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ABSTRACT

Polysome-profiling is commonly used to study trans-
latomes and applies laborious extraction of effi-
ciently translated mRNA (associated with >3 ribo-
somes) from a large volume across many fractions.
This property makes polysome-profiling inconve-
nient for larger experimental designs or samples with
low RNA amounts. To address this, we optimized
a non-linear sucrose gradient which reproducibly
enriches for efficiently translated mRNA in only
one or two fractions, thereby reducing sample han-
dling 5–10-fold. The technique generates polysome-
associated RNA with a quality reflecting the starting
material and, when coupled with smart-seq2 single-
cell RNA sequencing, translatomes in small tis-
sues from biobanks can be obtained. Translatomes
acquired using optimized non-linear gradients re-
semble those obtained with the standard approach
employing linear gradients. Polysome-profiling us-
ing optimized non-linear gradients in serum starved
HCT-116 cells with or without p53 showed that p53
status associates with changes in mRNA abundance
and translational efficiency leading to changes in
protein levels. Moreover, p53 status also induced
translational buffering whereby changes in mRNA
levels are buffered at the level of mRNA translation.
Thus, here we present a polysome-profiling tech-
nique applicable to large study designs, primary cells
and frozen tissue samples such as those collected in
biobanks.

INTRODUCTION

Protein levels are modulated via a series of mechanisms in-
cluding transcription, mRNA-splicing (1), -transport (2), -

localization (3), -stability (4), –translation (2) and protein-
stability (5). Notably, mRNA translation is the most energy
consuming process in the cell (6) and its tight control is
therefore essential (7). Consistently, mRNA translation was
suggested as the predominant post-transcriptional mech-
anism impacting protein levels (8,9) although the relative
contribution of different mechanisms affecting protein lev-
els is context dependent (10,11). Moreover dysregulation of
translation is associated with pathologies as diverse as fi-
brosis (12), cancer (13) and neurodegenerative disease (14–
17). Thus, there is a need to study translatomes (i.e. the
transcriptome-wide pool of efficiently translated mRNA) to
obtain a more complete understanding of how gene expres-
sion is modulated in both health and disease.

Regulation of mRNA translation can be global, by affect-
ing mRNAs transcribed from essentially all genes; selective,
by targeting mRNAs from a gene subset; or specific, by af-
fecting mRNA copies from a single gene (14,18). Studies of
translatomes can be used to explore the latter two contexts
as global changes in translation cannot be assessed using
relative quantification methods such as RNA sequencing
(RNAseq) or DNA-microarrays (19). Translation can be di-
vided into four phases: initiation, elongation, termination
and recycling (20). Although the elongation phase can be
regulated by e.g. cellular stress (21), most described modu-
lation of translation occurs at the initiation step, where mR-
NAs are recruited to ribosomes (20,22). When translation is
regulated via changes in initiation, a change in the propor-
tion of all mRNA copies from a single gene that are effi-
ciently translated is observed (19). Such changes appear to
be mediated via two modes of regulation: a large change in
translational efficiency from almost complete association to
almost complete dissociation with polysomes (on-off regu-
lation); or a less dramatic modulation of translational ef-
ficiency largely contained within polysomes (19). For ex-
ample, following inhibition of the mammalian/mechanistic
target of rapamycin (mTOR), mRNAs harbouring a 5′ Ter-
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minal Oligopyrimidine Tracts element (TOP-mRNAs) in
their 5′ un-translated regions (5′UTRs) show on-off reg-
ulation while mRNAs, e.g. encoding mitochondria-related
proteins show a shift in translational efficiency while still
largely being associated with polysomes (19). Importantly,
both modes of regulation lead to a change in the proportion
of mRNA associated with >3 ribosomes (19). This prop-
erty underlies selection of mRNAs associated with >3 ribo-
somes to represent the pool of efficiency translated mRNA
during polysome-profiling.

Polysome- and ribosome-profiling are commonly used to
study translatomes (18). Polysome-profiling involves isola-
tion of cytosolic extracts followed by sedimentation in a lin-
ear sucrose gradient (commonly 5–50% sucrose). During
centrifugation, mRNAs sediment according to how many
ribosomes they associate with and, following fractionation,
efficiently translated mRNAs (i.e. those fractions contain-
ing mRNA associated with >3 ribosomes) can be identified
and pooled. The mRNA-pool is then quantified using ei-
ther DNA-microarrays or RNAseq to derive data on trans-
latomes. The >3 ribosome cutoff for isolation of efficiently
translated mRNA could potentially result in that mRNAs
whose change in translational efficiency does not involve a
transition across this threshold cannot be identified. De-
tailed studies of mTOR sensitive translation indicate that
many mRNAs will shift across the >3 ribosome cutoff (19).
Moreover, as ribosome association is normally distributed
(19), even a shift in mean ribosome association from 1 to
3 ribosomes will involve a change in the proportion associ-
ated with >3 ribosomes (i.e. as a result of the shift of the tails
of the distributions). For the same reason, shifts from e.g.
5 to 10 ribosomes also involves a small shift in the amount
of mRNA associated with >3 ribosomes. Thus selection of
>3 ribosomes to represent efficiently translated mRNA has
an underpinning for studies of mammalian cells but it can-
not be excluded that some shifts cannot be observed (those
largely occurring within very high ribosome association).
During ribosome-profiling, ribosome-protected fragments
(RPFs) are generated by applying a mild RNase treatment
and isolated using gel purification (23). RPFs are then iden-
tified and quantified using RNAseq to reveal nucleotide res-
olution ribosome location. Such data is most commonly
used to decipher patterns of ribosome positioning (24,25),
but can also be used to assess changes in translational effi-
ciency.

