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ABSTRACT

Knotted proteins are more commonly observed
in recent years due to the enormously growing
number of structures in the Protein Data Bank
(PDB). Studies show that the knot regions contrib-
ute to both ligand binding and enzyme activity in
proteins such as the chromophore-binding domain
of phytochrome, ketol-acid reductoisomerase or
SpoU methyltransferase. However, there are still
many misidentified knots published in the literature
due to the absence of a convenient web tool
available to the general biologists. Here, we present
the first web server to detect the knots in proteins
as well as provide information on knotted proteins
in PDB—the protein KNOT (pKNOT) web server.
In pKNOT, users can either input PDB ID or upload
protein coordinates in the PDB format. The pKNOT
web server will detect the knots in the protein using
the Taylor’s smoothing algorithm. All the detected
knots can be visually inspected using a Java-based
3D graphics viewer. We believe that the pKNOT web
server will be useful to both biologists in general
and structural biologists in particular.

INTRODUCTION

Knotted proteins have become more common in recent
years (1-14) due to the enormously growing number
of structures deposited in the Protein Data Bank (PDB).
The knots in proteins are more than just topological
novelties. The knotted regions have been shown to be
important in both ligand binding and enzyme activity.
For example, the unique knot topology in bacterial
phytochrome (6) is common to all red/far-red photo-
chromic phytochrome and is important in stabilizing the
chromophore-binding region. The knot regions in TrmD
tRNA methyltransferase (MTase) have been shown to be
important for S-adenosyl-L-methionine (AdoMet) bind-
ing and catalytic activity (3). The deep trefoil knot region
in N-acetylornithine transcarbamylase forms part of the

active site (10). The figure-eight knot in the mainly
a-helical domain of ketol-acid reductoisomerase (KARI)
forms most of the keto—acid substrate-binding site (11).
In addition, knots in proteins present a challenge in the
study of protein folding, for it is hard to image a peptide
chain to thread through a hoop to form a knot in
a reproducible way (15). Interestingly, a recent study (16)
showed that YibK (4), a SpoU MTase containing a deep
trefoil knot, is able to fold efficiently and behaves
remarkably similar to other proteins.

Though the identification of a general knot is
a topologically difficult problem, it is relatively easy to
identify knots in proteins. However, there were still many
cases of misidentified knots in proteins (17,18) due to the
lack of a convenient tool available to general biologists.
The causes of the misidentification of knots in proteins
may be due to the presence of mobile loops, missing
residues or just visual error in tracing out the entangled
protein chains. For example, the SET domain was
originally identified to have a knot, but later it was
pointed out that part of the loop relevant to the formation
of the knot is in fact connected through hydrogen bonds
(17). As a result, the knot in the SET domain turns
out not to be an authentic one. Other examples of
misidentified knots are the trefoil knot in clathrin D6 coat
protein (19), the left-handed trefoil knot in ubiquitin
hydrolase (15) and the figure-eight knot in histone K79
methyltransferase (19). These knots are in fact caused by
breaks in the chain and are therefore not authentic knots.
A more recent example is the misidentified trefoil knot
in the chromophore-binding domain of phytochrome (6),
which in fact contains a figure-eight knot.

METHOD AND IMPLEMENTATION

The pKNOT web server detects the knot in a protein
by smoothing the protein chain using the Taylor’s
algorithm (15). The algorithm first fixes both N and
C termini in space, then repeatedly smoothes and
straightens the protein chain. The chain is reduced in
such a way that, with details of the chains eliminated,
the knot can be easily detected. If the protein does not
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Figure 1. An example of the chain smoothing process. The protein is the chromophore-binding domain of bacterial phytochrome (1ZTU). The X-ray
structure of 1ZTU (left) is shown in the cartoon representation and two progressively smoothed chains are shown (center and left). The color is
ramped by residues from blue at the N-terminus (labeled by N) to red at the C-terminus (labeled by C). The crossover points are numbered
sequentially from the N-terminus. The figure-eight knot is characterized by four crossover points, alternately under and over. The structural pictures
are produced using Pymol (Delano Scientific, San Carlos, http://pymol.sourceforge.net/).

