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NREM sleep in the rodent neocortex and
hippocampus reflects excitable dynamics
Daniel Levenstein 1,2, György Buzsáki 1,2 & John Rinzel1,3

During non-rapid eye movement (NREM) sleep, neuronal populations in the mammalian

forebrain alternate between periods of spiking and inactivity. Termed the slow oscillation in

the neocortex and sharp wave-ripples in the hippocampus, these alternations are often

considered separately but are both crucial for NREM functions. By directly comparing

experimental observations of naturally-sleeping rats with a mean field model of an adapting,

recurrent neuronal population, we find that the neocortical alternations reflect a dynamical

regime in which a stable active state is interrupted by transient inactive states (slow waves)

while the hippocampal alternations reflect a stable inactive state interrupted by transient

active states (sharp waves). We propose that during NREM sleep in the rodent, hippocampal

and neocortical populations are excitable: each in a stable state from which internal fluc-

tuations or external perturbation can evoke the stereotyped population events that mediate

NREM functions.
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S leep function relies on internally-generated dynamics in
neuronal populations. In the neocortex, non-rapid eye
movement (NREM) sleep is dominated by a “slow oscilla-

tion”1: alternations between periods of spiking (UP states) and
periods of hyperpolarization (DOWN states) that correspond to
large “slow waves” in the local field potential (LFP)2,3 (Fig. 1a, b,
Supplementary Fig. 1). In the hippocampus, NREM sleep is
dominated by sharp wave-ripple dynamics: periods of spiking
(SWRs) separated by periods of relative inactivity (inter-SWRs)4

(Fig. 1e, f). The functional importance of these dynamics is well
established: slow waves and SWRs perform homeostatic main-
tenance of the local synaptic network in both regions5–7, and their
temporal coupling8–11 supports the consolidation of recently-
learned memories12–14. However, it’s unclear how the state of
neuronal populations in the two regions promotes the generation
of their respective dynamics, or how population state supports the
propagation of neural activity between structures.

To study the state of hippocampal and neocortical populations
during NREM sleep, we used an idealized model of an adapting
recurrent neuronal population (Fig. 1c–g). Similar models have
been directly matched to neocortical UP/DOWN alternations
during anesthesia and in slice preparations15–17. These studies
found that the alternations in slice are adaptation-mediated
oscillations16, while those under anesthesia reflect noise-induced
switches between bistable states15. However, neuronal dynamics
during NREM are distinct from those in anesthesia/slice18. We
show how a few physiological parameters can determine the
properties of alternation dynamics in neuronal populations, and

identify parameter domains that match experimental data from
naturally-sleeping rats19. This treatment revealed that neocortical
and hippocampal alternation dynamics can be explained using
the same model, in complementary regimes of activity.

We report that during NREM sleep the rodent neocortex and
hippocampus are neither endogenously oscillatory nor bistable,
but are excitable: neural populations in each region rest in a stable
state from which suprathreshold fluctuations can induce transient
events that are terminated by the influence of adaptation. Spe-
cifically, the neocortex maintains a stable UP state with
fluctuation-induced transitions to a transient DOWN state (slow
waves), while the hippocampus rests in a stable DOWN state with
fluctuation-induced transitions to a transient UP state (SWRs).
Each region can generate its respective population event spon-
taneously (due to internally-generated fluctuations) or in
response to an external perturbation (such as input from another
brain structure). As a result, alternations in both structures show
asymmetric duration distributions (Fig. 1d–h). We further
observe that variation in the depth of NREM sleep corresponds to
variation in the stability of the neocortical UP state. Our findings
reveal a unifying picture of the state of hippocampal and neo-
cortical populations during NREM sleep, which suggests that
NREM function relies on excitable dynamics in the two regions.

Results
UP/DOWN dynamics in an adapting excitatory population
model. UP/DOWN alternations are readily produced in models
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Fig. 1 Neocortical UP/DOWN and hippocampal SWR dynamics during NREM sleep. a A sample of data from rat mPFC during NREM sleep. Data were
collected using high-density silicon probes19. LFP and spike times from cortical neurons were extracted as reported previously (see Methods). Neocortical
slow waves are coincident with population-wide non-spiking DOWN states, which alternate with UP states of longer duration. b Peri-event time histogram
aligned to delta peaks for the LFP (top), all recorded cells (middle), and population rate (bottom). c Simulation of the model (Eqns 1–2). Parameters
determined by matching in vivo and simulated UP/DOWN state dwell times, as described in section: ‘Neocortex is in an ExcitableUP regime during NREM
sleep’. d UP/DOWN state dwell time distribution (bottom) in linear (example recording) and logarithmic scale. e A sample of data from rat CA1 (HPC)
during NREM sleep65. Detected sharp wave-ripples (SWR) indicated with red. f Peri-event time histogram aligned to SWR peaks for the LFP (top), all
recorded cells (middle), and population rate (bottom). g Simulated r-amodel with the best-matching parameters, as described in section: ‘Hippocampus is
in an ExcitableDOWN regime during NREM sleep’. h SWR and inter-SWR duration distributions in linear (example recording) and logarithmic scale. All
shaded lines reflect mean ± standard deviation over recordings
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of neural populations with recurrent excitation and slow adaptive
feedback15–17,20–25. We first consider the dynamics of a model in
which neuronal population activity is described in terms of the
mean firing rate, r(t), subject to adaptation, a(t) (Fig. 2a).