Thus, in contrast to polysome-profiling where efficiently
translated mRNAs associated with >3 ribosomes are quan-
tified (i.e. an mRNA perspective), ribosome-profiling quan-
tifies ribosome-association (i.e. a ribosome-perspective). We
recently showed that this leads to a bias during ribosome-
profiling when mRNAs showing large changes in trans-
lational efficiency and those showing smaller shifts con-
tained within polysomes are regulated under the same con-
dition. Under these settings ribosome-profiling will, to a
larger extent as compared to polysome-profiling, bias to-
wards identification of abundant mRNAs showing larger
changes as differentially translated (26). This difference
in bias between polysome- and ribosome-profiling origi-
nates from that, during ribosome-profiling, translational ef-
ficiency is indirectly inferred by the number of RPFs, and
thus the magnitude of the shift in ribosome association is

directly proportional to the fold-changes estimated. In con-
trast, during polysome profiling, translational efficiency is
directly estimated from amounts of efficiently translated
mRNAs associated with >3 ribosomes which results in
a less pronounced bias (26). One limitation of polysome-
profiling is that information regarding which part of the
mRNA is translated is lacking. Indeed, some mRNAs such
as SLC45A4 can shift between translating the main open
reading frame (ORF) to an upstream ORF (uORF) (27).
Such changes in ribosome location can only be resolved us-
ing ribosome profiling. Ribosome-profiling can in turn not
be used to link changes in translational efficiency to tran-
scription start site usage as untranslated regions (UTRs)
are degraded during isolation of RPFs (19). In contrast
polysome-profiling allows for exploration of the impact of
5′UTRs on translational efficiency (19). Thus, polysome-
and ribosome-profiling are complementary methods neces-
sary to enhance our understanding of how translatomes are
modulated where polysome-profiling is preferred for unbi-
ased studies of changes in translational efficiency.

A technical challenge during polysome-profiling, how-
ever, is that the pool of efficiently translated mRNA is col-
lected in a large volume (often >3 ml) spread across 5–10
fractions. Such RNA is commonly isolated from each frac-
tion separately and pooled during re-suspension of purified
RNA pellets. For small samples, however, such extensive
dilution is problematic as it may cause sample loss. More-
over, isolation of RNA from many fractions is labor inten-
sive and, in larger experimental setups (e.g. large in vitro
experiments or studies of clinical cohorts involving hun-
dreds of samples resulting in thousands of fractions that
need to be pooled), may introduce a risk of mistakes such
as erroneous pooling of fractions and sample mislabeling.
Therefore, approaches simplifying collection of efficiently
translated mRNAs (i.e. associated with >3 ribosomes) are
warranted. Herein, we describe an optimized non-linear su-
crose gradient which collects efficiently translated mRNA
(associated with >3 ribosomes) in only one or two frac-
tions to reduce sample handling 5–10-fold and time needed
for RNA extraction by 10–20-fold. By coupling isolation of
such mRNA with RNAseq methods developed for single-
cells, we show that it is possible to derive data on trans-
latomes from small tissue samples such as those collected
in biobanks. Importantly, this approach produces very sim-
ilar data on translatomes as compared to the standard linear
gradient approach (28). Thus, polysome-profiling can now
be applied to small samples from tissues or primary cells
where RNA amount is limited.

MATERIALS AND METHODS

Preparation of cytosolic lysates from cell lines

HCT-116 p53+/+, HCT-116 p53−/− (kindly provided by
Galina Selivanova, Karolinska Institutet) and MCF7
(ATCC HTB-22™) cell lines were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10%
fetal bovine serum, 1% penicillin/streptomycin and 1% L-
glutamine (Gibco, Life Technologies). Briefly, cells (1 × 106)
were seeded in 15-cm cell culture dishes (Corning), har-
vested at 80% confluency (HCT-116 p53+/+ and p53−/− cells
were also serum starved [0.1% fetal bovine serum for 16
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h prior to harvest]), lysed in hypotonic lysis buffer (5 mM
Tris–HCl, pH 7.5, 2.5 mM MgCl2, 1.5 mM KCl, 100 �g/ml
cycloheximide, 2 mM DTT, 0.5% Triton, 0.5% sodium de-
oxycholate; all from Sigma Aldrich) and the cytosolic ex-
tract was loaded onto the sucrose gradient. A detailed pro-
tocol described previously (28) was applied with the mod-
ification that instead of adding cycloheximide to the me-
dia, the cell media was discarded, plates were placed on
ice and immediately washed in an ice-cold solution of 1×
phosphate-buffered saline (PBS) and cycloheximide (100
�g/ml; Sigma Aldrich).

