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Discovering key transcriptomic 
regulators in pancreatic ductal 
adenocarcinoma using Dirichlet 
process Gaussian mixture model
Sk Md Mosaddek Hossain1,2,3*, Aanzil Akram Halsana1,3, Lutfunnesa Khatun2, 
Sumanta Ray1* & Anirban Mukhopadhyay2* 

Pancreatic Ductal Adenocarcinoma (PDAC) is the most lethal type of pancreatic cancer, late detection 
leading to its therapeutic failure. This study aims to determine the key regulatory genes and their 
impacts on the disease’s progression, helping the disease’s etiology, which is still mostly unknown. 
We leverage the landmark advantages of time-series gene expression data of this disease and thereby 
identified the key regulators that capture the characteristics of gene activity patterns in the cancer 
progression. We have identified the key gene modules and predicted the functions of top genes from 
a reconstructed gene association network (GAN). A variation of the partial correlation method is 
utilized to analyze the GAN, followed by a gene function prediction task. Moreover, we have identified 
regulators for each target gene by gene regulatory network inference using the dynamical GENIE3 
(dynGENIE3) algorithm. The Dirichlet process Gaussian process mixture model and cubic spline 
regression model (splineTimeR) are employed to identify the key gene modules and differentially 
expressed genes, respectively. Our analysis demonstrates a panel of key regulators and gene modules 
that are crucial for PDAC disease progression.

In genetics, gene expression is one of the elementary constitutional blocks which gives rise to a phenotype from 
a genotype, i.e., a trait which is observable in all living cells, including prokaryotes and eukaryotes. Multiple 
techniques are available to quantify gene expression and regulation, like DNA microarray, RNASeq, etc. The area 
of gene expression analysis undergone several significant advancements in biomedical research. With increased 
efficiency and quality, these measurements led to improvements in disease sub-classification, gene identification 
problems, and studying progression characteristics of  diseases1–7. Biological mechanisms are dynamic in nature; 
therefore, their activities must be supervised at multiple time points. Time-series gene expression experiments 
are widely used to monitor biological processes in a time-series  paradigm8. Analyzing these time-series gene 
expression data helps identify transient transcriptional changes, temporal patterns, and causal effects of the 
genes. Time-series gene expression studies can be utilized to predict phenotypic outcomes over a period of  time9.

DNA microarrays and RNASeq data have been accepted as gold standards for analyzing and measuring gene 
expressions across different biological  circumstances3,5,10. A gene is considered differentially expressed (DE) if a 
statistically significant difference in gene expression levels is observed between a pair of experimental conditions. 
Various statistical distribution models like the Poisson and the Negative Binomial (NB) distribution estimate 
the differential gene expression patterns. Gene selection refers to detecting the most significant DE genes under 
various  conditions11. Selection is made based on a combination of score cutoff, and expression change thresh-
old, commonly generated by the statistical design  itself12. Popular time-course DE analysis tools include edgeR, 
DESeq2, TimeSeq, and Next maSigPro based on the NB distribution model. Some DE tools, like ImpulseDE2 
and splineTimeR, based on impulse and spline regression models between two groups, respectively, are used 
on short time-series  data13.

Gene expression is a strongly regulated spatio-temporal process. Genes having identical expression patterns 
are associated with the same biological function. Clustering genes with similar expression pattern reduces the 
transcriptional response complexities by grouping genes responsible for a distinct cellular  process14,15. Several 
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statistical clustering techniques have been widely used like k-means, hierarchical  clustering16,17 and self-organ-
izing  maps18 to produce modules from time-series gene expression profiles. Gradually, various techniques have 
been developed, especially for clustering time-series data.  In19, Short Time-series Expression Miner (STEM) has 
been used as a clustering technique that maps genes to their representative expression profile. Cluster Analysis 
of Gene Expression Dynamics (CAGED), a clustering technique proposed by Ramoni et al.20, uses the Bayesian 
method to model gene-expression dynamics using auto-regressive equations.  TimeClust21 uses temporal gene 
expression profiles to produce clusters.  TMixClust22, Dirichlet process Gaussian process mixture  model14 are 
some of the significant non-parametric model-based clustering methods.

The analysis of time-series gene expression modules helped us unravel major biological complications. It 
provides deep insights into the disease  progression23, biomarker  discovery24, identification of hub  genes25, cell 
cycle  progression26, cancer  classification27 and several other bio-medically important processes. Moreover, the 
advancements in information system infrastructure facilitated utilizing time-series models more feasible for stud-
ying complex psychological phenomena. Numerous tools are now available for enriched network and pathway 
analysis of the gene modules, enabling further analysis and a deeper understanding of the biological mechanisms.