τr
dr
dt

¼ �r þ R1 wr � baþ I þ ξ tð Þð Þ ð1Þ

τa
da
dt

¼ �aþ A1 rð Þ ð2Þ

Equations (1–2) describe how r and a evolve in time as a
function of the net input to the population: the sum of the
recurrent excitation with weight w and a background level of
drive with a tonic parameter I, and noisy fluctuations ξ(t), minus
adaptation weighted by gain parameter b. R∞(input) is a function
that defines the population rate given constant net input.
Similarly, A∞(r) defines the level of adaptation given a fixed rate.
To enable the analytical treatment of model dynamics in the
following section, both R∞(input) and A∞(r) are taken to be
sigmoidal functions. However, this choice is not critical for the
generality of our findings. Further model details and physiological
interpretation of parameters can be found in Supplementary
Note 1 and the Supplementary Discussion.

Model dynamics can be represented as a trajectory in the r–a
phase plane26 (Fig. 2b, Supplementary Note 1). Steady states, or
fixed points, of activity are found at intersections of two curves
defined by the conditions dr

dt ¼ 0 and da
dt ¼ 0, the r- and a-

nullclines. Depending on parameter values, the model can show
four distinct regimes of UP/DOWN dynamics—distinguished by
whether UP/DOWN transitions are noise- or adaptation-induced,
and thus the stability or transient nature of the UP and DOWN
states (Fig. 2b)15,16.

In the oscillatory regime (Fig. 2c), activity alternates between
transient UP and DOWN states at a relatively stable frequency.
Adaptation activates during the UP state and brings the
population to the DOWN state, during which adaptation
inactivates and the population returns to the UP state. Because
r(t) is fast compared to the slow adaptation, the r(t) time course
and the phase plane trajectory are square-shaped, with rapid
transitions between UP and DOWN states.

If the UP and DOWN state are both stable, the system is
bistable (Fig. 2d). In this regime, adaptation is not strong enough
to induce UP/DOWN state transitions. However, sufficiently
large (suprathreshold) fluctuations can perturb the population
activity to cross the middle branch of the r-nullcline, resulting in
a transition to the opposing branch. Thus, the presence of noise
induces alternations between UP and DOWN states, resulting in
highly variable UP/DOWN state durations.

In the case of a single stable state, the system can show UP/
DOWN alternations in one of two excitable regimes. If the
DOWN state is stable (Fig. 2e), the system is in an ExcitableDOWN

regime. The population will remain in the DOWN state in the
absence of any external influence. However, a brief suprathres-
hold activating input can trigger a rapid transition to a transient
UP state, during which adaptation activates, leading to a return to
the DOWN branch. In the presence of noise, UP states are
spontaneously triggered by net activating fluctuations. The time
course of the model in the ExcitableDOWN regime shows long
DOWN states of variable durations punctuated by brief
stereotyped UP states.

Conversely, if the UP state is stable, the system is in an
ExcitableUP regime (Fig. 2f). Brief inactivating input can elicit a
switch from the UP state to a transient DOWN state, during
which adaptation deactivates, leading to a return to the UP
branch. In the presence of noise, DOWN states are spontaneously
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Fig. 2 UP/DOWN dynamics in an adapting recurrent neural population. a Wilson–Cowan-like model for a neural population with slow adaptive process.
b r-a Phase plane. Model dynamics are seen as trajectories in the phase plane that follow Equations (1–2). Dashed arrows indicate slow vertical trajectories
at timescale of τa, solid arrows indicate fast horizontal trajectories at timescale of τr. Nullclines (the two curves along which dr/dt= 0, da/dt= 0) and their
intersections graphically represent dynamics for a given set of parameter values (parameters as defined in C shown). Left and right branches of the r-
nullcline correspond to DOWN and UP states, respectively. Stable UP/DOWN states are seen as stable fixed points at nullcline intersections. Transient
UP/DOWN states are seen as r-nullcline branch with no intersection. c–f Four UP/DOWN regimes available to the model, as distinguished by location of
stable fixed points (see also Supplementary Fig. 3). Representative phase plane (Left), simulated time course and UP/DOWN state duration distributions
(right, time units arbitrary) for each regime. Stable fixed points are represented by filled circles, unstable fixed points by empty circles. Parameters: (c–f)
b= 1, (c, e, f) w= 6 (d) w= 6.3, (c) I= 2.5 (d) I= 2.35 (e) I= 2.4 (f) I= 2.5. Default parameters specified in methods
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triggered by net-inactivating fluctuations. The time course will
show longer UP states of variable durations with stereotypically
brief DOWN states. These two regimes (Fig. 2e, f) are excitable
because relatively small fluctuations in population rate can excite
the population out of a stable steady state and induce
disproportionately large, stereotyped, population events: a
transient UP state in the case of the ExcitableDOWN regime and
a transient DOWN state in the case of the ExcitableUP regime.

Recurrence, adaptation, and drive control UP/DOWN regimes.
How do the properties of a neuronal population determine
dynamical regime? We use numerical and analytical methods
from dynamical systems theory26 to reveal how intrinsic and
network properties determine the properties of UP/DOWN
dynamics in our model. The analysis is summarized here and
presented in further detail in Supplementary Notes 2–3 and
Supplementary Figs. 2–4.