contain a knot, the chain will simply shrink into a straight
line. The Taylor’s algorithm formally goes as follows: Let
the protein chain of length N be described by (ry,rs,. . ..ry),
where r; is the coordinate of the i-th C, atom. A new
coordinate r is taken to be r = (r, |+ + r,+1)/3 where
2<z<N—1 The termini remam fixed, i.e. r =r; and
r ~ = Iy. The iterative procedure will continue to progres-
sively smooth the chain. The main idea is to prevent the
chains from passing through each other. This is done by
checklng that the triangles defined by {r,_;,r;, r,} and
{rj,r,rip1} do not intersect any line segments defined by
{1'1 j,r} for j<i and {rjrji} for j>i. In practice, most
protein chains reduce to a straight line defined either by
two termini or to an obvious knot in less than 50
iterations. However, there are cases that will take 500 or
more iterations to converge. Figure 1 shows a typical
example of a chain-smoothing procedure from the original
structure of the chromophore-binding domain of bacterial
phytochrome (1ZTU) to the final smoothed chain that can
be easily identified to contain a figure-eight knot.

Data set and pre-computed knots

To speed up the web server, we pre-computed all proteins
in the PDB as of January 12, 2007, which consists of 41
013 proteins comprising 34 971 X-ray structures and 6042
NMR protein structures. The crystal structures of homo-
logous protein chains (even those with identical sequences)
as well as the solution structures of the same protein were
checked for the presence of knots. The chains with breaks
or discontinuities are visually checked for their relevance
in knot formation. If the proteins have a missing gap so
large that it is improper to simply connect the two ends
of the missing fragment to complete the chain, the
identified knots will be disregarded. All final smoothed
chains that appear to form a knot, i.e. not a simple
straight line, were visually examined to decide whether
these knots are authentic knots, slipknots or artificial
knots caused by large breaks in the chains. The knots in
proteins are quite simple in that they can be visually
identified, and no sophisticated analysis [such as the Jones
polynomials or others (20)] is required. In summary,
pKNOT provides information about all knotted proteins,

such as their protein classes, their knotted types and the
cores and depths of the knotted regions. The core is
the smallest region that will remain knotted when the
residues are successively deleted from both ends (15),
and the depth is the product of the number of residues that
must be deleted from both ends in order to free the
knot (15).

Users can also upload the protein structure coordinates
in the PDB format and the pKNOT server will progres-
sively smooth the chains on the fly and then present the
final smoothed chain as well as the original chain in
a JAVA-based 3D graphics viewer AstexViewer (21)
for users to inspect.

Input format

The web page of the pKNOT web server is shown
in Figure 2. The users can either type in the PDB ID or
upload a structural file in the PDB format. In the latter
case, the default iteration number is set to 500 and the
collision threshold, to 0.5 A. The user can either ignore or
preserve the breaks in the chain when smoothing the
chain. The former option will close the breaks by using
the shortest line segment connecting the breaks, while the
latter option preserves the breaks in the chain and
smoothes each individual segment, keeping the endpoints
of each segment fixed. The default is set to ignore the
breaks in the chain. The users can also choose from
the pull-down menu the number of iterations to smooth
the chain. The collision threshold is the distance threshold
to determine whether a line segment will intersect the
triangle during the smoothing procedures.

Output format and visualization of chains and knots

Upon query, pKNOT will return a table of the CHAIN,
LENGTH, KNOT TYPE and DISPLAY STRUCTURE
(Figure 3). When clicking on the column of KNOT TYPE,
the server will return a list of all the proteins of the given
knot type. pKNOT also provides the molecular viewer
AstexViewer so that the users can visualize and manip-
ulate in real time the protein structure and the knot in
the protein. Both the original structure and the knot are
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Figure 2. The web page of the pKNOT web server. The users can either type in the PDB ID or upload a structural file in the PDB format.
When submitting the structural file, the user can choose to either ignore or preserve the breaks in the chain. The default iteration number is set to 500

and the collision threshold, to 0.5A.

shown in the same graphics window and the user can
toggle on and off one of them for easy inspection.

