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Abstract: With the energy crisis and environmental pollution becoming more and more serious, it
is urgent to develop renewable and clean energy. Hydrogen production from electrolyzed water is
of great significance to solve the energy crisis and environmental problems in the future. Recently,
layered double hydroxides (LDHs) materials have been widely studied in the electrocatalysis field,
due to their unique layered structure, tunable metal species and highly dispersed active sites. More-
over, the LDHs supporting noble metal catalysts obtained through the topotactic transformation of
LDHs precursors significantly reduce the energy barrier of electrolyzing water, showing remarkable
catalytic activity, good conductivity and excellent durability. In this review, we give an overview
of recent advances on LDHs supporting noble metal catalysts, from a brief introduction, to their
preparation and modification methods, to an overview of their application in the electrocatalysis field,
as well as the challenges and outlooks in this promising field on the basis of current development.

Keywords: LDHs-based catalysts; noble metal catalysts; composite materials; hydrogen evolution
reaction; oxygen evolution reaction

1. Introduction

As the world’s population grows, the demand of energy will increase rapidly in the
foreseeable future [1]. The vast majority of modern energy comes from coal, oil, natu-
ral gas or other fossil fuels, which has caused a serious energy crisis and environmental
problems [2]. Recently, growing concerns about serious environmental problems and the
energy crisis have urged us to seek sustainable energy as a viable alternative to traditional
fossil fuels [3]. Hydrogen as a high-energy-density carrier is considered to be a clean and
renewable alternative to fossil fuels and plays a vital role in promoting the sustainable
energy development of human society [4,5]. Electrocatalytic water is an effective renewable
energy production method for converting electric energy into chemical energy stored in
hydrogen fuel. Compared with the traditional high-temperature and high-pressure steam
conversion of fossil fuels, this reaction has advantages of high purity, good environmental
conditions and low energy consumption [6,7]. In recent years, the design and control of
synthetic electrocatalysts has played an active role in the development of electrochemistry
and catalysts [8]. To reduce the loss of charge transfer in electrochemical processes, tradi-
tional water electrolysis is usually carried out in acidic conditions using a proton exchange
membrane or in alkaline media using a diaphragm (Figure 1a). Hydrogen evolution reac-
tion (HER) and oxygen evolution reaction (OER) are two semi-reactions of electrolyzed
water, both of which are critical to overall efficiency (Figure 1b). Theoretically, it would take
1.23 V vs. normal hydrogen electrode (NHE) to electrolyze water [9]. Unfortunately, the
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slow kinetics of HER and OER lead to lower energy efficiency [10,11]. Therefore, the input
potential of cracked water in the actual electrolyzer is much higher than 1.23 V [12,13]. The
large overpotential and slow kinetics of HER and OER hinder the practical application
of whole-water decomposition [14,15]. Therefore, the design of electrocatalysts with high
electrocatalytic activity is of great importance to reduce the overpotential and improve the
efficiency of water decomposition.
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Generally, precious metals (such as Pt) and precious metal oxides (like RuO2 and
IrO2) are considered to be excellent HER and OER electrocatalysts, respectively [17,18].
However, due to their limited reserves and high prices, it is too costly for widespread
commercial application [19]. Thus, researchers have begun to explore effective and efficient
strategies to achieve the high dispersion of active substances, so as to optimize the use of
noble metal resources [15]. The study found that the tunability of the microstructures and
electronic states of active components on the atomic scale can provide higher performance
for electrochemical reactions [20,21]. Unfortunately, it is still a difficult and challenging
problem to improve the utilization rate of active components, the rate of catalytic reaction
and the thermal stability of the catalyst by controlling the dispersion of active sites and
the microstructure [22]. Loading the catalyst on suitable supporters (such as carbon
materials [23–25], metals [26,27], metal oxide [28,29], metal hydroxide [30,31], metal-organic
frameworks [32–34] and boron nitride [35,36]) is an optimal strategy to solve this problem.
In particular, layered double hydroxides (LDHs) and their derivatives (metal hydroxides,
hydroxides, oxides, sulfides, nitrides and phosphides) are widely studied in water splitting,
due to their compatible properties with traditional noble metals, easy synthesis, low cost,
rich resources, good activity and long-time durability [37,38]. The two or more kinds of
metal cations in the LDHs plate are uniformly dispersed on the atomic scale, and the metal
cations do not agglomerate [39]. Each single metal cation with catalytic activity can be
used as a single catalytic active site, leading to high catalytic activity in the electrocatalysis
process [40]. When used as supporters, the higher specific surface areas of LDHs can not
only effectively prevent the agglomeration and deactivation of catalyst nanoparticles but
can also play the role of anchoring the catalyst and adjusting its shape and size [41]. In
recent years, some important reviews on the development of LDHs-based materials used as
electrolyzed water catalysts have been summarized [42,43]. However, these early reviews
mainly focused on synthesis methods and techniques, such as exfoliation techniques,
interlayer techniques, etc. The reports of LDHs supporting noble metal nanoparticles are
less concerning, which is considered to be of great significance for the design of sustainable
energy materials [44,45]. In this review, the research progress of LDHs supporting noble
metal catalysts in recent years is reviewed (Scheme 1). The research on the intelligent design
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and synthesis of LDHs supporting noble metal catalysts in the field of water electrolysis is
briefly introduced from the aspects of preparation methods and modification methods. The
advantages of LDHs as catalysts and catalyst carriers are emphasized, and the relationship
between structures and properties is discussed. Combined with the current research
progress, the challenges and prospects in this field are put forward. This provides a useful
insight for developing stable and promising catalysts and catalyst carriers based on LDHs.
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2. LDHs-Based Electrocatalysts