We first consider the population’s effective input/output
relation (I/O curve): how the population rate fixed points, rss,
depend on the level of drive (Fig. 3a). If recurrence is weak,
the I/O curve increases monotonically with drive and no
UP/DOWN alternations are possible. At a critical value
of recurrent excitation the population is able to self-maintain
an UP state (Supplementary Note 2, Supplementary Fig. 2),
and UP/DOWN alternations emerge between low-rate activity
at weak drive and high-rate activity at strong drive. Recurrence
and adaptation oppositely influence the dynamical regime
at the I/O curve’s center region (Supplementary Fig. 3).
By identifying parameter values at which transitions occur
in the dynamical regime at the half-activation point of the
I/O curve (Fig. 3b, Supplementary Note 3, Supplementary
Fig. 4), we see that the population will have an oscillatory-
centered I/O curve with stronger adaptation (Fig. 3b, blue) and
a bistable-centered I/O curve with stronger recurrence (Fig. 3b,
yellow).
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In the absence of noise or external perturbation, only the
oscillatory regime will alternate between UP and DOWN states.
We next consider the effects of noise on an oscillatory-centered
I/O curve (Fig. 3c). Within the oscillatory regime, the simulated
population rate alternates regularly between transient UP and
DOWN states, and UP/DOWN state durations reflect the time
scale of adaptation, ~τa (Supplementary Fig. 5). For I-values
above the oscillatory regime, noise can evoke transitions from the
stable UP state to a transient DOWN state (an ExcitableUP
regime). DOWN state durations still reflect the time scale of
adaptation, τa, but UP state durations now reflect the waiting time
for random fluctuations to drop the system out of the UP state
attractor, and thus vary with noise amplitude (Supplementary
Fig. 5). As drive is further increased, the effective stability of the
UP state increases and larger fluctuations are needed to end the
UP state. Thus, UP states become progressively longer, while
DOWN states stay approximately the same duration (~τa). The
same case is seen for values of I below the oscillatory regime but
with UP/DOWN roles reversed (i.e., an ExcitableDOWN regime).
Similar response properties are seen for the bistable-centered I/O
curve (Fig. 3d). In both cases, the duration distributions plotted
vs. drive form a crossed-pair, with a center symmetrical portion
(i.e., an oscillatory (Fig. 3c) or bistable (Fig. 3d) regime) flanked
by the asymmetrical ExcitableDOWN and ExcitableUP regimes.

We next expand our analysis of simulated duration distribu-
tions to a representative I–w parameter plane (b= 1, Fig. 3e) and
I–b plane (w= 6, Supplementary Fig. 5). The mean durations
vary continuously as the level of drive brings the population from
a DOWN-dominated to an UP-dominated regime. However, the
duration variability (as measured by the coefficient of variation,
CV) shows sharp transitions at the boundaries between regimes,
which reflect the different mechanism of transitions out of stable
and transient states. In general, the durations of stable states
are longer and more variable, while those of transient states
are shorter and less variable. Thus, the statistics of UP/DOWN
state durations reflect the underlying dynamical regime, allowing
us to effectively distinguish oscillatory, bistable, and excitable
dynamics.

Neocortex is in an ExcitableUP regime during NREM sleep. The
durations of neocortical UP/DOWN states (Fig. 1) are indicative
of an ExcitableUP regime in our model. Neocortical UP states
during NREM are longer (meanUP: 1.7 ± 0.92 s) compared to
DOWN states (meanDOWN: 0.21 ± 0.05 s), and more irregular
(CVUP= 1.1 ± 0.27; CVDOWN= 0.38 ± 0.06) (Fig. 4a, all values
mean ± std over recordings) suggesting a stable UP and transient
DOWN state. We directly compared the simulated and
experimentally-observed dynamics by matching the statistics of
experimental UP/DOWN durations to those in Fig. 3e and
Supplementary Fig. 5. We found that the region of parameter
space in which the CVUP, CVDOWN and ratio of mean durations
is within 2 standard deviations of the experimental durations is in
the ExcitableUP regime (Fig. 4b, Supplementary Fig. 7 red out-
line). We next compared the shapes of the duration distributions
between model and experiment. For each model realization (i.e.,
each point in the I–w parameter plane), we calculated the simi-
larity between simulated and experimental duration distributions
for each recording session in the experimental dataset (Supple-
mentary Figs. 6, 7, Methods). The domain of high similarity
between animal data and the model fell in the ExcitableUP regime,
as indicated by the 25 best fit points and in the average value of
similarity (over all 25 sessions) in I–w parameter space (Fig. 4b)
and in the I–b parameter space (Supplementary Fig. 7). The
simulated time course (Fig. 4d) and duration distributions
(Fig. 4c) using the parameter set with highest mean similarity

over all sessions revealed a good match between experimental and
modeled dynamics. The domain of high similarity was degenerate
and remained in the ExcitableUP regime with variation in the
fixed parameters, τa, b, and the amplitude of the noise (Supple-
mentary Fig. 7). We thus found that NREM sleep in the rodent
neocortex is characterized by an ExcitableUP regime: a stable UP
state with noise-induced transitions to a transient DOWN state.

