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Schizophrenia (SZ) is a severe psychiatric illness, and it affects around 1% of the general population; however, its reliable diagnosis
is challenging. Functional MRI (fMRI) and structural MRI (sMRI) are useful techniques for investigating the functional and
structural abnormalities of the human brain, and a growing number of studies have reported that multimodal brain data can
improve diagnostic accuracy. Machine learning (ML) is widely used in the diagnosis of neuroscience and neuropsychiatry
diseases, and it can obtain high accuracy. However, the conventional ML which concatenated the features into a longer feature
vector could not be sufficiently effective to combine different features from different modalities. There are considerable
controversies over the use of global signal regression (GSR), and few studies have explored the role of GSR in ML in diagnosing
neurological diseases. The current study utilized fMRI and sMRI data to implement a new method named multimodal imaging
and multilevel characterization with multiclassifier (M3) to classify SZs and healthy controls (HCs) and investigate the influence
of GSR in SZ classification. We found that when we used Brainnetome 246 atlas and without performed GSR, our method
obtained a classification accuracy of 83.49%, with a sensitivity of 68.69%, a specificity of 93.75%, and an AUC of 0.8491,
respectively. We also got great classification performances with different processing methods (with/without GSR and different
brain parcellation schemes). We found that the accuracy and specificity of the models without GSR were higher than that of the
models with GSR. Our findings indicate that the M3 method is an effective tool to distinguish SZs from HCs, and it can identify
discriminative regions to detect SZ to explore the neural mechanisms underlying SZ. The global signal may contain important
neuronal information; it can improve the accuracy and specificity of SZ detection.

1. Introduction

Schizophrenia (SZ) is a severe psychiatric illness character-
ized by aberrant sensory perceptions, cognition, concrete
thinking, and a restricted range of emotion, and it affects
about 1% of the general population [1–5]. SZ is a heteroge-
neous disorder, and current diagnoses are based on subjec-
tive indicators such as self-report, observation, and clinical
history, and its reliable diagnosis is challenging [1, 4, 6, 7],
and the pathological mechanism is still unclear [4].

Functional MRI (fMRI) and structural MRI (sMRI) are
gaining importance and becoming more widely acceptable
techniques with the potential to help diagnose neurological
illnesses [8–11], including schizophrenia [5, 12, 13]. An
increasing number of studies have reported that multimodal

brain data can improve diagnostic accuracy by combining
the information obtained from different MRI imaging
modalities [8, 14–16]. The machine learning (ML) technique
is a new approach that can extract relevant information from
images and construct models to determine the probability of
disease onset, and it can make a higher accurate prediction
compared with conventional methods [5, 6, 13, 17, 18].
Salvador et al. [15] achieved 75.76% accuracy in schizophre-
nia diagnosis, and de Filippis et al. [5] reported that support
vector machine associated with other ML techniques could
achieve accuracy close to 100%.

In conventional ML methods, most studies usually
concatenated the features into a longer feature vector
[19–21]. However, these methods may be insufficiently effec-
tive to combine different features from different modalities.
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Some studies [16, 22, 23] have introduced novel methods to
convey comprehensive and complementary information
more effectively. Dai et al. [16] proposed a new method
named multimodal imaging and multilevel characterization
with multiclassifier (M3), which can effectively integrate
different information from different modalities and can
achieve higher classification accuracy than traditional feature
combination methods and any single modality feature.

Global signal regression (GSR) is widely used to remove
the effects of global BOLD signal variations in the analysis
of fMRI studies; however, there are considerable controver-
sies over its implementation [24–26], and few studies have
explored the effect of GSR in ML of diagnosing neurological
diseases [19, 27]. Different studies have reported inconsistent
results on the effect of GSR on SZ [28–30]. As far as we know,
very few studies reported the effect of GSR on ML of SZ clas-
sification [31]. However, the sample size of that study was
limited, and it did not specifically discuss the effect of GSR
on SZ classification. The brain parcellation is likely to affect
classification accuracy [19, 27]. However, the influence of
those factors in SZ classification is not very clear.