This article proposed a framework to discover key transcriptomic regulators and key modules from time-series 
microarray gene expression data in pancreatic ductal adenocarcinoma (PDAC). Initially, differentially expressed 
(DE) genes were identified by analyzing the empirical Bayes statistics on multivariate time-course gene expres-
sion data of PDAC using the  splineTimeR28. The top 100 DE genes at each time point were analyzed using a R/
Bioconductor package Linear Models for Microarray Data (limma)29. Dirichlet process Gaussian process mixture 
model, a non-parametric model-based clustering method, was applied on the DE gene expression profiles to 
discover gene modules based on the similar responses across the time  points14. REGulator-Gene Association 
Enrichment (REGGAE)30 was used to identify key transcriptional regulators and the number of targets for each 
of them from the list of DE genes.

Most experimental gene expression analyses only focus on determining the DE genes by considering them 
independent events and not investigating the identified genes’ interaction. Reconstruction of the possible gene 
association network (GAN) among DE genes helps us find genes in the studied phenotype interaction network. 
Therefore, GAN reconstruction, followed by identifying the top genes in the network, was also performed. 
Moreover, we have identified regulators for each target gene by gene regulatory network inference for the whole 
set of genes using the dynamical GENIE3 (dynGENIE3)  algorithm31 from the time-course gene expression 
data of PDAC. Prediction of gene functions of the top genes in the interaction network also been carried out 
using GeneMANIA prediction  server32. We have identified the key gene modules from the set of all modules 
obtained from our cluster analysis. Subsequently, transcriptomic regulatory genes were also detected against a 
curated database of DNA-binding RNA polymerase II TF (DbTF) using  TFcheckpoint33. Furthermore, biological 
significance like the Kyoto Encyclopedia of Genes and Genomes (KEGG)  pathway34, Gene Ontology (GO) and 
gene-disease associations of the gene modules were also observed using  Enrichr35.

Results and discussion
This section provides insight into the detailed findings of our present work.

Evaluation of differential expression. We have processed normalized gene expression values of 42412 
genes described in section  "Data preparation". Differential gene expression analysis of the genes among the 
control and treated samples has been performed using the  splineTimeR28 described in section  "Differential 
expression analysis". We obtained 1397 DE genes using the adjusted p-value ≤ 0.05 with the Benjamini-Hoch-
berg (BH)36 correction method and optimum degree of freedom = 4 . Top 20 DE genes from the PDAC dataset 
with significant expression value changes were ‘Hs.7413’, ‘CYP26B1’, ‘NPPB’, ‘SFRP4’, ‘Hs.562219’, ‘C12ORF46’, 
‘SMAD3’, ‘RN7SK’, ‘RARRES1’, ‘ITGA4’, ‘CLSTN2’, ‘DKK1’, ‘CYP26A1’, ‘EPDR1’, ‘RARB’, ‘LOC340598’, 
‘TMEM16C’, ‘INMT’, ‘ACTC1’, ‘C21ORF7’. Supplementary Fig. 1 represents the box, and the violin plot of the 
cubic spline normalized gene expressions of samples in each condition across each time point for the DE genes.

Additionally, to identify the DE genes at each time point, we have employed the limma  package37. Limma 
utilizes empirical Bayes smoothing on the estimated fold-changes and standard errors from a linear model fit-
ting. Table 4 shows the top 5 DE genes at each time point, including the top 5 DE genes across all the time points 
discovered through limma. Figure 1 shows the overlap among the top 100 DE genes between control and treated 
samples at each time point through a Venn diagram. It has been observed that the top 100 DE genes across all 
the time points and 168 hours have the highest overlap of 59%, followed by 41% at 24 hours. It was also noticed 
that the DE genes obtained from the splineTimeR and the top 1397 genes across all the time points through the 
limma were precisely the same.

