient POMC neurons
did not underlie the phenotype. Consistent with this, we
did not detect a significant reduction in AMPKa2 activity in

FIG. 5. POMC neurons lacking LKB1 are glucose sensitive and respond to anorexigenic hormones. Current-clamp recordings were made using the
perforated-patch technique from PomcLkb1KO ARC neurons. Uninterrupted current traces are above and expanded sections shown underneath.
A: Reducing glucose concentration from 2 to 0.1 mmol/L reversibly hyperpolarized and reduced the firing frequency of POMC neurons lacking
LKB1. LKB1-deficient POMC neurons responded normally to insulin (B) and leptin (C) by long-lasting membrane hyperpolarization and de-
polarization, respectively. Note that insulin-induced hyperpolarization was occluded by bath-applied tolbutamide (200 mmol/L).
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the hypothalami of PomcLkb1KO mice (percentage of
control: hypomorphic mice, 108 6 4%; PomcLkb1KO
mice, 87 6 10%; n = 7–17; P = NS). Hypothalamic CaMKKb
activity also was unchanged (control mice: 1.49 6 0.10
mmol32p $ mg AMPK21 $ min21; PomcLkb1KO mice:
1.316 0.13 mmol32p $ mg AMPK21 $ min21; n = 3; P = NS).
Together, the phenotypic differences between PomcLkb1KO
and POMCa2KO mice and the normal hypothalamic
AMPKa2 activity in PomcLkb1KO mice suggest that the
defect in glucose homeostasis is not a result of either im-
paired glucose sensing in POMC neurons or reduced AMPK
activity.
Enhanced melanocortin agonist sensitivity altered
expression of hypothalamic melanocortin system
genes but reduced a-MSH release in PomcLkb1KO
mice. PomcLkb1KO mice displayed increased sensitiv-
ity to the anorectic effects of acute MT-II administration
(Fig. 6A), suggesting reduced melanocortin tone. To in-
vestigate the basis of this abnormality, which could be
attributed to either reduced production or release of
a-MSH, we performed a quantitative RT-PCR analysis of key
components involved in hypothalamic melanocortin cir-
cuits. Although Agrp, Npy, and cocaine- and amphetamine-
regulated transcript (Cart) mRNA levels were equivalent
among the different experimental groups (Fig. 6B), ex-
pression of Pomc mRNA was significantly upregulated in
PomcLkb1KO mice (Fig. 6B). The enhanced melanocortin
agonist sensitivity and increased hypothalamic pomc
mRNA levels found in PomcLkb1KO mice could reflect
a compensatory response to reduced a-MSH peptide
translation and/or release. To assess this hypothesis, we
performed ex vivo a-MSH secretion studies in hypo-
thalamic explants. Under basal conditions, hypothalamic
slices from PomcLkb1KO mice exhibited significantly re-
duced a-MSH secretion (Fig. 6C). In contrast, KCl stimu-
lation, which triggers the release of all stored a-MSH, was
equivalent in all experimental groups (percentage of con-
trol: hypomorphic mice, 125 6 19%; PomcLkb1KO mice:
103 6 25%; n = 4–6; P = NS). To further investigate these
findings, we analyzed a-MSH peptide expression in the
paraventricular nucleus of the hypothalamus (PVH) by
immunohistochemistry. Sections from PomcLkb1KO mice
displayed reduced a-MSH staining in neuronal projections
to the PVH (Fig. 6D), suggesting that, at the site of a-MSH
release, there was less peptide present.

It recently has been reported that deletion of Foxo1 in
POMC neurons increases carboxypeptidase E (cpe) ex-
pression, leading to increased hypothalamic a-MSH (28).
However, neither Foxo1 nor cpe hypothalamic mRNA
levels were changed in PomcLkb1KO mice (data not
shown), indicating that the defective a-MSH release ob-
served is not caused by alterations in the Foxo1-cpe
pathway. However, the hypothalamic expression of pro-
protein convertase 1/3 (Pc1/3), an enzyme involved in the
posttranslational POMC processing and a-MSH production
(29), was significantly increased in PomcLkb1KO mice
(Fig. 6E). Expression of Mcr4, the cognate receptor for
a-MSH, also was upregulated in PomcLkb1KOmice (Fig. 6E),
suggesting a compensatory response (or loss of ligand-
mediated receptor downregulation) and provided addi-
tional indirect evidence for reduced a-MSH release.