In this study, our goals are to classify SZ patients and
healthy controls (HCs) using the M3 method and find the
most relevant brain regions to explore its potential patholog-
ical mechanism. Furthermore, we investigate the influence of
GSR and brain parcellation strategy in SZ classification.

2. Materials and Methods

2.1. Participants. The data in this study were selected from
the Center for Biomedical Research Excellence (COBRE)
(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html), an
open neuroimaging dataset which includes fMRI and sMRI
data from 71 SZs and 74 HCs with complete clinical and
imaging information. Diagnostic information was collected
by the Structured Clinical Interview used for DSM Disor-
ders (SCID). Subjects were excluded if they had a history
of neurological disorder, intellectual disability, severe head
trauma with more than 5-minute loss of consciousness, sub-
stance abuse, or dependence within the last 12 months.
Details of the diagnostic procedure and clinical information
are available online (http://fcon_1000.projects.nitrc.org/
indi/retro/cobre.html). To rule out the influence of handed-
ness, we only included right-handed participants, so 15 sub-
jects were excluded. And 21 subjects with maximum head
motion larger than 2mm or 2° were removed from the
analysis. In the end, 109 subjects (64 HCs and 45 SZs) were
included in this study. Demographic information of subjects
is summarized in Table 1. Ethical approval was obtained by
COBRE investigators; all participants provided written
informed consent.

2.2. Data Acquisition. All subjects’ resting-state fMRI (rs-
fMRI) and sMRI data were collected from a 3.0T Siemens
TrioTim scanner. The sMRI data were acquired with T1-
weighted magnetization prepared rapid acquisition gradient
echo (MPRAGE) sequences: 176 slices, TR = 2530ms, TE =
1:64, 3.5, 5.36, 7.22, and 9.08ms, TI = 900ms, flip angle =
7°, FOV = 256mm× 256mm, matrix = 256 × 256, and voxel

size = 1 × 1 × 1mm3. Rs-fMRI scans were acquired single-
shot echo-planar imaging sequence with the following param-
eters: 150 volumes, 33 slices, TR = 2000ms, TE = 29ms,
matrix = 64 × 64, and voxel size = 3:75 × 3:75 × 4:55mm3.

2.3. Data Preprocessing, fMRI, and sMRI Index Calculation.
All data standard preprocessing was performed by Data Pro-
cessing & Analysis of Brain Imaging (DPABI, http://rfmri
.org/DPABI) [32], which is based on the Statistical Paramet-
ric Mapping (SPM12) package (http://www.fil.ion.ucl.ac.uk/
spm) and the toolbox for Data Processing Assistant for
Resting-State fMRI (DPARSF) toolbox [33] (http://rfmri
.org/DPARSF).

The fMRI data preprocessing steps were as follows: (1)
The first ten volumes of each subject were removed to ensure
a steady-state condition. (2) Slice timing and realignment
were carried out, and we excluded the subjects with maxi-
mum translation more than 2.0mm or maximum rotation
more than 2.0° in our study. (3) The T1 structural images
were segmented into grey matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) and were coregistered
to the mean functional image by using the Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL). (4) Functional data were spatially normalized to
the Montreal Neurological Institute (MNI) space and
resampled to 3 × 3 × 3mm3 voxels. (5) The WM, CSF, 24
head motion parameters, and linear drift were removed as
nuisance covariates by a multiple linear regression analysis.
(6) Bandpass filter (0.01–0.10Hz) was used to reduce the
effects of low-frequency drift and high-frequency physiolog-
ical noise.

We calculated the following fMRI measurements: ampli-
tude of low-frequency fluctuations (ALFF) [34, 35], regional
homogeneity (ReHo) [35, 36], degree centrality (DC)
[37, 38], and voxel-mirrored homotopic connectivity
(VMHC) [19, 39]. We used the DPARSF software default
settings to calculate these indices. It is worth noting that
we did not perform bandpass filter before calculating
ALFF, and we set the connection’s correlation coefficient
threshold of r > 0:25 for DC calculation, and the individual
functional data was registered to a symmetric template and
smoothed with a Gaussian kernel of 4mm before calculating
VMHC. Those functional maps were then performed Fisher-
Z transformation. Eventually, we smoothed these Z maps
with a Gaussian kernel of 4mm except for WMHC.