Gene network reconstruction and gene function prediction. Adopting the methodologies dis-
cussed in section "Gene association network reconstruction and prediction of gene function", we have recon-
structed the gene association network (GAN). We have obtained two GAN’s, each with a different probability 
cutoff. We discovered 45550 significant edges with 1107 nodes for cutoff probability 0.8 and 34080 significant 
edges with 1048 nodes for cutoff probability 0.9, which corresponded to 4.67% and 3.5% of all possible edges, 
respectively. Supplementary Fig. 2 depicts the reconstructed GAN with a probability cutoff set to 0.9 with the 
top 150 selected edges based on a higher partial correlation score. Genes with higher degrees in the whole 
reconstructed GAN are displayed in dark colour. From this figure, it can be observed that ‘CUEDC1’, ‘ABCA6’, 
‘MRPL50’, ‘LYPD3’, ‘KRT19’, ‘OLFML3’, ‘LGALS3’, ‘Hs.540914’, ‘LOC285074’, ‘TBPL1’ are the top 10 genes hav-
ing extremely high connection with others within the GAN. Reconstructed GANs highlighting the betweenness 
and closeness centralities for the top 150 selected edges based on higher partial correlation scores are shown 
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in Supplementary Fig. 3–4. It was discovered that ‘CUEDC1’, ‘ABCA6’, ‘MRPL50’, ‘LYPD3’, ‘KRT19’, ‘OLFML3’, 
‘TBPL1’ were the seven common genes that rank within the top ten using all of these three centrality measures.

We have also inferred a gene regulatory network (GRN) using the time-course gene expression data of control 
and treated samples in PDAC and identified the regulators for each target gene using the dynamical GENIE3 
(dynGENIE3)  algorithm31 as described in section "Gene association network reconstruction and prediction of 
gene function". Table 2 shows the top 100 regulators for the DE genes (column E). Figure 2 shows the interac-
tion between the regulators and the target genes in the discovered GRN. This figure highlights the top 50 most 
frequent regulators and 50 most frequent target genes. Supplementary Table 4 reports the interactions among 
the regulators and the target genes of the inferred GRN with top scores. We have also detected 37 regulators 
for the 21 targets DE genes with a highly significant interaction score within the whole GRN, reported in Sup-
plementary Table 1. The connectivity patterns of the predicted GRN was also analyzed by enumerating the 
number of transcription factors (TFs) regulated by a target gene (in-degree) and the number of target genes 
regulated by a TF (out-degree) [Supplementary Fig. 15]. It has been discovered that most of the TFs regulate a 
comparatively small number of target genes (low degree TFs), while few TFs regulates a large number of target 
genes (high degree TFs).

We have also extracted the top 150 genes from the reconstructed GAN with 0.9 as the probability cutoff for 
predicting their gene function, chosen based on the aggregation of three centrality measures: degree, between-
ness, and closeness centrality. The top 15 genes among them include ‘CUEDC1’, ‘ABCA6’, ‘MRPL50’, ‘LYPD3’, 
‘KRT19’, ‘OLFML3’, ‘LGALS3’, ‘TBPL1’, ‘LOC285074’, ‘ANKRD26’, ‘FDXR’, ‘Hs.540914’, ‘CCL2’, ‘CENPJ’, and 
‘CXCL2’. We utilized this list of 150 genes to obtain their gene function using  GeneMANIA32. GeneMANIA 
algorithm creates a weighted connected network of the query genes, including several suggested genes. The 
resultant network is demonstrated in Fig. 3. Table  1 provides the details of the top 5 functions of the resultant 
genes predicted by the GeneMANIA.

In Table 1, the coverage column defines the ratio of the number of annotated genes in the resultant network 
to the number of genes with that annotation in the genome, and FDR is the false discovery rate generated from 
the GeneMANIA algorithm. The top 50 genes have been chosen from the resultant ranked genes list provided 
by GeneMANIA with the assigned score for finding their gene-disease associations. It has been observed that 
‘CSF2’, ‘HOXB9’, ‘ITGA11’, ‘NUMB’ genes are associated with Pancreatic Ductal Adenocarcinoma according to 
 DisGeNET38 web server.

Transcriptional regulators and DNA-binding transcription factor identification. We have iden-
tified the key transcriptional regulators (TR) for the DE genes using  REGGAE30, with the time-course genes 
expression profiles of the control and the treated samples. We obtained a ranked list of 66 key TR for the PDAC 
dataset from a Regulator Target Interactions (RTI) collection, which contains a list of regulators for each deregu-
lated gene that influence gene expression. Regulatory genes were ranked according to the score provided by the 
REGGAE algorithm. The top 5 key TR’s are ‘GATA6’, ‘NFYB’, ‘IRF1’, ‘TRIM22’, ‘SREBF1’.