LDHs are a class of typical anionic layered materials with a structure similar to
that of magnesium hydroxide (Figure 2). The chemical formula is usually [M2+

1−XM3+
X

(OH)2]x+(An−)x/n·mH2O, where M2+ and M3+ are metal cations located in the main plate
layer, An- is the interlaminar anion, and m is the number of interlaminar crystal water in
LDHs [46,47]. Structurally, each bivalent cation is surrounded by six hydroxyl octahedra;
sharing edges; and forms an infinite sheet metal layer [48,49]. The metals are stacked
together to form a layered structure held together by hydrogen bonds or Van der Waals
force [50]. Many metal ions can be used to synthesize LDHs with stable structures, such as
divalent metal cations Mg2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Mn2+ and Cd2+, and trivalent
metal cations Al3+, Co3+, Fe3+, Mn3+, Rh3+, Ru3+, Cr3+ and V3+ [46]. Due to the extensive
adjustability of the metal cations of LDHs, the exchangeability of the interlayer bound
anions, and the large number of physical and chemical properties assemblies, nanostruc-
tures can be rationally designed [51,52]. Li et al. [53] used a simple one-step hydrothermal
method to grow Gd-doped NiFe-LDH in situ. Gd doping optimizes the electronic structure
of NiFe-LDH, increases the number of its oxygen vacancies, enriches its layered porous
morphology and makes it have excellent OER electrocatalytic activity in alkaline medium.
Furthermore, LDHs can be used as support and precursors for different catalysts [38,54].
Due to the diversity of their types and compositions, as well as the different proportions
and arrangements of metal ions, it is possible to design different catalysts at the atomic
scale [55,56]. Many different kinds of LDHs contain Fe2+/Fe3+, Co2+/Co3+, Ni2+/Ni4+ and
Mn2+/Mn3+ and can be used as active catalysts directly [57]. Wang et al. [58] designed
the three-dimensional hollow structure of NiFe-LDH on the surface of NiFe foam (NiFe-
LDH@NiFe) by using the acid corrosion induction strategy. It should be noted that the
NiFe-LDH@NiFe needs only ultra-low overpotential of 201 mV in 1 M KOH electrolyte to
provide 10 mA cm−2 current density with excellent stability. The preparation method of
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LDHs electrocatalyst is simple and easy to obtain, which makes the structure of LDHs easy
to be controlled by chemical synthesis [59]. In addition, LDHs have an average specific
surface area and electrolytic water activity because of their unique lamellar structure and
electronic structure [60,61]. Recently, Wang et al. [62] have used NiCo-LDHs as a carrier
to load Pt nanoparticles. Highly dispersed and ultrafine Pt NPs/LDHs-supported cata-
lysts were prepared by using the anchoring effect of LDHs to regulate Pt nanoparticles.
This shows high catalytic activity and cycle stability in the electrocatalytic oxidation of
methanol.
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Recently, various studies on LDHs-based materials as catalysts for electrolyzing water
have been published with rapid growth trending. This literature pointed out that the
limited number of active sites, the poor conductivity and the poor intrinsic catalytic
activity of active sites are the key factors limiting the performance of electrocatalysts [64,65].
Therefore, in order to improve the electrocatalytic activity of LDHs, several strategies have
been developed. Increasing the number of active sites is a strategy to improve the catalytic
activity of LDHs electrocatalysts [62,66]. Chen et al. [67] found that ultra-thin or monolayer
LDHs can be directly synthesized by suitable two-dimensional region-limited growth in
solution, exposing more active sites and reducing the over-potential of electrocatalytic
reactions. The intrinsic catalytic activity of the active site is a greatly important factor
affecting the performance of LDHs electrocatalysts [68,69]. By loading noble metals (such
as Pt, Ir, and Ru) onto LDHs with large specific surface areas, the electronic distribution
of adjacent atoms can be effectively adjusted; the intrinsic catalytic activity of active sites
can be further regulated and improved, and it can also minimize the consume of precious
metals and improve the electrocatalytic performance in low cost [70,71]. LDHs can be
used as excellent catalyst supports due to their highly specific surface area. Their special
lamellar structure and satisfactory properties makes LDHs have highly specific surface
area, which can disperse noble metal nanoparticles evenly. It can also play the role of fixing
the catalyst and adjusting its shape and size, so that the catalytic active center can be highly
dispersed on the LDHs support. Experiments showed that LDHs as a support exhibited
higher catalytic activity and cycle stability in electrocatalytic reaction [46,71,72].
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3. Electrocatalysts of LDHs Supporting Noble Metals