The GM images obtained from the previous segmenta-
tion step were then spatially normalized into standard
space, smoothed with a Gaussian kernel of 8mm, and

Table 1: Demographic and clinical data.

Items SZs HCs Statistic P value

Sample size 45 64 — —

Gender (M/F) 36/9 44/20 1.71a 0.19

Age (years) 37:42 ± 13:55 35:22 ± 11:40 0.92b 0.26
aThe chi-squared value was obtained by the chi-square test. bThe t value
was obtained by the two-sample two-tailed t-test. SZ: schizophrenia; HC:
healthy control.
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resampled to 3 × 3 × 3mm3 voxels, and we got grey matter
density (GMD) images.

2.4. Feature Extraction. The fMRI and sMRI maps were
segmented into 246 regions of interest (ROIs) using the
Brainnetome (BN) 246 atlas (see Table S1) [40], which
consists of 210 cortical and 36 subcortical subregions in the
cerebrum. Each ROI from the brain parcellation atlas was
used to mask each individual’s fMRI and sMRI map, and
the signal value of each ROI was obtained by averaging the
fMRI and sMRI signals of all the voxels included in the
ROI. This process was repeated for all individuals and
regions. Finally, we got 246 features for each fMRI and
sMRI map and a total of 1230 features for each individual,
as shown in Figure 1. This ROI-based feature extraction
method is widely used in neuroimaging ML studies [41–44].
It is an effective method to reduce feature dimensionality
and improve computational efficiency [45]. Previous studies
have shown that ROI-based feature extraction could denote
pathological changes in brain regions, identify abnormal
brain regions, and assist in the diagnosis of the disease

[20, 41, 46–48]. Then, these features were used in the
subsequent analysis.

2.4.1. Discriminative Analysis and Identification of the Most
Discriminative Features. We constructed the model accord-
ing to the method introduced by Dai et al. [16], which mainly
includes feature selection, maximum uncertainty linear
discriminate analysis- (MLDA-) based classification, and
multiclassifier. Leave-one-out crossvalidation (LOOCV)
was conducted to estimate the performance of our classifier
(Figure 2).

The feature selection process was carried out on the train-
ing set only. First, all features were standardized by z-score,
the normalization of the training and test datasets was per-
formed, respectively, and then, two-sample two-tailed t-tests
were performed to determine the features that showed differ-
ences between the SZ patients and HC groups. LOOCV was
conducted to estimate the performance of our classifier and
to determine the optimal P value threshold, as shown in
Figures 2 and 3. In brief, we used each subject as the test set
to test the performance of the model and the remaining

T1 rs-fMRI

zALFF

ALFF features DC features ReHo features VMHC features GMD features

zReHo zVMHC GMD

Brainnetome 246
template

zDC

Figure 1: The flowchart of feature extraction. The data preprocessing and index calculation of fMRI and sMRI were performed by the DPABI
toolbox, and then, functional maps were then performed Fisher-Z transformation. Finally, we obtained fMRI and sMRI measurement maps,
including zALFF, zDC, zReHo, zVMHC, and GMD. The fMRI and sMRI maps were segmented into 246 regions of interest using the
Brainnetome 246 atlas, and then, we got 246 features for each fMRI and sMRI map. ALFF: amplitude of low-frequency fluctuations;
ReHo: regional homogeneity; DC: degree centrality; VMHC: voxel-mirrored homotopic connectivity.
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subjects as the training set to train the model, repeated N
times in turn, where N represented the number of subjects.
We calculate the performance of the model based on the pre-
dicted labels (SZ or HC) and the actual labels of N iterations,
including accuracy, sensitivity, and specificity. We applied
the P threshold from 0.001 to 0.05 with a 0.001 interval (50
iterations) and obtained 50 classification accuracies, and the
P threshold with the highest classification accuracy was
defined as the optimal P threshold based on the classification
accuracy values of the 50 iterations (Figures 2 and 3) [20, 44].