Hippocampus is in an ExcitableDOWN regime during NREM
sleep. Since the burst-like dynamics of SWR is reminiscent of the
ExcitableDOWN regime of our model, we asked whether these
patterns could also be explained by the same principles.
InterSWR durations are much longer (mean= 2.0 ± 0.22 s)
compared to SWR events (mean= 0.06 ± 0.005 s), and more
variable (CVInterSWR= 1.3 ± 0.10; CVSWR= 0.33 ± 0.04) (Fig. 4e)
suggesting a stable DOWN and transient UP state (SWR). We
applied the duration distribution matching procedure to the
SWR/inter-SWR duration distributions and confirmed that the r–
amodel can also mimic SWR dynamics, with a band of high data-
model similarity in the ExcitableDOWN regime (Fig. 4g). Inter-
estingly, our idealized model is not able to capture the short-
interval inter-SWR periods associated with occasional SWR
bursts (Supplementary Fig. 7), which suggest the presence of
separate SWR-burst promoting mechanisms, possibly arising
from interactions with the entorhinal cortex or spatially traveling
patterns of SWRs in the hippocampus27,28. Accordingly, while the
mean ratio and CVSWR of the best fitting model regime were
within 2.5 standard deviations of those observed in vivo, the CV
of inter-SWR periods was larger than expected from the model
(i.e., CV > 1). This finding suggests that during NREM sleep the
hippocampus is in a stable DOWN-like state, from which internal
‘noise’ or an external perturbation can induce population-wide
spiking events.

NREM depth corresponds to UP state stability. For our initial
analysis of the neocortical NREM data, we assumed that model
parameters were stationary over the course of a sleep session.
However, rodent NREM sleep has been classified on a spectrum
from light to deep NREM, with higher power in the LFP delta
band (1–4 Hz) reflecting deeper NREM sleep29. To investigate the
relationship between changes in cortical state with NREM depth
and UP/DOWN dynamics, we calculated the level of delta power
in the 8 s time window surrounding each UP and DOWN state
(Fig. 5a). UP state durations varied systematically with delta
power (Fig. 5a–c, Supplementary Fig. 8): epochs of lower delta
power contained longer UP states, and epochs of higher delta
power were associated with shorter UP states (Fig. 5a–c, Sup-
plementary Fig. 8). However, DOWN state durations were
invariant with delta power, and the CV of UP state durations was
consistently higher than DOWN state durations, as would be
expected for ExcitableUP dynamics with noise-induced transitions
from a stable UP to a transient DOWN state.

We then grouped the experimental UP/DOWN states by delta
power and calculated data-model similarity maps for UP/DOWN
state durations in each group (Fig. 5d, Supplementary Fig. 8). We
found that the vast majority of time in all recording sessions was
spent in the parameter domain of the ExcitableUP regime (Fig. 5b,
bottom). However, with higher delta power, the best fitting model
parameters moved closer to the transition to the oscillatory
regime, and the epochs of highest delta power were well-matched
by oscillatory dynamics in a small number of sessions.

Evoked slow waves from an inhibition-stabilized UP state. Our
previous analyses considered a constant (stationary) source of
noise that produced spontaneous transitions out of stable states in
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our model. We now consider a brief input that evokes a transient
event. For the hippocampal-like ExcitableDOWN regime, a brief
increase in drive will evoke a transient UP state, (i.e., a SWR,
Supplementary Fig. 9). In the absence of noise, perturbations
must be of sufficient magnitude (i.e., suprathreshold). With noise,

the probability to evoke a SWR increases with magnitude of the
perturbation (Supplementary Fig. 9). A converse situation is
apparent for the neocortical-like ExcitableUP regime—a brief
decrease in drive is able to evoke a transient DOWN state (i.e., a
slow wave, Supplementary Fig. 9). However, as long-range
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projections tend to be excitatory, we wondered how an excitatory
perturbation might evoke a neocortical UP→DOWN transition.

Neuronal spike rates during the UP state are generally low19

with balanced excitatory and inhibitory synaptic inputs30.
Previous work has shown that models with fast inhibition and
slow adaptation can give UP/DOWN alternations in the same
four regimes described above15 with a low-rate UP state that is
stabilized by feedback inhibition31,32. We hypothesized that local
inhibitory cells may support excitation-induced UP→DOWN
transitions, and included an inhibitory population (τi ≈ τe) in the
model (Fig. 6a):

τe
dre
dt

¼ �re þ Re;1 weere � weiri � baþ Ie þ ξeðtÞð Þ ð3Þ

τi
dri
dt

¼ �ri þ Ri;1 wiere � wiiri þ Ii þ ξiðtÞð Þ ð4Þ

τa
da
dt

¼ �aþ A1ðreÞ ð5Þ

where adaptation acts on the excitatory population and
Re,∞(input) and Ri,∞(input) are threshold power law I/O relations,
as seen in the in vivo-like fluctuation-driven regime33 (Supple-
mentary Note 4).

Given that adaptation is slow we can treat a as frozen and
visualize model dynamics in the re-ri phase plane (Fig. 6b). The
fixed point value of re as a function of drive describes the effective
I/O curve of the network (rss, Fig. 6c). Like the excitation-only
model, strong recurrent excitation induces bistability at low levels
of drive (Supplementary Fig. 10). In the bistable condition, the re-
ri phase plane shows stable UP and DOWN state fixed points,
separated by a saddle point (Fig. 6b, c). With a dynamic, the
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model can have steady state fixed points on either the UP or the
DOWN branch of the I/O curve, resulting in the same regimes as
the two-variable model described above15 (Supplementary
Fig. 10).

We investigated ExcitableUP dynamics in the adapting,
inhibition-stabilized model33 (Fig. 6d–f). Consider a transition
from the UP to the DOWN state (Fig. 6f). As adaptation slowly
deactivates, the system drifts along the DOWN branch.
Eventually, the DOWN state loses stability, the trajectory reaches
and rounds the lower knee of the I/O curve and transitions
abruptly to the only remaining stable solution: the UP state.
Adaptation then builds as the system returns to the stable UP
state fixed point.