Noble-metal-based catalysts (such as Pt, Ir and Ru) are considered to be electrocatalysts
with excellent catalytic activity [73]. Loading noble metal nanoparticles on the surface of
LDHs could expose more active sites, reduce the resource utilization and cost, and improve
electrocatalytic performance [37,74]. This has been corroborated by many recent reports.

3.1. Electrocatalysts of LDHs Supporting Pt

It is well known that Pt has excellent electrocatalytic properties in the reaction of
HER, but its high price, scarce reserves and catalyst deactivation limit its application [75].
However, the current Pt is still the best metal catalyst for electrocatalytic hydrogen activity.
In order to improve the utilization rate of Pt and reduce the cost of precious metals in
catalyst preparation, researchers have been committed to the development of catalysts that
can replace Pt in HER applications (such as transition metals Mo, W, etc.) [76]. Recently,
Feng et al. [77] electrodeposited Pt nanoparticles on amorphous NiFe-LDH to regulate
the interaction between Pt and NiFe-LDH. The experimental results show that the Pt
nanoparticles on the non-static NiFe-LDH surface are smaller than those on the crystalline
NiFe-LDH surface, and that the size distribution is narrow and uniform. By using the
porous structure and highly specific surface area of LDHs, the particle size and dispersibility
of Pt can be controlled, and the agglomeration of Pt nanoparticles can be prevented
effectively, thus achieving high utilization ratio of Pt [78].

Anantharaj et al. [79] reported that NiFe-LDH crystal plates with high crystallinity
were prepared by hydrothermal method, and NiFe-LDH-containing Pt nanoparticles were
synthesized by a two-step reaction. It was found that the Pt NPs can be uniformly dis-
tributed on the NiFe-LDH crystal prepared by hydrothermal method, but the NiFe-LDH
prepared by co-precipitation method cannot be realized (Figure 3a–f). The average size
of Pt nanoparticles on the NiFe-LDH crystal plate prepared by hydrothermal method
is 4 ± 1 nm (Figure 3a–c). The overpotential and Tafel slope of NiFe-LDH prepared by
hydrothermal method with Pt nanoparticles are 27 mV and 51 mV dec−1, which are lower
than NiFe-LDH co-deposited with Pt nanoparticles. These encouraging findings confirm
the applicability of high crystallinity Pt nanoparticles supported NiFe-LDH in all-water
electrocatalysis. Meanwhile, the unexpected formation of Ni0.6Fe2.4O4 on the surface
of NiFe-LDH wafers prepared by hydrothermal method increased the conductivity of
NiFe-LDH, thus enhancing the OER and HER activities of NiFe-LDH phase.