We performed the MLDA-based classifier, multiclassi-
fier, crossvalidation, and identification of the most discrimi-
native feature procedures as previously described [16].
Briefly, we used MLDA with five-category features (ALFF,
ReHo, DC, VMHC, and GMD) to obtain five base classifiers.
Then, we combined five classifiers into one classifier by
weighted voting. Subsequently, LOOCV was used to evaluate
the performance of the classifier. For each of the 5 base clas-
sifiers, we could obtain the coefficients of the features, and we
normalized the coefficients by dividing by the maximum
coefficient value. Wemultiplied the absolute value of normal-
ized coefficients by the base classifier’s weight of voting as
feature weights. The feature weight of each base classifier is
the average of each fold of LOOCV, and finally, we summed
the feature weights of each base classifier to obtain the final

feature weights of multiclassifier. The most discriminative
features were restricted to features that appeared in each fold
of LOOCV.

A permutation test was applied 1000 times to test the sig-
nificance of the prediction performance [20, 44, 47]. First, the
class label of each subject was randomly permutated 1000
times without replacement and assigned to all the subjects,
and then, the entire M3 procedure was reapplied each time
to obtain the permutated classification accuracy, and at last,
the P value for the accuracy was calculated by dividing the
number of permutations that showed a higher accuracy than
the actual accuracy for the real sample by the total number of
permutations. We applied the samemethod to calculate the P
value of AUC by permutating the value of the sum predicted
label randomly.

2.5. Validating the Influences of GSR and Brain Parcellation.
To evaluate the influence of GSR and brain parcellation on
our classifier, we did additional analysis: (1) we did regress
out global signal in the regressing out nuisance covariate step
and (2) we use another additional brain parcellation atlas
(Power-264 atlas [49]) to segment brain ROIs. For Power-
264 atlas, to be consistent with BN-246 atlas (without
cerebellum), we did not include the ROIs of the cerebellum.
We performed the same M3 method and evaluated the

N subjects

N-1 subjects

Feature extraction Feature extraction

Feature selection
(t-test, P = 0.001-0.05, with a 0.001 interval)

ClassificationEnsemble classifier

Integration multiple classifiers by weighted voting

ALFF-based
MLDA classifier

ReHo-based
MLDA classifier

DC-based
MLDA classifier

VMHC-based
MLDA classifier

GMD-based
MLDA classifier

TestingTraining

Feature selection
(t-test)

One subject

x = (x-mean)/std
Mean,std

Z normalization

Figure 2: The flowchart of the optimal P value threshold selection and M3 method used in our study. We used leave-one-out crossvalidation
(LOOCV) to estimate the performance of our classifier. All features in the training and test sets were standardized by z-score, and then,
two-sample two-tailed t-tests with P threshold from 0.001 to 0.05 with a 0.001 interval (50 iterations) were performed to select discriminative
features. We used MLDA with five category features (ALFF, ReHo, DC, VMHC, and GMD) to obtain five base classifiers, and then, we
combined five classifiers into one classifier by weighted voting. Subsequently, we evaluate the performance of the classifier and obtained 50
classification accuracies, and the P threshold with the highest classification accuracy was defined as the optimal threshold.
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classification performance. We compare the classification
performance of the models with the AUC to determine the
effect of GSR and brain parcellation on classifiers with the
Delong test.

3. Results

3.1. Classification Performance. To optimize the P threshold
value to select the features of the classifier, we performed
the grid search method using the training set. We applied
the P threshold from 0.001 to 0.05 with a 0.001 interval, we
found that the optimal P threshold was 0.027, and the corre-
sponding classifier obtained a classification accuracy of
83.49%, with a sensitivity of 68.69%, a specificity of 93.75%,
and an AUC of 0.8491, respectively (Table 2, Figures 3(a)
and 4(a)). The P values of the model accuracy and AUC both
were P < 0:001 (Figure 4(b), Figure S1a), which suggests that
the classifier prediction performance was significantly higher
than chance.