RESULTS

The knotted proteins come from the following protein
classes: (1) methyltransferase, (2) transcarbamylase,
(3) carbonic anhydrase, (3) ketol-acid reductosiomerase,
(4) ubiquitin hydrolase, (5) methionine adenosyl transfer-
ase, (6) the chromophore-binding domain of bacterial
phytochrome and (7) the inner core shell component
protein of bluetongue virus. In addition, we also identified
two knotted NMR structures: IPOQ and 1J20. However,
it is not clear whether these knots are authentic or due
to incorrect structural refinement, since only one knotted
model is identified among all NMR models for each
protein (model 7 in 1POQ and model 14 in1J20).

The knot types in proteins

There are three types of knot (up to the mirror image)
identified in the PDB: the trefoil knot, the figure-eight
knot and the knot with five crossings(15,19).

The trefoil knot. The trefoil knot (also called the threefoil
or overhand knot) is the simplest knot of all, which is
characterized by three crossings. It is mathematically
denoted as a 3,knot. The proteins with a trefoil

knot are (1) methyltransferase, (2) transcarbamylase,
(3) methionine adenosyltransferase, (4) carbonic
anhydrase and (5) YMPa superantigen (NMR).

The figure-cight knot. The figure-eight knot is character-
ized by four crossover points, alternately under and over.
There is only one prime knot with four crossings and is
denoted as the 4; knot. The proteins with a 4; knot are
(1) the chromophore-binding domain of bacterial
phytochrome, (2) the core protein of bluetongue virus,
(3) ketol-acid reductoisomerase and (4) a LIM-1dbl-LID
chimeric protein (NMR).

The 5> knots. There are two types of knot with five
crossings: the 5; and 5, knots. Only the 5, knot has been
identified in the protein structure and, as of writing,
no proteins with six or more crossings have been identified
in the PDB. The only protein family with a 5, knot is
ubiquitin c-terminal hydrolase (1).

Comparison with other work

It will be interesting to compare our results with those of
the recent work by Lua and Grosberg (19). For example,
they identified 19knot proteins using the RANDOM
method from the PDB-REPRDB data set (22) comprising
4716 representative protein. However, 5 of the identified
19 knotted proteins (1TOH:B, IGKU:B, 1U2Z:C, IM72:B
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Figure 3. Upon query, the pKNOT server will return a table of the CHAIN, LENGTH, KNOT TYPE, CORE, DEPTH and DISPLAY
STRUCTURE (upper center). When clicking on the column of KNOT TYPE, the server will return a list of all the proteins of the given knot type in
the database of the pKNOT server (lower left). PKNOT also provides a JAVA-based 3D molecular viewer AstexViewer and the users can visualize
and manipulate in real time the protein structure and the knot in the protein (lower right).

and 1XI4:C) are questionable, since all of them have very
large gaps in their structures due to missing residues.
These knots arise either from the artificial virtual bonds
that are used to connect the gaps or from the nonstandard
PDB format. For example, 1TOH:B(23) has missing
residues 414-424. A knot will form only if a virtual
bond of length 32 A connects the structural gap; 1U2Z:C
has missing residues 570-573 and 575. The total distance
of the structural gaps is around 52 A. If these chain breaks
were connected by virtual bonds, there will be a 4; knot.
However, we notice that there is a chain in the complex
(i.e. 1U2Z:A), which has identical sequence with 1U2Z:C
and does not have a knot even if the structural gaps
are connected by virtual bonds.

CONCLUSION

Here we have presented the first web server to detect
knots in proteins. With an increasing number of proteins
with knots deposited in PDB, we believe that the pKNOT

web server will be useful to both biologists in general and
structural biologists in particular.
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