One of the most active commercial catalysts (Com-Pt/C) currently widely used for
HER is electrically conductive carbon loaded with Pt nanoparticles (20 wt% Pt/C) [80].
However, the content of 20% Pt in Com-Pt/C catalyst was still very high, so the content
of Pt should be further reduced. Recently, Yan et al. [81] used self-supporting 3D NiFe
LDH on carbon fiber cloth (NiFe LDH/CC) as the starting material and loaded ultrafine Pt
sub-nanoparticles on two-dimensional (2D) NiFe LDH nanosheets by chemical reduction
to prepare efficient NiFe LDH/CC electrocatalyst (Pt-NiFe LDH/CC) with low Pt content
(1.56 wt%). The results showed that strong interaction was formed between Pt sub-nano
clusters and 2D NiFe LDH nanosheets, which effectively prevented the aggregation of
Pt sub-nano clusters. The Pt sub-nano clusters with average size of 0.59 nm are highly
dispersed on the surface of NiFe LDH nanosheets, which can expose more active centers,
shorten the electron transfer path and greatly reduce the consume amount of Pt (Figure 4a).
The Pt-NiFe LDH/CC electrode has an ultra-low Pt content of 1.56 wt%. The overpotential
at a current density of 10 mA cm−2 is 28 mV, which is equivalent to the Com-Pt/CC
electrode (Figure 4b). After 1000 cycles, the Pt-NiFe LDH/CC electrode showed the same
performance as the original measurement; the current density kept 36,000 s at 10 mA cm−2,

and the potential was stable, which indicated excellent durability (Figure 4c,d). The Pt-NiFe
LDH/CC have excellent electrocatalytic properties, and the design of novel electrocatalysts
provides an effective strategy for the structure regulation of the catalysts in the future, in
order to achieve efficiency.
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3.2. Electrocatalysts of LDHs Supporting Ir

Due to the advantages of high catalytic activity, low energy consumption and stability
in the OER reaction, iridium-based catalysts have been widely used in electrode mate-
rials [82,83]. However, similarly to Pt, Ir has few reserves and is expensive, limiting its
large-scale application [84,85]. Therefore, in order to improve the efficiencies of iridium-
containing catalysts, new iridium-containing catalysts need to meet the following two
points: (1) high catalytic activity with low overpotential and (2) low cost of Ir [86,87]. To
this end, the majority of researchers have sought a new catalyst to explore and research.
They found that doping noble metal Ir nanoparticles into LDHs not only reduced the
dosage of noble metal Ir but also improved its catalytic efficiency [24,88]. In particular,
attractive nickel-based layered hydroxides (such as NiFe and NiCo LDHs) exhibit good
OER activity during alkaline electrolyzing water. Due to their abundant resources, highly
specific surface area and controllable chemical composition, they have attracted extensive
attention [89,90].

Recently, some researchers have developed bifunctional electrocatalysts by coupling Ir
with LDH. Li et al. [91] constructed Ir-O-V catalytic group by introducing Ir atom as dopant
and combining it with substrate material NiV-LDH, in which Ir atom helps to dissociate
water molecules and regulate the adsorption energy of bridging oxygen and V atom. The
OER and HER overpotentials of the synthesized NiVIr-LDH were 203 mV@10 mA cm−2