Due to the effects of inhibition, small perturbations from the
UP state fixed point exhibit damped oscillations as the system
returns to steady state. The damped oscillations arise from
transient imbalance of excitation and inhibition, and occur when
the UP state fixed point is an attracting spiral. As a result, high-
frequency oscillations (at a time scale set by the excitatory and
inhibitory time constants) occur at the DOWN→UP transition. A
further implication is that excitatory input to the excitatory
population (Fig. 6e) can recruit sufficient inhibition to force the
entire network into a DOWN state. This threshold effect is seen
as a trajectory in the phase plane that separates the basins of
attraction of the UP and DOWN state (i.e., a separatrix, Fig. 6f).
The separatrix emerges (in reverse time) from the saddle and
curves around the UP state fixed point. From this visualization we
see that a brief increase in the rate of either population can push
the trajectory out of the UP state basin of attraction (Fig. 6f).
Thus, a transient DOWN state (i.e. a slow wave) can be evoked by
an excitatory perturbation, as well as drops in the excitatory
population rate.

Discussion
To account for cortical dynamics during NREM sleep, we used a
firing rate model that represents a neuronal population with
positive feedback (recurrent excitation) and slow negative feed-
back (adaptation). Although the model is idealized, it is amenable
to mathematical treatment in terms of a few key parameters that
allowed us to develop intuitions for the repertoire of dynamics
available to an adapting, recurrent neural population. Our ana-
lysis revealed how the level of drive and the relative strength of
recurrent excitation and adaptation create a spectrum of dyna-
mical regimes with UP/DOWN alternations, defined by the sta-
bility or transience of UP and DOWN states (Fig. 7a). We found
that both neocortical and hippocampal alternations during
NREM sleep are well-matched by the model in excitable regimes
that produce characteristically asymmetric distributions of UP
and DOWN state durations. We next discuss implications of the
findings for NREM sleep. Additional discussion on UP/DOWN
alternations in other physiological contexts can be found in the
Supplementary Discussion.

Despite the widely used term slow “oscillation”1, the asym-
metric duration distributions during NREM indicate that the
NREM slow oscillation is aperiodic: reflecting a stable UP state
from which ongoing activity fluctuations induce transient
DOWN states (i.e., slow waves). A key feature of the model is the
noise responsible for initiating spontaneous UP→DOWN tran-
sitions. In neuronal network modeling, noise often refers to
unidentified fluctuations in physiological activity and can be
divided into fluctuations internal to the population and fluctua-
tions from afferent projections. While we do not explicitly dis-
tinguish them in the model, we assume that both sources play a
role in initiating cortical UP→DOWN transitions. Population
rate fluctuates during the UP state due to finite size effects34 and

temporal correlations that emerge with strong recurrent con-
nections35. Similarly, the level of afferent activity from thalmo- or
cortico-cortical projections would be expected to fluctuate. We
also note that while the isolated neocortex can produce UP/
DOWN state alternations36, we should consider the thalamo-
cortical system for understanding slow wave dynamics in vivo37.
Because the cortex and corresponding thalamic nuclei are highly
interconnected, cortex and thalamus may transition UP and
DOWN together and reflect interacting (as opposed to inde-
pendent) systems. However, it was recently found that cortex
tends to lead the thalamus into the DOWN state38. Future work
should expand the model to include a thalamic population, which
would also help to understand the interaction of slow waves with
thalamocortical spindle oscillations11,39,40.

While rodent sleep does differ from that seen in humans, both
humans and rodents have slow waves with similar underlying
physiology, and both species have NREM sleep of varying
depth29,41. We found that the depth of NREM sleep in the rodent
reflects the stability of the UP state in a manner that resembles
the stages of NREM/SWS sleep in humans41. In light NREM sleep
(human stage N1), long UP states are occasionally punctuated by
neuronal silence-associated delta or slow waves, which can be
localized at one or few recording sites across the cortical mantle11.
As sleep deepens, the incidence of DOWN states increase and
they become synchronous over larger cortical areas42 (N2 stage).
The DOWN-UP transitions occasionally become strongly syn-
chronous, producing a sharp LFP wave known as the K com-
plex43. With further deepening of sleep, DOWN states become
more frequent and short episodes of repeating DOWN states may
become rhythmic (N3/SWS stage). While the comparison
between rodent and human sleep data was not performed, we
found a similar evolution in rodent NREM. We found that the
N3-like oscillatory state in the rat occupies only a small fraction
of NREM sleep, whereas in humans this stage is more prominent.
Our analysis predicts that deeper stages of NREM reflect a less
stable UP state, which may be due to (1) decreased recurrent
strength, (2) decreased neuronal excitability or (3) increased
strength of adaptation22,44. We hope that this work can provide a
framework to guide comparative studies on the differences
between rodent and human sleep.

While the model is ambiguous to the biophysical substrate of
adaptation, we can make some predictions: first, the adaptive
process responsible for neocortical UP/DOWN alternations
should be constitutively active during the UP state and deactivate
during the hyperpolarized DOWN state. Second, the adaptive
process should recover at a time scale reflective of the DOWN
state duration (~200 ms). Subthreshold adaptation is a feasible
candidate, given that most neurons are depolarized but fire at a
very low rate during any given UP state. Adaptation in our model
could also include effects of hyperpolarization-activated excita-
tory processes, such as the h-current. The modeling framework
presented here can be used to predict the effects of experimental
manipulations of adaptive mechanisms and guide experiments on
the biophysical substrates of the neocortical slow oscillation.