3.2. Discriminative Brain Regions. To determine which brain
regions contributed to single-subject classification, we com-
puted the model feature weights and obtained the order of
feature contribution of the classification [16]. The most
discriminative features were restricted to features that
appeared in each fold of LOOCV. The top 15 brain regions
with the highest feature weights are reported in Table 3 and
Figure 5. The most discriminative regions included the left
superior parietal lobule, inferior parietal lobule, inferior tem-
poral gyrus, middle frontal gyrus, lateral occipital cortex,
fusiform gyrus, right basal ganglia, cingulate gyrus, superior
frontal gyrus, posterior superior temporal sulcus, bilateral
medioventral occipital cortex, and parahippocampal gyrus
(Table 3; Figure 5).

3.3. Influence of Brain Regional Parcellation Schemes. To
evaluate the influence of the parcellation schemes on our
M3 classifier, we performed our analysis approach with
Power-264 atlas to test the classification performance of the
model. We obtained a high classification performance with

Table 2: Classification performance of the M3 classifiers.

Items Optimal P threshold AUC Accuracy (%) Sensitivity (%) Specificity (%)

BN-246_noGSR 0.027 0.8491 83.49 68.89 93.75

Power-264_noGSR 0.029 0.7785 79.82 73.33 84.38

BN-246_GSR 0.013 0.8215 83.49 86.67 81.25

Power-264_GSR 0.032 0.8165 77.98 71.11 82.81

M3: multimodal imaging and multilevel characterization with multiclassifier; BN: Brainnetome atlas; GSR: global signal regression; noGSR: no global
signal regression.
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Figure 3: Selection of the optimal P threshold via the grid search and LOOCVmethod. (a–d) Represent the classification accuracy versus the
P value with BN-246 atlas+noGSR (a), Power-264 atlas+noGSR (b), BN-246 atlas+GSR (c), and Power-264 atlas+GSR (d). BN: Brainnetome
atlas; GSR: global signal regression; noGSR: no global signal regression.
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AUC of 0.7785, and the accuracy, sensitivity, and specificity
were 79.82%, 73.33%, and 84.38%, respectively (Table 2,
Figures 3(b), 4(a), and 4(c), Figure S1b). We compared the
AUC of two classifier performances using the Delong test,
and we did not find a significant difference between them
(z = 0:095, P = 0:92).

3.4. Influence of Global Signal Regression. In order to evaluate
the influence of global signal regression, we performed the
above M3 methods with GSR. We found that the accuracy
and specificity of the classifiers without GSR were equal or
higher than that of the classifiers with GSR both with BN-
246 atlas and Power-264 atlas (Table 2; Figures 3(c), 3(d),
and 6 and Figure S2), but we did not find significant
differences between them (BN-246_GSR vs. BN-246_
noGSR: z = −0:74, P = 0:46; Power-264_GSR vs. Power-
264_noGSR: z = 0:93, P = 0:35).

4. Discussion

In the current study, we combined functional and structural
MRI measures to distinguish SZs from HCs by the M3
method. We found that we got great classification perfor-
mances using different processing methods (with/without
GSR and different brain regional parcellation schemes) and
a set of discriminative regions to distinguish SZs from HCs.
Our study demonstrates that the M3 method is a great tool
to effectively distinguish SZs from HCs and explore the neu-
ral mechanisms underlying SZ.

Previous neuroimaging ML studies focused on a single
modal image [50, 51] or concatenated multimodal features
into a longer feature vector [19, 21, 44, 47]. Recent studies
have shown that multimodal imaging using integrated
information can significantly improve the classification
accuracy [16, 20, 21, 23, 47]. And conventional multi-
modal direct feature concatenation method may not be
sufficiently effective in combining features from different
modalities [16, 52]. Previous studies have shown that the

M3 method can improve classification performance than
any single-modal feature and conventional multimodal
feature combination methods [16]. Our study also found
that the M3 method can effectively distinguish SZs from
HCs. Dai et al. [16] found that the M3 method can iden-
tify the most discriminative features to classify Alzheimer’s
disease patients and HCs which are consistent with previ-
ous studies that have used conventional univariate statisti-
cal analysis of structural and functional MRI. It may be
able to explore the underlying mechanisms of neuropsy-
chiatric diseases. Our results are consistent with the previ-
ous study.