(Figure 5a) and 42 mV@10 mA cm−2 (Figure 5c), respectively. The corresponding tafel
slopes are 55.3 mV dec−1 (Figure 5b) and 35.9 mV dec−1 (Figure 5d). Thus, the total
water splitting current of 10 mA cm−2 was achieved at a voltage of 1.49 V (as anode
and cathode) by the newly prepared NiVIr-LDH catalyst, which is lower than that of
the Pt/C and Ir/C coupling (1.60 V@10 mA cm−2) (Figure 5e). Compared with other
bifunctional electrocatalysts, the electrocatalytic performance of the NiVIr-LDH catalyst is
better (Figure 5f). The appropriate binding of noble metal Ir nanoparticles into LDHs is an
effective strategy to improve catalytic performance, which can increase catalytic efficiency
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and reduce the consumption of noble metal Ir; moreover, the new catalytic group has
higher performance.
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Fan et al. [92] reports a bifunctional catalyst that in situ synthesizes Ir-NiCo LDH over
nickel foam (NF) by a two-step process (Figure 6a). The pristine NiCo LDH was first grown
on NF by solvothermal method at a low temperature of 90 ◦C and an atmosphere. Then,
the NiCo LDH/NF samples were immersed in the homogeneous precursor solution con-
taining IrCl3·3H2O and the spontaneous displacement was performed. The results showed
that LDHs were composed of many vertically aligned and interconnected nanosheets
(Figure 6b,c). The single Ir atom is highly dispersed in Ir-NiCo LDH/NF catalyst, and
the particle size is 0.2 nm (Figure 6d,e). The prepared NiCo-Ir LDH showed excellent
catalytic activity. The overpotential of HER at −10 mA cm−2 was 21 mV (Figure 6f). The
overpotential of OER at 10 mA cm−2 was 192 mV (Figure 6g). Because of Ir doping in
the LDH lattice, the synthesized NiCo LDH/NF has better durability than the Ir-loaded
NiCo LDH and sustainable stability of more than 200 h. The overall water decomposition
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performance (Figure 6h) of NiCo LDH/NF was obtained in 1.0 M KOH electrolyte at
10 mA cm−2 at 1.45 V low battery voltage. The remarkable properties of Ir-NiCo LDH can
be attributed to the doping of Ir in LDH lattice, which not only promotes their synergistic
effect in HER/OER process but also provides a large electrochemical active surface area
and improved conductivity.
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Figure 5. (a,b) OER and (c,d) HER activities of Ni(OH)2, NiV and NiVIr and their comparison with
conventional samples. (a) Polarization curves and (b) corresponding Tafel plots of Ni(OH)2, NiV,
NiVIr and Ir/C. (c) Polarization curves and (d) corresponding Tafel plots of Ni(OH)2, NiV, NiVIr and
Pt/C. (e) Polarization curves of NiV LDH, NiVIr LDH, Pt/C-Ir/C couple and NiFe LDH-Ir/C couple
for overall water splitting. (f) Comparison of overall water splitting performance between the new
bifunctional electrocatalyst and other bifunctional electrocatalysts in 1 M KOH with current density
of 10 mA cm−2. Adapted from Ref. [91], Copyright 2019, ACS Energy Letters.

3.3. Electrocatalysts of LDHs Supporting Ru

It was found that ruthenium (Ru) is also an excellent material for the design of
bifunctional electrocatalysts [93]. So far, numerous studies have shown that Ru and RuO2
exhibit excellent performance in HER and OER [94]. It should be noted that when the
applied potential is greater than 0.04 V (vs. RHE), the sub-nano Ru is easily oxidized to
RuO2, which provides effective guidance for the development of bifunctional catalysts
with good properties for HER and OER [73]. Considering the low dosage caused by large



Nanomaterials 2021, 11, 2644 9 of 17

grain size, it is imperative to reduce the size of Ru. Recently, Xi et al. [95] developed a Ru-
doped NiFe-based catalyst for three-dimensional nanoporous surfaces. In situ generated
metal (hydrogen) oxides and nano-porous structures provide a rich active center. The
overpotential is 245 mV at 10 mA cm−2, the slope of Tafel is 15 mV dec−1 and it has
excellent OER performance. However, pushing the catalysts to sub-nanoscale is not easy
because they are thermodynamically unstable and tend to clump together. It is an effective
strategy to improve the performance of HER and OER at the same time by building Ru
sub-nanoclusters on porous NiFe-LDH through electron coupling and synergetic effect [96].
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Chen et al. [67] proposed a new strategy to use Ru to partially replace Fe atoms to
greatly accelerate the rate of hydrogen evolution of NiFe-LDH. They used hydrothermal
reaction to grow Ru-doped NiFe-LDH nanosheets (Figure 7a). Many nanosheets with
a size of 90–180 nm are grown on the underlying nickel foam; they grow vertically and
are connected to each other (Figure 7b). A large number of highly dispersed, brightly
contrasted Ru atoms are present on NiFeRu-LDH nanoplates with a plane spacing of
0.25 nm, corresponding to the (012) plane of NiFeRu-LDH (Figure 7c,d). It is noteworthy
that the synthesized Ru-doped NiFe-LDH nanosheet (NiFeRu-LDH) displays good HER
performance. At the current density of 10 mA cm−2, the overpotential is only 29 mV, lower
than the precious metal Pt/C catalyst (31 mV at 10 mA cm−2) (Figure 7e). The bifunctional
NiFeRu-LDH electrocatalyst was used as anode and cathode in the total hydrolysis reaction,
and the alkaline cell with current density of 10 mA cm−2, could be driven stably at very low
1.52 V battery voltage. The cell voltage is lower than that of the Pt/C-Ir/C couple (1.60 V
at 10 mA cm−2) (Figure 7f). Both the experiment and density functional theory (DFT)
calculation results show that the introduction of Ru atoms in NiFe-LDH can effectively
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reduce the energy barrier of the Volmer step and ultimately accelerate the HER dynamics
under alkaline conditions (Figure 7g). This solution not only provides a new way to
replace platinum catalysts for the preparation of HER but also opens up a new way for the
development of low-cost, high-activity electrocatalysts for other catalytic reactions related
to energy conversion.
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stability test of the NiFeRu-LDH at a current density 10 mA cm−2. Adapted from Ref. [67], Copyright
2018, Advanced Materials.