Neocortical slow oscillations and hippocampal SWRs are pre-
sent simultaneously during NREM sleep. Although they appear
fundamentally different, our analysis reveals that both can be
accounted for using different parameter values of the same model.
In the hippocampus, the inter-SWR period is not entirely inac-
tive, but maintains a low rate of spiking. SWR-initiation could
come from fluctuations in this low-rate activity or from drive
from the entorhinal cortex. The duration of the hippocampal
SWR (~60 ms) indicates that the hippocampal adaptive process
should activate on a time scale faster than that responsible for
recovery from the neocortical DOWN state. Previous work has
revealed threshold behavior in the generation of SWRs, indicative
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of ExcitableDOWN dynamics, with a GABAB-mediated adaptation
mechanism45,46.

The different nature of recurrent connectivity in the two
regions may be responsible for their differing dynamics. Strongly
recurrent pyramidal cell populations are found in neocortical
layer 5 and the hippocampal CA2 and CA3a subregions47, the
loci of UP state and sharp wave initiation, respectively48,49.
However, crucial differences exist between connectivity of neo-
cortical layer 5 and hippocampal CA2–3 regions. The neocortex is
a modularly organized structure; in contrast, the hippocampus
can be conceived as a single expanded cortical module50. Exci-
tatory connectivity in layer 5 is local (200 µm), dense (up to 80%
connection probability), and follows a ‘Mexican hat’ excitatory-
inhibitory spatial structure with strong local excitatory connec-
tions and spatially extensive inhibition51. In contrast, excitatory
connectivity in the hippocampus is sparse and spatially exten-
sive47, with local inhibitory connections52,53. While layer 5
excitatory synapses are relatively strong, the transmitter release
probability of synapses between hippocampal pyramidal neurons
is very low, resulting in comparatively weak synapses54. Together,
these factors indicate that the effective strength of recurrence in
the hippocampus is lower than that in neocortex, which would
result in the observed DOWN-dominated as opposed to UP-
dominated dynamics. To further understand the physiological
factors responsible for the distinct NREM dynamics in the two
regions will require experimental manipulations that indepen-
dently manipulate adaptation, recurrent excitation, and
excitability.

According to the two-stage model of memory
consolidation55,56, the hippocampus acts as a fast, but unstable,
learning system. In contrast, the neocortex acts as a slow learning
system that forms long-lasting memories after many presenta-
tions of a stimulus. The two-stage model proposes that recently-
learned patterns of activity are reactivated in the hippocampus
during SWRs, which act as a training signal for the neocortex, and

that the neocortical consolidation of those patterns relies on
SWR-slow wave coupling8,57. Excitable dynamics provide a
mechanism for coordination of slow waves and SWRs (Fig. 7b):
the excitatory kick of a hippocampal SWR can induce a neo-
cortical UP→DOWN transition by briefly disrupting the neo-
cortical excitatory/inhibitory balance, while the population burst
at the neocortical DOWN→UP transition can induce a
hippocampal SWR.

Extensive experimental evidence points towards temporal
coordination between slow waves and SWRs. Slow waves in
higher-order neocortical regions are more likely following
SWRs8,9, and SWR→slow wave coupling is associated with
reactivation in the neocortex8,57,58. As is observed in vivo, the
ability of transient input to evoke a slow wave in our model is
probabilistic, and depends on the input magnitude, local noise,
and stability of the UP state. The efficacy of SWR→slow wave
induction likely varies by brain state, cortical region, and even
SWR spiking content. Further work to investigate how these
factors shape SWR→slow wave coupling will shed light on the
brain-wide mechanisms of memory consolidation.

How might a SWR-induced slow wave induce changes in the
neocortex? Recent work has found that SWR→slow wave cou-
pling alters spiking at the subsequent neocortical DOWN→UP
transition57, which acts a window of opportunity for synaptic
plasticity6,59–61. In out model, the interaction between excitation
and inhibition produces a transient high-frequency oscillation at
the DOWN→UP transition. This brief oscillation is reminiscent
of the gamma (~60–150 Hz) activity following slow waves
in vivo19 and may act to coordinate and promote plasticity
between cell assemblies62.

In turn, the burst of neocortical activity during the
DOWN→UP transition could induce a SWR in the hippo-
campus. The functional role of slow wave→SWR coupling is less
well understood, but hippocampal SWRs are more likely imme-
diately following slow waves in some neocortical regions—
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including the entorhinal cortex8,10. Slow wave→SWR coupling
could provide a mechanism by which neocortical activity is able
to bias SWR content, or another mechanism by which the SWR
could bias neocortical activity at the DOWN→UP transition.
Further, a SWR-slow wave-SWR loop could produce the occa-
sional SWR bursts not captured by our model of hippocampal
SWR activity.

The nature of slow wave-SWR interaction reported in studies
of dual hippocampal-cortical recordings8–11 have had differing
results: some show that neocortical slow oscillations entrain
hippocampal ripples10,13, while others suggest ripples coincide
with neocortical UP→DOWN8,57 or DOWN→UP9,63 transi-
tions. Part of this ‘controversy’ is likely due to the precise location
of the recording sites within each of the two structures, and the
multiple anatomical paths by which interaction can occur – be it
monosynaptic connections, disynaptic connections via the tha-
lamus, connections via the subiculum or via the entorhinal cor-
tex64. Our model supports mechanisms for bidirectional
interactions between hippocampus and neocortical regions. Elu-
cidating the topological nature of hippocampal-cortical interac-
tions during NREM sleep will require simultaneous recording of
neural activity in hippocampus and multiple cortical regions with
high spatiotemporal precision. Such future work on regional or
state-dependent differences in the directionality of slow wave-
SWR coupling will provide insight into the physiological
mechanisms that support memory consolidation.