Preparation of cytosolic lysates from tissues

All breast cancer samples were collected in the A.C. Ca-
margo Cancer Center biobank (São Paulo, Brazil) under
informed consent (ethical permission 1844/13). To prevent
tissue thawing and subsequent RNA degradation, all mate-
rials including tools and plastics were kept in liquid nitro-
gen during sample processing. Tissues were pulverized us-
ing a BioPulverizer (United Laboratory Plastics) followed
by grinding in a liquid nitrogen-proof container until a fine
powder was obtained. The powder was collected and kept
on dry ice or stored at −80◦C. A modified hypotonic ly-
sis buffer with a 10-fold higher concentration of cyclohex-
imide (as compared to above) was used. Also the RNase in-
hibitor (RNaseOUT, Invitrogen) was replaced by Recombi-
nant RNasin® Ribonuclease Inhibitor (Promega). To pre-
vent clogging, a modified 1000 �l tip (cut to get a wider
entry channel) was used to add 500–1000 �l (depending
on the size of the tissue sample) ice-cold lysis buffer to the
previously collected powder and mixed until homogeniza-
tion. The sample was further homogenized using an ice-
cold Dounce homogenizer (60 strokes using both the loose
and tight pestle) in the presence of 0.5% Triton and 0.5%
sodium deoxycholate. The homogenate was centrifuged at
maximum speed (21 500 RCF) for 2 min at 4◦C in a table
top centrifuge and 50 �l supernatant was collected and di-
luted in 450 �l of nuclease-free water (referred to as cytoso-
lic RNA). TRI-reagent® (Sigma Aldrich) was added and
cytosolic RNA samples were stored at −80◦C. The remain-
ing cytosolic lysate was immediately loaded on sucrose gra-
dients.

Preparation of optimized non-linear sucrose gradients

A 5X gradient buffer (100 mM HEPES pH 7.6, 500 mM
KCl, 25 mM MgCl2; all from Sigma Aldrich) was used to
prepare sucrose solutions needed for the gradient: 5% (w/v),
34% (w/v) and 55% (w/v) (1× final concentration of gradi-
ent buffer [v/v] adjusted with water). A gradient cylinder
(BioComp) was used to draw a line on each centrifuge tube
at the highest level of the cylinder (corresponds to about 5.5
ml when using the Open-Top Polyclear Centrifuge Tubes [14
× 89 mm, SETON Scientific, Part No. 7030]). A 1000 �l
pipette was then used to add 2 ml of the 5% sucrose solu-
tion to the tube. Then, a syringe with a layering needle (Bio-
Comp) was used to add the 34% sucrose solution at the bot-
tom of the tube (i.e. below the 5% sucrose solution) until the
surface of the 5% solution reached the drawn line. Finally,
a 55% sucrose solution was added from the bottom of the

tube until the interface between the 34% and 55% solutions
reached the drawn line. The tubes were then capped with
rate zonal caps (BioComp) and stored at 4◦C for 2 h before
use (to standardize the time between gradient preparation
and loading of samples). All reagents were nuclease-free.

Preparation of linear sucrose gradients

The linear gradients were prepared as described (28).

Sample loading onto sucrose gradients and fractionation

First, 500 �l of sucrose solution was removed from the top
of the gradient without disturbing gradient composition.
The cytosolic lysate (∼500 �l) was then layered on the sur-
face of the gradient. To precisely balance the samples for
ultracentrifugation we used 1× hypotonic lysis buffer when
needed. The samples were centrifuged at 209 815 RCF for 2
h at 4◦C in a SW 41 Ti rotor and a Beckman Coulter Ultra-
centrifuge Optima L-90K. Samples were eluted using either
the gradient station (BioComp) or the Biologic LP pump
(Bio-Rad) coupled to a Model EM-1 Econo UV detector
(BioRad). Fractions (∼500 �l) were collected with either
a Piston Gradient Fractionator (BioComp) coupled with a
fraction collector (Gilson) or a model 2110 fraction collec-
tor (Bio-Rad). The precise location of the fractions along
the UV-tracing was monitored using either the gradient pro-
filer v1.25 (BioComp) software or the LP Data View v1.03
(Bio-Rad). TRI-reagent® was immediately added to each
fraction and fractions were kept on ice prior to storage at
−80◦C.

RNA extraction

For the optimized non-linear gradient, fractions containing
the center of the peak and the fraction towards the bottom
of the centrifugation tube (referred to as fractions 0 and +1
in the results section) were pooled and RNA was extracted
using Tri-reagent®. For cell lines profiled using linear gra-
dients, fractions corresponding to mRNA associated with
>3 ribosomes (fractions 17–25 for the current setup, result-
ing in 9 tubes with a volume of ∼500 ul each) where ex-
tracted separately using Tri-reagent® (according to the pro-
tocol of the manufacturer) and then pooled during resus-
pension of RNA pellets. RNA extraction was performed
differently depending on the source of the RNA (cell line
or tissue sample). RNA from cell lines was extracted using
Tri-reagent® and further purified with RNAeasy MinElute
Cleanup Kit (Qiagen) according to manufacturer’s recom-
mendations. For tissue samples, the extraction protocol was
modified to maximize the amount of RNA recovered: Af-
ter standard phase separation with chloroform, the upper
aqueous phase was transferred to a mixture of 2 volumes of
ethanol 99.5% and linear acrylamide (15 �g/ml; Life Tech-
nologies). The mixture was centrifuged at 4◦C for 40 min
in a table top centrifuge at maximum speed (21 500 RCF)
and the pellet was dissolved in 100 �l of RNase free water.
The RNA was further purified using the RNAeasy MinE-
lute Cleanup Kit (Qiagen) according to manufacturer’s pro-
tocol. RNA quantity was measured by target-specific fluo-
rescence (Qubit, Life Technologies) and its quality assessed
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with on-chip electrophoresis using an Agilent Bioanalyzer
2100. The latter applies an algorithm to assign an RNA in-
tegrity number (RIN) to each sample. An RIN of 10 indi-
cates perfectly intact RNA.