Wang et al. [96] reported the preparation of an efficient NiFe-LDH supported nano-
Ru bifunctional electrocatalyst by two-step method (Figure 8a). The adsorption energy
of H* can be increased and the adsorption kinetics can be improved by combining sub-
nano Ru with NiFe LDH. The results show that Ru/NiFe LDH-F/NF nanoarrays have
good OER and HER properties. The overpotential of OER and HER at current density
of 10 mA cm−2 was 230.0 mV and 115.6 mV (Figure 8b,c). Ru/NiFe LDH-F/NF was
used as HER and OER electrodes to prepare a 10 mA cm−2 total electrolyzed water with a
potential of 1.53 V (Figure 8d). In addition, theoretical calculations show that the adsorption
energies of H* and OH* can be optimized at the Ru-NiFe LDH interface (Figure 8e,f). This
enhancement can be attributed to the unique multi-dimensional structure between Ru and
NiFe LDHs, as well as the intermediate modulation triggered by electron coupling and
synergy effects. This study provides new insights for the development of high efficient
bifunctional electrocatalysts for water electrolysis.
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comparison. Adapted from Ref. [96], Copyright 2020, Nanoscale.

3.4. Electrocatalysts of LDHs Supporting Other Noble Metals

The noble metals (Pt, Ir and Ru) described above have been extensively studied for
their excellent catalytic activity as active sites of water electrolysis catalysts [73]. Further-
more, it is worth mentioning that besides the above mentioned precious metals, other
precious metals (such as Au, Pd and Rh) also have high catalytic activity as electrocata-
lysts [97,98]. For example, Taei et al. [99] have successfully prepared AuNPs@CaFe-LDH
composite on CaFe-LDH surface by electrodeposition and used it as an efficient electro-
catalyst for OER and HER in alkaline solution. Compared with AuNPs, CaFe-LDH and
CaFe-LDH@AuNPs catalysts, AuNPs@CaFe-LDH catalysts have significantly preferable
OER and HER performance. Meanwhile, AuNPs@CaFe-LDH catalyst has excellent stabil-
ity. The high activity of AuNPs@CaFe-LDH is related to the synergistic effect of AuNPs
with CaFe-LDH and the higher electrochemical surface area provided by AuNPs. Further
investigation of the surface materials of the catalysts will provide useful information for
the design of better OER and HER electrocatalysts.
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Compared with noble metals such as Pt and Ir, the research on the combination of
Pd and non-noble metal catalysts to improve the electrocatalytic activity, especially the
electrocatalytic activity of hydroxide, is still at the initial stage, but there are some related
studies. Guo et al. [80] used a hydrothermal method to prepare layered NiFe LDH on
a foamed nickel substrate and prepared ultra-fine Pd nanoparticles by electrodeposition
to achieve improved bifunctionality of electrocatalysts. The introduction of palladium
can induce more active centers, strong electrical interactions, and enhance charge transfer,
resulting in a significant increase in the catalytic activity of water electrolysis. The Pd-NiFe
LDH exhibited impressive catalytic activity. Under the condition of current density of
10 mA cm−2, OER and HER exhibited 156 mV and 130 mV, respectively. The dual-electrode
electrolyzer assembled with Pd-NiFe LDH can achieve 1.514 V ultra-low battery potential
water splitting reaction under the condition of 10 mA cm−2.