Together, our results reveal that NREM sleep is characterized
by structure-specific excitable dynamics in the mammalian fore-
brain. We found that a model of an adapting recurrent neural
population is sufficient to capture a variety of UP/DOWN
alternation dynamics comparable to those observed in vivo. The
neocortical slow oscillation is well-matched by the model in an
ExcitableUP regime in which a stable UP state is punctuated by
transient DOWN states, while the hippocampal sharp waves are
well-matched by the model in an ExcitableDOWN regime in which
a stable DOWN state is punctuated by transient UP states
(Fig. 7a). These complementary regimes of excitable dynamics
allow each region to produce characteristic slow wave/SWR
events spontaneously or in response to external perturbation. Our
results offer a unifying picture of hippocampal and neocortical
dynamics during NREM sleep, and suggest a mechanism for
hippocampal-neocortical communication during NREM sleep.

Methods
Datasets. The datasets used were reported in Watson et al.19 (neocortex) and
Grosmark and Buzsaki65 (hippocampus).

For the cortical dataset, silicon probes were implanted in frontal cortical areas of
11 male Long Evans rats. Recording sites included medial prefrontal cortex,
anterior cingulate cortex, premotor cortex/M2, and orbitofrontal cortex. Neural
activity during natural sleep-wake behavior was recorded using high-density silicon
probes during light hours in the animals’ home cage. 25 recordings of mean
duration 4.8 h ( ± 2.2 std) were recorded. The raw 20 kHz data were low-pass
filtered and resampled at 1250 Hz to extract local field potential information. To
extract spike times, the raw data high-pass filtering at 800 Hz, and then threshold-
crossings were detected. KlustaKwik software was used to cluster spike waveforms
occurring simultaneously on nearby recording sites, and Klusters software was used
for manual inspection of waveforms consistent with a single neuronal source. Units
were classified into putative excitatory (pE) and putative inhibitory (pI) based on
the spike waveform metrics. Each animal had 35 ± 12 detected pE units and 5 ± 3
detected pI units (mean ± std over recordings).

For the hippocampal dataset, silicon probes were implanted in the dorsal
hippocampus of 4 male Long Evans rats (7 recordings total). Neural activity during
sleep was recorded before and after behavior on a linear track. LFP and spikes were
extracted similar to the cortical dataset.

NREM detection. Sleep state was detected using an automated scoring algorithm
as described in Watson et al.19, with some modifications. As only the NREM state
was used in this study, we describe here the process for NREM detection. However,
the code for full state detection can be found in the buzcode package (see ‘Code
availability’). NREM sleep was detected using the FFT spectrogram of a neocortical

LFP channel, calculated in overlapping 10 s windows at 1 s intervals. Power in each
time window was calculated for frequencies that were logarithmically spaced from
1 to 100 Hz. The spectral power was then log transformed, and z-scored over time
for each frequency. The slow wave power (signature of NREM sleep) was calculated
by weighting each frequency by a weight determined from the mean of the weights
for the first principal components from the dataset in Watson et al.19, which was
found to distinguish NREM and non-NREM in all recordings. While the same
dataset was used here, using the filter (i.e., weighted frequency)-based approach as
opposed to PCA makes the algorithm robust for a wider range of recording con-
ditions, especially those in which there is less time spent asleep (and thus NREM
may not be expected to account for the largest portion of variance). Like the first
principal component, the slow wave filtered signal was found to be bimodal in all
recordings, and the lowest point between modes of the distribution was used to
divide NREM and non-NREM epochs.

In the hippocampal dataset, manual NREM scoring from Grosmark and
Buzsaki65 was used for this study.

Slow wave detection. Slow waves were detected using the coincidence of a two-
stage threshold crossing in two signals (Supplementary Fig. 1A, B): a drop in high
gamma power (100–400 Hz, representative of spiking66) and a peak in the delta-
band filtered signal (0.5–8 Hz). The gamma power signal was smoothed using a
sliding 80 ms window, and locally normalized using a modified (non-parametric)
Z-score in the surrounding 20 s window, to account for non-stationaries in the data
(for example due to changes in brain state and noise), that could result in local
fluctuations in gamma power. The channel used for detection was determined as
the channel for which delta was most negatively correlated with spiking activity,
while gamma was most positively correlated with spiking activity.

Two thresholds were used for event detection in each LFP-derived signal, a
“peak threshold” and a “window threshold”. Time epochs in which the delta-
filtered signal crossed the peak threshold were taken as putative slow wave events,
with start and end times at the nearest crossing of the window threshold. Peak/
window thresholds were determined for each recording individually to best give
separation between spiking (UP states) and non-spiking (DOWN states)
(Supplementary Fig. 1C). To determine the delta thresholds, all peaks in the delta-
filtered signal greater than 0.25 standard deviations were detected as candidate
delta peaks and binned by peak magnitude. The peri-event time histogram (PETH)
for spikes from all cells was calculated around delta peaks in each magnitude bin,
and normalized by the mean rate in all bins. The smallest magnitude bin at which
spiking (i.e., the PETH at time= 0) was lower than a set rate threshold (the
“sensitivity” parameter, Supplementary Fig. 1D) was taken to be the peak
threshold. For example, a sensitivity of 0.5 means that the delta peak threshold is
set to the smallest threshold for which spiking drops below 50% of mean spiking
activity. The window threshold was set to the average delta value at which the rate
crosses this threshold in all peak magnitude bins. The gamma thresholds were
calculated similarly, but using drops below a gamma power magnitude instead of
peaks above a delta magnitude.