Preparation of smart-seq2 RNAseq libraries and sequencing

Smart-seq2 was performed as previously described (29)
using 10 ng (when possible, otherwise less) of RNA as
starting material from five tissue samples (cytosolic RNA
and polysome-associated RNA isolated using the optimized
non-linear gradient) and four biological replicates of HCT-
116 p53+/+ and HCT-116 p53−/− cells serum starved (0.1%
fetal bovine serum) for 16 h (cytosolic RNA, polysome-
associated RNA isolated using the optimized non-linear
gradient and polysome-associated RNA isolated using the
linear gradient). Quality of RNAseq libraries was evalu-
ated by on-chip electrophoresis using an Agilent Bioana-
lyzer 2100. Sequencing was performed on RNAseq libraries
from cell lines and tissues separately. Prior to sequencing,
all RNAseq libraries were adjusted to a concentration of 10
nM and then pooled, clustered using cBot clustering and se-
quenced on the HiSeq2500 platform (HiSeq Control Soft-
ware 2.2.58/RTA 1.18.64, Illumina) with a 1 × 50 bases
setup using ‘HiSeq SBS Kit v4′ chemistry. After each cy-
cle, image analysis and base calling was performed using
the CASAVA software suit. Technical quality of the RNA
sequencing was assessed using MultiQC (30).

Analysis of RNAseq data

RNAseq reads from the breast cancer tissues and 4 bio-
logical replicates of serum starved HCT-116 p53+/+ and
HCT-116 p53−/− cells were mapped to the human refer-
ence genome GRCh38 using Bowtie (31) (settings: –a –
m 1 –best –strata –n 2 –l 28). The rpkmforgenes script
(32) was used to quantify gene expression (with options -
readCount, -fulltranscript and -onlycoding) based on Ref-
Seq annotation. The reads per kilobase per million mapped
read (RPKM) output from the rpkmforgenes script was
used to assess quality of breast cancer RNAseq libraries.
For analysis of HCT-116 cells, genes with zero count(s) or
overlapping gene variants were excluded from the analysis
leading to a total of 8675 quantified genes. Raw counts were
scaled using TMM normalized library sizes (33) and log2
counts per million were computed using the voom func-
tion of the limma R package (34). To explore whether the
two gradient methods led to similar gene expression pat-
terns, principal component analysis was performed after
centering per gene. Each sucrose gradient method was then
considered separately to assess differential expression of
polysome-associated mRNA between HCT-116 p53+/+ and
HCT-116 p53−/− cell lines. Differential expression analy-
sis was performed using t-tests applying RVM (Random
Variance Model) (35), including the replicate number as
factor in the models as implemented in the anota2seq R
package (available at Bioconductor). P-values were adjusted
using the Benjamini–Hochberg (BH) method (36) and a
false discovery rate (FDR) < 0.1 was considered signifi-
cant. The correlation of log2 fold changes between HCT-
116 p53+/+ and HCT-116 p53−/− obtained using linear and

optimized sucrose gradients was assessed using the Spear-
man rank correlation coefficient. The different modes of
regulation of gene expression associated with p53 status
were then identified using the optimized gradient data. To
this end, polysome-associated mRNA from optimized non-
linear sucrose gradients and cytosolic mRNA data were re-
normalized as described above. A previously described gene
signature of p53 transcriptional targets (37) was used to
characterize expected differences between HCT-116 p53+/+

versus HCT-116 p53−/− cells. Anota2seq allows for iden-
tification of differences in translational efficiency affecting
protein levels and buffering. The replicate number was in-
cluded as a covariate in the linear models. Unrealistic mod-
els of differential translation and buffering were excluded
(the filtering criteria in the anota2seqSelSigGenes function
were as follows: maxSlope = 1.5, minSlope = -0.5, deltaPT
= log2(1.2), deltaP = log2(1.2) for translation and maxS-
lope = 0.5, minSlope = -1.5, deltaT = log2(1.2), deltaTP
= log2(1.2) for buffering. Genes with an FDR < 0.25 (a
relaxed FDR threshold was used to obtain a sufficiently
large number of identifiers in each regulatory pattern to al-
low for sensitive Gene Ontology [GO] enrichment analysis)
were selected for GO enrichment analysis. Only GO terms
(from the Biological Processes ontology) with 5 to 500 genes
were considered for hypergeometric tests using GOstats (35)
where ‘conditional’ was set to FALSE (the structure of the
GO graph is not considered in the tests). Only processes an-
notated to at least five genes in a regulatory pattern were
considered. The significant GO terms (FDR < 0.05) of each
set (translation up, translation down, buffering up, buffer-
ing down, abundance up [i.e. congruent up-regulation of cy-
tosolic and polysome-associated mRNA levels] and abun-
dance down) were visualized in a heatmap (row dendrogram
shows unsupervised clustering using default method of the
gplots::heatmap.2 function) (36). All analyses were done us-
ing R version 3.3.1.