Other researchers have found that Rh initially combines with NiFe-LDH in the form of
oxide dopant and metal clusters to significantly improve HER kinetics without sacrificing
OER properties. Zhang et al. [100] demonstrated that the combination of Rh and NiFe-LDH
can significantly improve HER dynamics performance without sacrificing OER properties.
In this study, Rh-loaded Ru/NiFeRu-LDH was directly grown on nickel foam by a simple
hydrothermal method. Rh was initially combined with NiFe-LDH in the form of oxide
dopant and metal clusters. In the synthetic materials, some of Rh replaced the iron centers
in the NiFe-LDH, and some of them were in the form of metal clusters (<1 nm). The
Rh/NiFeRh-LDH can catalyze HER current density of 10 mA cm−2 with only 58 mV
over-potential in 1 M KOH electrolyte and the current density of 10~190 mA cm−2 with
only 1.46~1.7 V battery voltage (Figure 9a,b). This performance is 5–6 times higher than
the reference cell of 20% Pt/C || RuO2 electrode and better than the most advanced
bifunctional electrocatalyst (Figure 9c,d).
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4. Conclusions and Prospectives

Electrolytic water reaction is considered to be an ideal method to produce carbon-free
high-energy hydrogen fuel. LDHs materials have been widely studied in the electro-
catalysis field, due to their unique layered structure, tunable metal species and highly
dispersed active sites. In this review, the research progress of LDHs supporting noble
metal electrocatalysts in recent years is reviewed; the applications of LDHs supporting
noble metal catalysts (Pt, Ru, Ir, etc.) in electrocatalysis were briefly introduced from the
aspects of preparation and modification. By using the highly specific surface area and
porous structure of LDHs, the size and dispersibility of noble metal nanoparticles can be
controlled, and the agglomeration of noble metal nanoparticles can be prevented effectively;
thus, the high utilization ratio of noble metal nanoparticles can be realized. Moreover, the
LDHs supporting noble metal catalysts obtained through the topotactic transformation of
LDHs precursors significantly reduced the energy barrier of electrolyzing water, showing
remarkable catalytic activity, good conductivity and excellent durability. Despite these
advances, there are still a number of issues and challenges to be explored to improve
their electrocatalytic performance and cost-effectiveness. In order to achieve the goal of
hydrogen fuel application, we propose several directions for future research work:

(i) Accurate control of the structure of LDHs is essential, and effective and advanced
synthesis methods can be used to manipulate its composition, morphology, size, interface
and nanostructure, for example, LDH nanoarrays with more uniform arrangement, layered
porous LDH nanosheets and ultrathin monolayer LDHs.

(ii) By adjusting the size of noble metal nanoparticles and dispersing them evenly
on the support, the amount of noble metal can be reduced to the maximum, and the
electrocatalytic performance can be improved at low cost. The more important goal is
to replace rare and precious metals with cheaper and richer metals, making the process
greener and greener and more cost-effective.

(iii) The electronic structure or conductivity can be adjusted effectively by introducing
dopant or defect. By adjusting the electronic structure, the conductivity and intrinsic
catalytic activity of the active site can be increased, the charge transfer can be promoted
and the catalytic activity can be improved.

(iv) It is very important to conduct the theoretical calculation of materials. The
theoretical calculation is helpful to estimate the adsorption and desorption capacity, band
gap and free energy change of each catalytic step, and to provide theoretical support for
researchers to select LDH materials with excellent properties.

(v) In order to meet the practical needs of large-scale application, the performance
and durability under a high current should be paid more attention. The reasons for the
reduction of catalytic activity, such as electrolyte corrosion and catalyst shedding, should be
systematically studied, in order to guarantee that the actual production has good stability.

The investigation of practical LDHs-based electrocatalysts has become a research
hotspot in the field of electrolyzed water. With the joint efforts of scientists from all over
the world, we believe that LDHs as promising electrocatalysts will be properly developed
and make a significant contribution to the industrial utilization of hydrogen fuel.
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