Once the thresholds were calculated, candidate events were then detected in the
delta and gamma power signals, and further limited to a minimum duration of 40
ms. Slow wave events were then taken to be overlapping intervals of both the
gamma and delta events. DOWN states with spiking above the sensitivity threshold
were thrown out.

Detection quality was checked using a random sampling and visual inspection
protocol. LFP and spike rasters for random 10 s windows of NREM sleep were
presented to a manual scorer, who marked correct SW detections, false alarms, and
missed SWs. This protocol was used to estimate the detection quality (miss %, FA %)
for each recording (Supplementary Fig. 1E), and to optimize the detection algorithm.
1085–21,147 slow waves (i.e., UP/DOWN states) were detected per recording and
used for subsequent analysis. Algorithm for slow wave detection can be found in the
buzcode software package.

SWR detection. Sharp wave-ripple events were detected using a coincidence of a
sharp wave event and a ripple event, with 3134–11,898 SWRs detected per
recording and used for subsequent analysis. Sharp wave events were detected as a
crossing of a 2.5 std threshold in the 2–50 Hz-filtered signal from the deep hip-
pocampal LFP (below the pyramidal layer). Sharp wave events of duration <20 ms
or >500 ms were discarded. Ripple events were detected as a crossing of a 2.5 std
threshold in the power of the 80–250 Hz-filtered signal from superficial hippo-
campal LFP (in the pyramidal layer). Ripple events <25 ms were discarded.
Simultaneous ripple/sharp wave events were then merged. Algorithm for SWR
detection can be found in the buzcode software package.

Model implementation. Phase plane and bifurcation analysis of the model in the
absence of noise was implemented in XPP, and a similar code was implemented in
MATLAB for simulations of the model with noisy input, for the analysis of UP/
DOWN state durations. Noise was implemented using Ornstein-Uhlenbeck noise.

dξ ¼ �θξdt þ σ
ffiffiffiffiffiffiffiffiffi

2θdt
p

Wt

where Wt is a Weiner process. Time scale θ= 0.05 and standard deviation σ= 0.25
were used unless otherwise specified.
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Simulations of Equations (1–2) and Equations (3–5) were performed in Matlab
using the ode45 solver, with input noise ξ(t) pre-computed independently for each
simulation using forward Euler method with time step dt= 0.1. Accuracy was
assessed by comparing results for time steps dt= 0.1 and dt= 0.05 for a subset of
simulations. Statistics for simulations with noise were determined by simulations of
duration 60,000 (AU).

A simulated time course was determined to have UP/DOWN states if the
distribution of r(t) was bimodal, as determined using a Hartigans dip test67. UP/
DOWN state transitions were detected as threshold-crossings between high and
low rate states. To avoid spurious transition detection due to noise, a “sticky”
threshold was used: the threshold for DOWN→UP transitions was taken to be the
midpoint between positive crossings of a threshold between the high-rate peak of
the rate distribution and the inter-peak trough, while the threshold for
UP→DOWN transitions was the midpoint between the low rate peak of the rate
distribution and the inter-peak trough.

UP/DOWN state duration matching. In vivo and simulated UP/DOWN state
durations were compared using a non-parametric distribution matching procedure
(Supplementary Fig. 6). Similarity was calculated as

s ¼ 1� KSUPð Þ � 1� KSDOWNð Þ
where

KSUP=DOWN ¼ supx jFv xð Þ � Fs xð Þj
is the Kolmogorov–Smirnov (KS) statistic, in which supx is the supremum function
and Fs/v(x) are the empirical cumulative distributions of simulated and in vivo
durations. In short, KS measures the largest difference between the observed
cumulative distributions for simulated and in vivo durations, where KSUP= 0
indicates that the in vivo/simulated UP state durations distributions are identical
and KSUP= 1 indicates that the in vivo/simulated DOWN state durations dis-
tributions are non-overlapping. Similarity is thus bounded between 0 and 1, where
s= 1 indicates that both UP and DOWN state distributions are identical between
simulation and the experimental observation, and s= 0 indicates that either the
observed UP or DOWN state distributions are non-overlapping with the modeled
durations.

There is one free parameter in the fitting procedure, which is τ, the population
time constant, or equivalently, the time scale factor from non-dimensionalized
model time and seconds. For each simulation, we tested time scale factors from 1
ms to 25 ms with increments of 0.1 ms and used the time scale parameter that gave
the highest value for s, thus preserving the shapes of the distributions and the
relative values of UP/DOWN state durations.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data used in this study are available on the CRCNS database in datasets fcx-1 (crcns.
org/data-sets/fcx/fcx-1) and hc-11 (crcns.org/data-sets/hc/hc-11).

Code availability
The code to reproduce all figures in this study is available at https://github.com/
dlevenstein/Levensteinetal2019, and makes use of the buzcode software package: https://
github.com/buzsakilab/buzcode.
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