RESULTS

Design of an optimized non-linear sucrose gradient for isola-
tion of efficiently translated mRNA

Because polysome-profiling with linear gradients requires
extraction of RNA from many fractions per sample to iso-
late efficiently translated mRNA (Figure 1A), we consid-
ered alternative approaches. As many mRNAs show con-
tinuous shifts in translational efficiency within polysomes,
pelleting ribosomes would not allow for estimates of their
changes in translational efficiencies as such mRNA would
be pelleted when associated with at least 1 ribosome. In-
stead we reasoned that a high percentage sucrose solution
below an intermediate concentration sucrose solution could
potentially enrich for efficiently translated mRNAs (asso-
ciated with >3 ribosomes) at the surface of the high per-
centage sucrose – if the optimal sucrose concentrations were
identified. This would allow for elution of efficiently trans-
lated mRNA in a smaller volume as compared to the stan-
dard linear gradient. While 55% sucrose essentially halts
polysome sedimentation, we searched to identify a second
sucrose concentration that would allow for such enrichment
at the 55% sucrose surface. We therefore examined the lin-
ear relationship between the log2 number of associated ri-
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Figure 1. The linear and optimized non-linear gradients. (A) Polysome profiling using a linear 5% to 50% sucrose gradient. Cytoplasmic RNA is extracted
and loaded on the linear gradient. Following ultracentrifugation, 40S and 60S ribosome subunits, the 80S monosomes, and polysomes are separated
(schematics show UV tracing at 254 nm across the sucrose gradient). Efficiently translated mRNA is isolated from polysome-fractions containing mRNA
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layers of 5%, 34% and 55% sucrose. The purpose is to collect mRNA associated with more than three ribosomes at the surface of the 55% sucrose solution.

bosomes and sedimentation distance (19). This allowed us
to calculate the sucrose concentration that separates mR-
NAs associated with three ribosomes from those associated
with four ribosomes in a linear gradient (Figure 1B; equals
to 34% sucrose). To facilitate entry into the gradient, we
added a third sucrose layer of 5% sucrose on the top of the
34% sucrose. We next attempted to determine the appro-
priate volumes of each of the sucrose layers. The objective
was to position the surface of the 55% sucrose close to the
top of the tube (to reduce time needed for elution) while
still allowing a sufficient volume of 34% sucrose for good
separation between efficiently (>3 ribosomes) and less effi-
ciently translated mRNA. A highly reproducible approach
for generating layers of sucrose is to start by adding the low-
est concentration of sucrose solution to the tube and then
add increasingly higher sucrose concentrations at the bot-
tom of the tube; thereby displacing the lower concentration
sucrose solution(s) towards the top of the centrifuge tube
(28). While the first layer of 5% sucrose can be added by
volume directly to the tube, additional volumes for the re-
maining layers are best determined by monitoring the in-
terface between layers and let these reach a certain posi-
tion in the tube. It is essential that this position can be re-
producibly indicated on the tube and we therefore used the
same approach as when making a linear gradient using the
BioComp gradient maker, whereby a cylinder is used to in-
dicate the desired level on the tube (28). Our initial test of
the optimized non-linear gradient indicated separation of

40S, 60S ribosomal subunits and the 80S monosome fol-
lowed by a peak at the interface between the 34% and 55%
sucrose solutions (Figure 2A).

Reproducible isolation of efficiently translated mRNA using
the optimized gradient

We noticed that the width of the peak at the interface be-
tween the 34% and 55% sucrose layers increased with the
time between preparation of the gradient and centrifugation
of the sample, consistent with that a local gradient is formed
at the interface between the 34% and 55% sucrose solutions.
We therefore standardized the time between preparation of
the gradient and layering of the sample to 2 h (which is
sufficient to prepare lysates to load onto the gradient). We
next sought to explore the nature of the fractions surround-
ing the large peak at the 34% and 55% sucrose interface to
assess whether this peak indeed is enriched for mRNA as-
sociated with >3 ribosomes. To this end, we used a large
batch of cells (12 plates [15 cm] of MCF7 cells) and sedi-
mented their lysate on the optimized non-linear gradient.
The major area of the peak between the 34% and the 55%
sucrose was spread across 3 fractions (Figure 2A). We des-
ignated the fraction containing the center of the peak as 0
and those toward the 34% sucrose as −1 (etc.) while those
toward the 55% sucrose as +1 (etc.; Figure 2B). The vast
amount of RNA used as input allowed us to collect five frac-
tions surrounding the peak between the 34% and the 55%
sucrose solutions and dilute these 7-fold to enable a run of
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Figure 2. Identification of fractions from the optimized non-linear sucrose gradient that reproducibly contain mRNA associated with >3 ribosomes. (A)
Cytosolic lysates from MCF7 cells were sedimented on an optimized non-linear sucrose gradient or a linear sucrose gradient in parallel. Subsequently,
the nature of the large high peak from the optimized non-linear sucrose gradient was explored using a linear sucrose gradient which indicated a strong
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or negative numbers, respectively. Shown is also the profile from a linear gradient processed in parallel. The vertical lines indicate fractions containing >3
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each fraction separately on the standard 5–50% linear su-
crose gradient (diluted to prevent samples from sinking into
the linear gradient; Figure 2A). In addition, we generated
a new cytosolic lysate (from 2 additional plates of MCF7
cells cultured in parallel with those used for the non-linear
gradient) and loaded this on a linear gradient as control.
As shown in Figure 2B, fraction 0 and +1 are strongly en-
riched for mRNA with >3 ribosomes while fraction −1, al-
though still enriched for efficiently translated mRNA, show
relatively more mRNA associated with <3 ribosomes. This
pattern was observed in two additional independent exper-
iments (Supplementary Figure S1). We therefore concluded
that collection of fractions containing the center of the peak
(i.e. 0) and the one further towards the bottom of the tube
(i.e. +1) allows for isolation of a pool of mRNA that is
strongly enriched for those associated with >3 ribosomes.
This allows collection of efficiently translated RNA in just
two fractions. After pooling these fractions (i.e. 0 and +1)
and splitting them into one sample for processing and one

sample as backup, the procedure allows for downstream
processing of a single tube containing efficiently translated
mRNA.