Collectively, these results suggest that the deletion of
Lkb1 in POMC neurons results in impaired a-MSH secretion,
which in turn reduces central melanocortin tone, an abnor-
mality that has been implicated as playing an important role
in the pathogenesis of insulin resistance and type 2 diabetes.

DISCUSSION

Here, we reveal a significant role for LKB1 in hypothalamic
POMC neurons in the regulation of glucose homeostasis.
Female, but not male, mice lacking LKB1 in POMC neu-
rons displayed glucose intolerance, insulin resistance, im-
paired suppression of HGP, and altered expression of
hepatic metabolic genes. Our results indicate that the un-
derlying cellular defect in PomcLkb1KO mice involves
a reduction in melanocortin tone caused by decreased
a-MSH secretion. This, in turn, was reflected in increased
sensitivity to an exogenous melanocortin agonist and
compensatory responses in molecular components of the
melanocortin system. Our findings are in agreement with
the reported role of the hypothalamic melanocortinergic
system in the regulation of peripheral glucose metabolism
via effects on hepatic metabolism (24,26) and now dem-
onstrate that LKB1 is a molecular component of such
mechanisms.

Sexually dimorphic differences in metabolic phenotypes
previously have been shown for a number of other hypo-
thalamic mutants, including mice with deletion of specific
signaling molecules in POMC neurons (30–33). Although
the exact underlying causes remain unknown, these
observations suggest that different genes in specific cell
populations are involved in the development of metabolic
disorders depending on the sex of the animal. Consistent
with a sexually dimorphic role for POMC LKB1 in energy
homeostasis, we also found that HFD reduces hypotha-
lamic Lkb1 expression in female, but not male, mice. Al-
though male hypomorphic LKB1 mice are infertile because
of a defect in spermatogenesis (34), their reproductive be-
havior is normal and female PomcLkb1KO mice are com-
pletely fertile (M.C. and A.Wo., unpublished observations).
Together, these observations suggest that defective re-
productive function is unlikely to account for the sexually
dimorphic metabolic phenotype. This, in turn, is more
likely to reflect, as is increasingly being recognized, that
both distinct and overlapping pathways in each sex are
involved in the complex physiology of metabolic regulation
and the pathophysiology of metabolic disorders (35).

The study of hypomorphic phenotypes can provide
useful information on the role of a particular protein or
highlight previously unknown functions (36,37). Wide-
spread partial loss of function also may be useful for
modeling the potential effects of pharmacological ma-
nipulation of a signaling pathway. Although widespread
reduction of LKB1 expression could theoretically contribute
to the observed phenotype, exhaustive phenotyping of hy-
pomorphic mice revealed no effects on whole-body me-
tabolism, suggesting that complete loss of LKB1 in POMC
neurons is required to develop the defects in glucose han-
dling. In contrast to the defective glucose homeostasis,
we found no alterations in body-weight regulation and
feeding behavior in PomcLkb1KO mice. These results
are consistent with evidence indicating that central me-
lanocortin signaling regulates systemic insulin sensitivity
and energy balance via independent, but complementary,
mechanisms (24,38,39). Alternatively, the enhanced me-
lanocortin sensitivity observed in PomcLkb1KO mice could
compensate for the inadequate levels of the ligand a-MSH.
This also could explain the lack of an energy homeo-
stasis phenotype in these mice despite reduced levels of
a-MSH.

The phenotype observed in PomcLkb1KO mice could
arise from disruption of AMPK signaling in POMC neurons.
However, several features of the PomcLkb1KOmice, when
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compared with those seen in mice lacking Ampka2 in
POMC neurons (3), suggest that this is not the case. First,
at a whole-body level the energy homeostasis phenotypes
of PomcLkb1KO and POMCa2KO mice are distinct, with
the former displaying defects in glucose homeostasis
but not body-weight regulation, whereas the latter have
essentially the opposite phenotype (3). Second, AMPKa2-

deficient neurons are unable to sense a reduction in ex-
ternal glucose concentrations (3), whereas this response
was preserved in PomcLkb1KO mice. Third, a-MSH re-
lease from LKB1-deficient POMC neurons is defective,
a phenotype absent in POMCa2KO mice (3). Together,
these findings demonstrate that the deletion of Lkb1 or
Ampka2 in POMC neurons has different effects on energy