Additionally, we have detected the proteins playing central role in DNA transcription using a curated database 
of specific DbTFs:  TFcheckpoint33 from the list of key TRs. We retrieved 47 DNA-binding RNA polymerase II 
TFs (DbTFs) among the 66 key TR’s. Among these DbTFs, we have discovered 10 proteins, viz., ‘FOXO1’, ‘SOX9’, 
‘GATA6’, ‘SMAD3’, ‘NFKB1’, ‘KLF6’, ‘TBX3’, ‘SREBF1’, ‘NR4A2’, ‘TCF3’ that are directly associated with PDAC 
using DisGeNET. We have also observed that among the top 50 ranked genes obtained from the GeneMANIA, 
there are 8 DNA-binding TF’s: ‘SMAD3’, ‘STAT1’, ‘ZNF34’, ‘ATF3’, ‘ZNF395’, ‘JARID2’, ‘E2F4’, ‘SOX9’.

Figure 1.  The figure shows the Venn diagram of the number of DE Genes at each time point.
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To validate the identified transcriptional regulators, we have performed an external validation. We first obtain 
a set of transcription factors from two independent study and then compute the overlap of the predicted set with 
it. Particularly, we combine transcription factors specific to distinct PDAC subtypes from Giuseppe et al.40, with 
an open source manually curated database of eukaryotic transcription factors called  TRANSFAC41. We observed 
that 44 transcription factors of our potential set discovered from REGGAE (containing 66 transcription factors) 
are common with the combined set (see Supplementary Table 2 for the results). Moreover we observed that our 
potential set contains three transcription factors ‘SMAD6’, ‘FOSB’ and ‘IRF1’ which are also demonstrated to be 
important regulators in human pancreatic ductal adenocarcinoma (PDAC)40.

Gene modules identification and determination of key gene modules. After discovering DE 
genes, we have applied the Dirichlet Process Gaussian Process mixture model to obtain robust and accurate gene 
modules from their time-course gene expression profiles. We have tuned the hyperparameter of DPGP and uses 
several kernel functions choices to pick the best model that results in the best clustering solutions. According to 

Figure 2.  The figure shows the regulatory interactions between transcription factors and target genes in PDAC 
using dynGENIE3 algorithm.
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a cluster-specific GP, the probability distribution of each gene’s trajectories is defined by a positive definite Gram 
matrix that quantifies the similarity between every time points. This Gram matrix can be modelled through vari-
ous kernel functions that depict smoothness and periodicity for GP models. In this work, we have utilized three 
different kernel functions squared exponential14, Matérn5242, and standard periodic43. We have discovered that 
the squared exponential (sq. exp) kernel with MAP clustering and Limited-Memory Broyden-Fletcher-Gold-
farb-Shanno (L-BFGS) hyperprior optimization technique, concentration parameter ( α = 1.0 ), shape ( αIG = 4 ) 
and rate ( βIG = 1 ) parameters for the inverse gamma prior on the cluster noise variance produces best clustering 
solution with 10 gene modules which yield the highest silhouette width [Fig. 4 and Supplementary Table 3(A–
F)]. Additionally, we have compared several other clustering techniques with the current method. We observed 
that the current method outperforms the other clustering results with respect to the silhouette width in all cases 
[Supplementary Table 3(G)].

Figure 5 shows the heatmap denoting the posterior distribution of the probability that two genes are being 
co-clustered. Subsequently, we have selected the top 6 modules with the highest number of regulators and referred 
to them as the key modules. Figure 6 shows the cluster trajectories of the DE genes for each key module in (A–F), 
normalized log2 fold change in expression for each transcript, the posterior cluster mean and ±2 standard devia-
tions according to the cluster-specific GP.

Biological significance analysis. We have performed several analysis on the key modules to gain more 
insights into the pathways and biological processes (BP) of the involved genes inside the key modules. Addi-
tionally, we have identified key TRs in each of the key modules. We have identified KEGG pathways, associated 
biological processes (BP), and disease-gene associations using the DisGeNET database via  Enrichr35. We have 
reported our findings, with the name of the regulator genes and DbTF in Table 2, where genes in boldface have 
been used to represent DbTFs among the TRs. Figure 7 shows the top-ranked (based on p-value) KEGG path-

Figure 3.  Gene network obtained from the GeneMANIA web server through the Cytoscape  software39 (version 
3.8.2).

Table 1.  GeneMANIA predicted functions.