The optimized non-linear gradient allows for consistent isola-
tion of high quality RNA

A concern is that application of the optimized non-linear
gradient leads to a reduction in the amount of isolated effi-
ciently translated mRNA. To assess this, and to validate that
high quality RNA can be reproducibly obtained, we used
two cell lines that differ in their p53 status (HCT-116 p53+/+

and HCT-116 p53−/−) (Supplementary Figure S2A). We
serum-starved the cells (16 h) as translation is commonly
modulated during cellular stress and this setup would al-
low us to assess whether p53 status affected such responses.
Serum starvation had a comparable effect on global trans-
lation for the two cell lines as judged by a similar reduc-
tion in polysome-associated RNA coupled with an increase
in 80S and free ribosome subunits (Supplementary Figure
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S2B). To allow for a rigid comparison between the stan-
dard linear gradient and the optimized non-linear gradi-
ent, we prepared cytosolic lysates from six plates (15 cm)
from each cell type and divided the lysates equally between
the optimized non-linear gradient and the linear gradient.
We then collected fractions corresponding to mRNA asso-
ciated with >3 ribosomes from the linear gradient and peak
0 and +1 from the optimized non-linear gradient. We re-
peated the experiment four times and measured the RNA
quantity. The optimized non-linear gradient and linear gra-
dient allowed for isolation of similar amounts of efficiently
translated mRNA (Figure 3A). Assessment of the quality
of extracted mRNA by RNA Integrity Number (RIN; Agi-
lent Bioanalyzer) showed that both gradients allow for con-
sistent isolation of essentially perfectly intact RNA (RIN
> 9.5; Figure 3B). Thus, the optimized non-linear gradi-
ent and linear gradient show similar performance in terms
of quality and quantity of the isolated efficiently translated
RNA.

The optimized non-linear gradient and the linear gradient
generate similar data on translatomes

Ideally, data on translatomes from the optimized non-linear
gradient should be similar to those obtained using the stan-
dard approach employing linear gradients. To evaluate this,
we determined translatomes from serum starved (16 h)
HCT-116 cells with and without p53 (as described above).
To mimic a situation observed in tissue samples or primary
cells, where obtained RNA amounts are often limited, we
employed smart-seq2 developed for single-cell RNAseq (29)
and used 10 ng of RNA as input. Smart-seq2 libraries were
prepared using efficiently translated RNA obtained using
linear gradients and optimized non-linear gradients; and
cytosolic RNA as input. Following sequencing and data
processing, we used principal component analysis to ex-
plore the major sources of variation in the data set. Absence
of a highly ranked PCA component (by percentage of ex-
plained variance) showing differences between techniques
used to prepare efficiently translated RNA would indicate
that methods are comparable. As expected during analy-
sis of polysome-profiling data, the first component captur-
ing the main source of variance (52.1%) relates to RNA
source such that cytosolic mRNA samples separate from
polysome-associated mRNA samples. The second (16.7%
of the variance) and third (6.1% of the variance) principal
components separate samples according to replicate (no-
tably the need to adjust for run-bias during analysis was
recently identified (12)) and p53 status, respectively (Fig-
ure 4A). Thus, the absence of a highly ranked component
showing differences between the optimized non-linear gra-
dient and the linear gradient is consistent with that gradi-
ents produce similar data on translatomes. To further sub-
stantiate this observation, we compared gene expression be-
tween HCT-116 p53+/+ and p53−/− cells using data from
polysome-associated mRNA isolated from the optimized
non-linear sucrose gradient or the linear gradient separately.
At an FDR threshold of 0.1, the optimized gradient ap-
proach was associated with more differential expression as
compared to the linear gradient method (Figure 4B). More-
over, nearly all mRNAs identified by the linear gradient

were also identified by the optimized non-linear gradient
(Figure 4C). Furthermore, the fold-changes obtained be-
tween HCT-116 p53+/+ and p53−/− cells when applying the
two approaches showed high correlation (Spearman coeffi-
cient: 0.74, Figure 4D). Consistently, the difference between
the two techniques was the obtained FDRs rather than the
fold changes such that lower FDRs were obtained when us-
ing the optimized non-linear gradient (Figure 4E). This is
consistent with that the optimized non-linear gradient gen-
erated data of lower variance as compared to the linear gra-
dient. We therefore conclude that the optimized non-linear
gradient will provide similar data on translatomes as com-
pared to the standard linear gradient.

P53 status affects gene expression via multiple mechanisms
including translational buffering