In previous studies, most researchers empirically chose
P < 0:01 or P < 0:05 as the threshold for feature selection in
the data dimensionality reduction step [16, 18, 19]. In our
study, we performed grid search [20, 44, 53] to select
the optimal P threshold to obtain the relatively highest
prediction accuracy of the classifier. Most current ML
studies [8, 19, 21, 47] usually concatenated the features into
a longer feature vector. However, these methods are insuffi-
ciently effective to combine different features from different
modalities. It has been confirmed that the M3 method can
effectively integrate different information from different
modalities and can achieve higher classification accuracy
than traditional feature combination methods and any single
modality features [16]. In our study, we used the BN-246
atlas and M3 method with five types of modality features
(ALFF, ReHo, DC, VMHC, and GMD), and we obtained a
classification accuracy of 83.49%, a sensitivity of 68.69%,
and a specificity of 93.75%, respectively. In addition, we
obtained close classification performance using different
preprocessing methods (with/without GSR) and different
brain regional parcellation schemes. Our classification accu-
racy is close to or even higher than the results of SZ ML stud-
ies [1, 2, 5, 6, 14, 18] and other disease studies [9, 19, 44, 51].
These results are consistent with a previous study which
reported that the M3 method can obtain great classification
accuracy [16].
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Figure 4: Classification performance of the classifiers without GSR. (a) The ROC curve of the classifiers based on BN-246 atlas and
Power-264 atlas without GSR. The distributions of the permutated accuracy values of BN-246 atlas (b) and Power-264 atlas (c) without GSR.
The red line indicates the values obtained using the real labels. BN: Brainnetome atlas; noGSR: no global signal regression.
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The debate about the complex composition of global sig-
nals and the necessity of GSR in data preprocessing and data
analysis always exists in most cases [24, 54, 55]. Some studies
reported that the global signal was likely to reflect important
neuronal components in rs-fMRI data [17, 18, 39]. Qing
et al. [26] reported that GSR effects are region-specific and
suggested that it is great to report results both with and with-
out GSR in ReHo study. Li et al. [56] reported that GSR
strengthens association between resting-state functional
connectivity and behavior in young healthy adults. And in
some studies [57, 58], the authors regressed out global signal
as a nuisance variable to reduce the effects of nonneuronal
BOLD fluctuations.

Controversies also root in the influence of the global sig-
nal in distinguishing SZs from HCs. Yang et al. [28] reported
that the variance of the global BOLD signal was significantly
higher in patients with SZ as compared to HCs, but not in
bipolar disorder, they pointed that the global signal had
important biological significance for SZ, and its effects were
disease-specific. Similarly, Hahamy et al. [29] reported that
GSR reduced variance in subjects with SZ. On the contrary,
a recent study showed that there was no overall increase or
reduction in resting-state global signal in SZ patients [30].
In our study, we did not find a significant difference in clas-
sification performance between the classifiers with and with-
out GSR, which is consistent with a previous study [19].
These results indicated that our model was robust, but we
found that the accuracy and specificity of the models without

GSR were higher than that of the models with GSR both with
BN-246 atlas and Power-264 atlas (Table 2, Figures 4 and 6),
which are consistent with previous studies [27, 28]. This
could facilitate accurate SZ patient identification and early
intervention. Chen et al. reported [27] that the model without
GSR enhanced the sensitivity of the detection of differences
between Alzheimer’s disease and HCs. A recent study also
found that global network metrics without GSR have more
significant differences than that with GSR between major
depression patients and HCs. For SZ, previous studies
reported that the global signal was of functional relevance,
as it differentiated between SZs and HCs [28, 29], which are
consistent with our result, but Umeh et al. [30] reported a
contradictory finding. However, in that study, the sample size
was limited (38 SZs and 35 HCs). All these findings suggest
that the global signal may contain important neuronal infor-
mation, at least in the case of SZ.