FIG. 6. Enhanced melanocortin pathway sensitivity and reduced a-MSH release in hypothalamic explants from female PomcLkb1KO mice. A: Food
intake after an acute (2-h) MT-II administration in control, hypomorphic, and PomcLkb1KO female mice (n = 14–18). The data are expressed
relative to each group of mice injected with vehicle (dashed line). B: Expression analysis of melanocortin system hypothalamic genes assessed by
quantitative RT-PCR in control, hypomorphic, and PomcLkb1KO female mice (n = 7–10). Data are expressed relative to controls (dashed line).
C: Basal a-MSH release in hypothalamic explants from control, hypomorphic, and PomcLkb1KO female mice (n = 10–12).D: Representative a-MSH
staining of PVH from control, hypomorphic, and PomcLkb1KO female mice. a-MSH–integrated density quantification also is shown. E: Expression
analysis of relevant hypothalamic genes assessed by quantitative RT-PCR in control, hypomorphic, and PomcLkb1KO female mice (n = 7–10). Data
are expressed relative to controls (dashed line). Probes for Hprt were used to adjust for total RNA content. All data are means 6 SEM. *P < 0.05;
**P < 0.01; ***P < 0.001. (A high-quality digital representation of this figure is available in the online issue.)
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and glucose homeostasis, suggesting that the phenotype
of PomcLkb1KO mice was not a result of the loss of
AMPK signaling. Consistent with this, and in agreement
with other conditional Lkb1 mutants (22), we were un-
able to detect reduced hypothalamic AMPK activity in
PomcLkb1KO mice. It is, of course, possible that CaMKKb
compensates for the loss of LKB1, thereby preserving
AMPK activity. However, the absence of metabolic phe-
notype in PomcCamkkbKO mice suggests that this mole-
cule does not play a significant role in this cell type and
that compensation is unlikely. Indeed, our studies with
mice globally lacking CaMKKb fail to confirm a major role
for this kinase in whole-body energy homeostasis regula-
tion. The reasons for this discrepancy with previous find-
ings (8) are not clear but could include differences in the
genetic background or the gene-targeting event.

The phenotypic differences between POMCa2KO (3)
and PomcLkb1KO mice are in line with recent studies
showing that pancreatic b-cell deletion of Ampk (40,41) or
Lkb1 (13,14) lead to strongly divergent phenotypes. These
observations suggest that LKB1 may play additional roles
distinct from activating AMPK. For example, LKB1 also
acts as a master upstream kinase for a number of AMPK-
related kinases (42). Of these, the salt-inducible kinases
(SIKs) have been implicated in the regulation of energy
metabolism, and, in particular, SIK2 has been shown to
regulate hepatic glucose metabolism (43). LKB1 also reg-
ulates the brain-specific kinases 1 and 2 (44), which have
been implicated in the development of neuronal polariza-
tion in the cerebral cortex (22,45). However, we were
unable to detect morphological or electrophysiological ab-
normalities in LKB1-deficient POMC neurons, suggesting
that Lkb1 deletion does not have major effects on POMC
neuron anatomy and function. An alternative explanation
for the apparent lack of consistency between AMPK and
LKB1 mutant mice phenotypes would be that either kinase
has additional roles independent of their kinase activity,
such as scaffolding or other structural-dependent functions.

A number of additional conclusions can be drawn from
our findings in mice lacking either LKB1 or AMPKa2 in
POMC neurons. First, the effects on peripheral glucose
homeostasis do not correlate with defects in glucose
sensing by POMC neurons. Therefore, as suggested by
others (46), it is unlikely that glucose sensing, per se, in
this neuronal population is required for the regulation of
systemic glucose metabolism. Our findings also add fur-
ther weight to the idea that there are divergent pathways in
the regulation of feeding behavior and energy expenditure
compared with the regulation of peripheral glucose ho-
meostasis in POMC neurons. Such differences in melano-
cortin signaling have previously been demonstrated for
food intake and energy expenditure (47). The cellular basis
of such distinctions remains undetermined but may be
attributed to the heterogeneity observed in POMC neu-
rons, not only in their responses to hormones and
nutrients but also in their outputs (3,19,23,30,48). The
presence or absence of particular signaling cascades in
POMC neurons may provide a molecular underpinning for
such findings.

In summary, we find that LKB1, but not CaMKKb, plays
a key role in POMC neurons and that deletion of this
molecule in this cell type disrupts hypothalamic melano-
cortin function leading to defective peripheral glucose
homeostasis. Our results provide further understanding
into the mechanisms involved in the pathogenesis of dis-
ordered glucose metabolism and may give new insights for

the development of potential therapeutic agents for type 2
diabetes.
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