Next we sought to determine how p53 status affects gene
expression under serum starvation at multiple levels includ-
ing mRNA abundance (i.e. congruent changes in cytoso-
lic and polysome-associated mRNA levels––which is con-
sistent with altered transcription or mRNA stability); and
translational efficiency affecting protein levels (i.e. a larger
change in polysome-associated mRNA as compared to cy-
tosolic mRNA) or buffering (wherein polysome-associated
mRNA levels remain largely unchanged despite altered cy-
tosolic mRNA levels). Translational buffering is distinct
in the sense that it acts to maintain protein levels con-
stant while the former two modes of regulation will influ-
ence protein levels. The recently developed anota2seq algo-
rithm efficiently identifies and separates these three regu-
latory modes and was employed for analysis. As expected,
genes whose transcription was previously identified as sen-
sitive to p53 activity (37) showed increased cytosolic mRNA
levels in p53+/+ as compared to p53−/− cells (Figure 5A). In-
terestingly, changes in polysome-associated mRNA quan-
tified from the optimized non-linear sucrose gradient were
more abundant, as judged by the number of mRNAs show-
ing low FDRs for p53-status dependent expression, com-
pared to changes in cytosolic mRNA levels (Figure 5B).
Consistently, more mRNAs showed modulation in trans-
lational efficiency affecting protein levels (682 mRNAs) as
compared to changes in mRNA abundance (438 mRNAs;
Figure 5C; Supplementary Table S1). Intriguingly many
changes in cytosolic mRNA levels were buffered at the level
of mRNA translation (373 mRNAs; Figure 5C; Supple-
mentary Table S1). Thus, the optimized non-linear gradi-
ent in combination with Smart-seq2 and anota2seq analy-
sis efficiently interrogates the impact on p53 status on mul-
tiple gene expression programs and highlights a key role
of mRNA translation in regulating gene expression un-
der cellular stress induced by serum starvation. To gain in-
sights into whether different modes of regulation target dis-
tinct cellular functions (i.e. a division of labor pattern) or
whether there is a large overlap with regards to which func-
tions are affected, we searched for an over-representation
of genes with shared functions as defined by the gene ontol-
ogy consortium (38). Indeed, mRNAs that showed congru-
ently increased cytosolic and polysome-associated mRNA
levels in p53+/+ cells were enriched for functions includ-
ing those related to extracellular matrix, development and
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Figure 3. Assessing the quality and quantity of RNA isolated with linear or optimized non-linear gradients. (A) Mean (error bars correspond to standard
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116 p53−/− cells (the cytosolic lysate obtained from three 15 cm plates of 80% confluent cells was applied to each gradient). (B) Obtained RNA integrity
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migration. Moreover, genes whose cytosolic mRNA levels
were buffered at the level of translation were enriched for
neural related functions (Figure 5D; Supplementary Table
S2). Thus, there appears to be selectivity with regards to
which cellular functions are targeted by which gene expres-
sion mechanism (Figure 5D).

Polysome-profiling of bio-banked breast cancer tissues using
optimized non-linear gradients and smartSeq2

To comprehensively evaluate the non-linear sucrose gra-
dient for isolation of efficiently translated mRNA from
biobanked tissue samples, we identified a cohort of 161
breast cancer tissues and applied the optimized non-linear
gradient to isolate their efficiently translated mRNA. The
sizes of the tissue samples were not recorded in the biobank
but estimated to vary between <30 to ∼100 mg. We could
consistently identify the 0 and +1 fractions in the profiles
obtained from the non-linear gradient (Supplementary Fig-
ure S3). These fractions were pooled and split into one
assay- and one backup-sample. The assay-sample was then
subjected to RNA extraction and the quality of the iso-
lated cytosolic and polysome-associated RNA was assessed.
There was a correlation between the RINs of the two RNA
pools (Pearson correlation = 0.66, Figure 6A). RINs for ef-
ficiently translated mRNA were higher (i.e. indicating more
intact RNA) as compared to those observed in cytosolic in-
put samples (Figure 6B). This shows that a low RIN for the
pool of efficiently translated RNA is not caused by the iso-
lation technique, but rather by lower initial RNA quality
in those tissue samples. Many of these samples generated
very low RNA amounts (<1 ng/�l and <10 ng in total)
and hence application of protocols adopted for single cell
sequencing would be essential to generate translatomes. In-
deed, application of Smart-seq2 to a subset of these samples
generated RNAseq libraries amendable for RNAseq (Sup-

plementary Figure S3). To ensure that these libraries indeed
are of sufficient quality to comprehensively quantify trans-
latomes we performed RNA sequencing of efficiently trans-
lated and cytosolic RNA from the set of five breast cancer
tissues from Supplementary Figure S3 (Supplementary Fig-
ure S4). This revealed high technical quality of the result-
ing sequencing data (Figure 6C). Moreover, we obtained
high coverage of the breast cancer translatomes as judged by
that mRNAs from >12 000 genes showed an RPKM >0.2
(which represent a lower limit of detection (32)) and >10
000 genes had an RPKM >1 (Figure 6D). Thus, combining
the optimized non-linear gradient with single cell RNAseq
protocols allows for comprehensive exploration of trans-
latomes in small tissue samples from biobanks.

DISCUSSION

Many studies show that translational control can have dra-
matic effects on the proteome (22). This mode of regula-
tion is prevalent following e.g. various stresses and modu-
lation of key cellular pathways such as the mTOR pathway
(18). Given the pivotal role of cell signaling and stress in
human diseases, the translatome is expected to be modu-
lated under a range of pathological conditions. Yet, trans-
latomes are vastly understudied as compared to transcrip-
tomes. This includes human tumors where such data are, to
our knowledge, lacking (18). This likely reflects that while
genome wide approaches for measurements of transcrip-
tomes are relatively easy to apply, methods for studying
translatomes have not scaled well to larger sample collec-
tions. Although polysome-profiling is the preferred method
for studies of changes in translational efficiency as com-
pared to ribosome-profiling when the precise location of ri-
bosomes is of lesser importance (19), both these techniques
are highly laborious and therefore challenging to apply in
large studies. Here, we focused on one aspect of polysome-