We repeated our M3 pipeline using Power-264 atlas to
evaluate whether our results were affected by brain parcella-
tion. Previous studies reported that functionally defined par-
cellation or high spatial resolution parcellation is probably to
detect more significant differences, and anatomical bound-
aries do not necessarily match functional ones [27, 59].
Therefore, we utilized functional atlas in our study (BN-246
and Power-264 atlas). In our study, we got high classification
performances and did not find any significant difference in
different brain regional parcellation schemes, which sug-
gested that brain parcellation did not influence our predic-
tion performance, and it is consistent with previous studies
[19, 60]. The result indicated that our model had good
robustness and generalizability.

Many studies reported abnormal structures and func-
tional brain regions of SZ. In the current study, we found
that the most discriminate regions between SZs and HCs
mainly locate in the left superior parietal lobule, inferior
parietal lobule, inferior temporal gyrus, middle frontal
gyrus, lateral occipital cortex, fusiform gyrus, right basal
ganglia, cingulate gyrus, superior frontal gyrus, posterior
superior temporal sulcus, bilateral medioventral occipital
cortex, and parahippocampal gyrus (Figure 5). A meta-
analysis that included 79 studies reported that SZ was
associated with structural and functional abnormalities in
the bilateral anterior cingulate gyrus and middle frontal
gyrus [61]. Ren et al. [62] also reported the abnormalities
in bilateral anterior cingulate gyrus cortex, occipital gyrus,
and left inferior parietal lobule in drug-naive first-episode
SZ patients. Zhao et al. [63] reported that SZ patients
had extensive structural and functional abnormalities,
including bilateral occipital lobe, left orbital frontal cortex,
bilateral superior parietal lobule, right middle temporal
gyrus, gyrus rectus and superior frontal gyrus, bilateral
inferior parietal lobule, and precuneus. Machine learning
studies also reported that the bilateral fusiform gyrus,
superior parietal lobule, superior temporal gyrus, cingulate
gyrus, middle frontal gyrus, inferior parietal lobule, para-
hippocampal gyrus, and right medial superior frontal
gyrus contributed to discrimination between SZ patients
and HCs [3, 5, 7, 18, 64–66]. Our results are consistent
with these previous studies.
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Figure 5: The most discriminative brain regions. The most
discriminative regions included the left superior parietal lobule,
inferior parietal lobule, inferior temporal gyrus, middle frontal
gyrus, lateral occipital cortex, fusiform gyrus, right basal ganglia,
cingulate gyrus, superior frontal gyrus, posterior superior temporal
sulcus, bilateral medioventral occipital cortex, and parahippocampal
gyrus. The color bar value represents the weight value of the brain
regions.
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Our study has some limitations. First, although the
sample size is limited, it is relatively larger when compared
to previous studies [1, 21, 31, 50, 65]. A larger sample size
should be recruited in the future to replicate and enrich our
findings. Second, some studies [5, 67] have reported differ-
ences in the cerebellum between SZ patients and HCs, but
in some cases, in our study, the cerebellum was not fully
covered during rs-fMRI scanning, so the cerebellum was
not considered in our study, and we selected the atlas that
does not contain the cerebellum or excluded the cerebellar
ROI in the brain atlas. Third, the head motion in subjects
with SZ was greater than that in subjects with HC (mean fra-
mewise displacement Jenkinson: SZ, 0:19 ± 0:10mm; HC,
0:14 ± 0:08mm). Although we adopted strict control inclu-
sion criteria (less than 2mm and 2.0°), regressed out head
motion (with 24 head motion parameters), we cannot guar-
antee the complete removal of the head motion effect.

5. Conclusion

In conclusion, our findings indicated that the M3method is a
great tool to distinguish SZs from HCs effectively with high
classification accuracy; it can be generalized in different brain
parcellation schemes. The global signal may contain impor-
tant neuronal information; it can improve the accuracy and
specificity to detect SZ patients. The M3 method without
GSR is helpful to identify patient accuracy and early inter-
vention, and it can identify discriminative regions to detect
SZ to explore the neural mechanisms underlying SZ.
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