PAGE 9 OF 13 Nucleic Acids Research, 2018, Vol. 46, No. 1 e3

Figure 4. Linear and optimized non-linear gradients produce similar data on translatomes. (A) A projection of all samples in the three first components
of the principal component analysis. Replicate numbers are indicated within circles. (B) For both gradient methods, an analysis of differential polysome-
associated mRNA levels between HCT-116 p53+/+ and HCT-116 p53−/− cell lines was performed. Shown are density plots of p-values (dashed lines) and
false discovery rates (plain lines) for both gradient methods. (C) Venn diagram showing the overlap of genes identified using both gradient methods (mRNAs
with an FDR<0.1 were considered differentially associated with polysomes). (D) Scatter plot showing log2 fold changes using data from the optimized
non-linear gradient vs. the linear gradient. Colors correspond to genes differentially polysome-associated and identified by both gradient methods (green);
the linear gradient only (blue); the optimized non-linear gradient only (red); or none of the methods (black). (E) Volcano plot for each gradient method
(linear gradient in blue, optimized non-linear gradient in red). For genes considered significant by both methods, black lines join the data per mRNA. Poly
= Polysome-associated mRNA; FDR = False Discovery Rate; FC = Fold Change
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Figure 5. Analysis of the p53 translatome of HCT-116 cells using an optimized non-linear gradient. (A) Cumulative distributions of fold-changes for
cytosolic mRNA between HCT-116 p53+/+ and HCT-116 p53−/− cells for all genes (background) and a set of genes described as transcriptionally induced
by p53. (B) Densities of FDRs for analysis of polysome-associated mRNA, cytosolic mRNA and changes in translational efficiency affecting protein levels
or buffering (HCT-116 p53+/+ versus HCT-116 p53−/− cells). (C) Scatter plot of polysome-associated mRNA log2 fold changes versus cytosolic mRNA
log2 fold changes. Regulated are indicated. (D) Heatmap showing GO term enrichment among genes regulated via abundance (i.e. congruent changes in
cytosolic and polysome-associated mRNA) or genes whose translational efficiency affects protein levels or buffering. –log10 FDR of the hypergeometric
tests are colour-coded in the heatmap and an unsupervised clustering was applied to GO terms. FDR = False Discovery Rate; FC = Fold Change.
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Figure 6. The optimized non-linear gradients isolates efficiently translated mRNA from biobank tissues with an RNA integrity reflecting the starting
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cancer tissues (i.e. same as Supplementary Figure S3) as input material for smartSeq2. (D) Boxplots of numbers of genes whose transcribed mRNAs are
detected at different RPKM thresholds among cytosolic mRNA (N = 5) and efficiently translated mRNA (N = 5) isolated from breast cancer samples (i.e.
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profiling which makes it inconvenient, namely that the pool
of efficiently translated RNA is obtained in a large vol-
ume distributed across multiple fractions that need to be
collected and pooled (28). When studying translatomes in
small tissue samples or primary cells (39,40), this poses a
major limitation by leading to extensive dilution of the ef-
ficiently translated mRNA, which may cause sample loss
and technical variability that may undermine reproducible
quantification of the translatome. We addressed these issues
by introducing an optimized non-linear sucrose gradient,
which allows for consistent isolation of efficiently translated

mRNA associated with >3 ribosomes in only one or two
fractions. The ability to isolate efficiently translated mRNA
enriched for mRNA associated with >3 ribosomes is im-
portant to capture shifts in translational efficiency that are
largely contained within polysomes. Changes in translation
of such genes will be more difficult to detect using e.g. pull-
down or pelleting approaches, as association with one ri-
bosome is sufficient for isolation of such RNA. As a re-
sult, those approaches will likely be biased towards iden-
tification of mRNAs showing on-off regulation. By apply-
ing these approaches we assessed the effect of p53 status
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under cellular stress induced by serum starvation. It is im-
portant to consider that although the cells we used differ
in p53 status they likely exhibit additional genetic and epi-
genetic differences accumulated during their in vitro cultur-
ing. As a result, the changes in gene expression that we ob-
serve may not be directly linked to p53. Nevertheless, con-
sistent with previous literature, we identify a prominent role
for changes in translational efficiency affecting protein lev-
els depending on p53 status/activity (41–43). In addition,
we highlight translational buffering as a prevalent mecha-
nism that will further decouple mRNA levels from protein
levels. Although translational buffering was initially identi-
fied in yeast (44–46), it has been observed in a limited set
of mammalian models (10,47). This raises the possibility
that translational buffering is an overlooked mode of reg-
ulation that the cell can utilize to maintain protein levels
constant despite fluctuations in mRNA levels. Such a role
of post-transcriptional control of gene expression was pre-
viously suggested from studies showing that protein levels
are more consistent across species as compared to mRNA
levels (48,49). Thus, translational buffering may be one un-
derlying factor for this observation, yet the mechanisms and
scope of translational buffering remain obscure.

We also introduced single-cell sequencing protocols
for quantification of efficiently translated mRNA, as the
amounts of purified RNA can be scarce. Similar to when ob-
taining translatomes from limited numbers of primary cells
(40), this is essential to allow for studies of translatomes us-
ing biobank tissue samples as the amount of RNA isolated
from such samples appears to be insufficient for standard
RNAseq protocols. Although the presented approach al-
leviates some of the issues with polysome-profiling it does
not circumvent the need of sucrose gradients which is still a
limiting factor when planning large studies of translatomes.
Nevertheless, this approach made it possible for us to pro-
cess >150 tissue samples. Thus, polysome-profiling can now
be applied to collections of small tissue samples or primary
cells.
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