Function FDR Coverage

1. Cellular response to tumor necrosis factor 0.0015 8/74

2. Response to tumor necrosis factor 0.0027 8/87

3. Response to transforming growth factor beta 0.025 9/169

4. Cellular response to transforming growth factor beta stimulus 0.025 9/169

5. Cellular response to interleukin-1 0.026 5/36
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ways (Panel A), biological processes (Panel B) and disease-genes association (Panel C) enrichment of genes of 
key cluster 1. Outcomes of our biological significance analysis for the other 5 key modules have been attached 
in Supplementary Fig. 5–9.

Moreover, we have identified the top 10 KEGG pathways and GO terms (BP) for each of the key modules 
to understand their relevance and significance in PDAC. We observed that key module 1 contains ‘FGF7’, ‘IL6’, 
‘FGF9’, ‘GSTA4’, ‘GADD45A’, ‘CDK4’, ‘STAT1’, ‘TXNRD1’, ‘WNT2’ genes which contributes to pathways in cancer 
and ‘STAT1’, ‘GADD45A’, ‘CDK4’ are directly associated to pancreatic cancer pathway. ‘IL6’, ‘STAT1’, ‘ST3GAL6’ 
inside the key module 1 is responsible for cellular response to Interleukin 6 (IL -6) that governs the pancreatic 
cancer  progression44. ‘CXCL6’, ‘CSF2’, ‘CCL20’, ‘TNFAIP3’, ‘CXCL1’, ‘PTGS2’ inside key module 2 takes part in 
IL-17 signaling pathway that promotes the transition to pancreatic cancer from chronic  pancreatitis45. ‘TNF-α ’ 
expression elevates in PDAC initiation process which binds to ‘TNFR1’ receptor resulting in Tumor Necrosis 
Factor(TNF)  signaling46. ‘CSF2’, ‘CCL20’, ‘LIF’, ‘TNFAIP3’, ‘CXCL1’, ‘PTGS2’ in key module 2 influences the 
TNF signalling pathway. Moreover, ‘IL11’, ‘CSF2’, ‘LIF’, ‘SOCS5’ participates in JAK-STAT signaling pathway 
which directly involves in pancreatic  tumorigenesis47 and ‘CSF2’, ‘NOTCH1’, ‘CLCF1’, ‘LIF’, ‘CRLF1’ genes are 
responsible for positive regulation of JAK-STAT cascade which have been detected in the key module 2. ‘LFNG’, 
‘NOTCH1’, ‘NUMB’ in key module 2 are actively involved in Notch signaling pathway which is reactivated in 
PDAC initiation and  development48. Focal Adhesion Kinase (FAK) play a crucial role and is highly activated 
and over-expressed in  PDAC49. In key module 3, we discovered ‘MYL7’, ‘SHC3’, ‘ITGA4’, ‘COL4A4’, ‘ITGA1’, 
‘FN1’, ‘FLNA’, ‘MYL9’ that take part in the Focal adhesion pathway. Key module 3 also contains ‘SFRP4’, ‘FOXC1’, 
‘NCOA3’ which give rise to protein N-linked glycosylation via asparagine process. Unusual glycosylation has 
been recognized as a molecular feature of malignant transformation in  PDAC50. Disease progression in PDAC 
is impacted by mutant ‘p53’ tumor  suppressor51. Presence of ‘GADD45B’, ‘SESN1’, ‘TNFRSF10B’, ‘PPM1D’ genes 
in the key module 4 indicates their involvement with ‘p53’ signaling pathway. ‘GPT2’, ‘GLS’ genes in key module 
4 play roles in Arginine biosynthesis. Arginine metabolism is spiked in PDAC cells and it’s deprivation may be 
considered as a potential strategy for PDAC  therapy52. Key module 4 contains ‘DDIT3’, ‘TNFRSF10B’, ‘TRIB3’, 
‘CHAC1’ genes which are active in intrinsic apoptotic signaling pathway in response to endoplasmic reticulum 
(ER) stress. ER stress contributes to pancrititis, a risk factor for  PDAC53. Pancreatic cancer can be recognized by 
integral activation of the mitogen-activated protein kinase (MAPK)  pathway54. A large number of genes, ‘CSF1R’, 
‘IL1A’, ‘TGFB3’, ‘PDGFC’, ‘PLA2G4C’, ‘HSPB1’, ‘FGF2’, ‘RASGRP1’, ‘NFKB1’, ‘HSPA1B’, ‘RELB’ of the key module 
5 are involved in the MAPK signaling pathway. Moreover, ‘NFKBIA’, ‘NFKB1’, ‘BIRC3’, ‘RELB’ inside the key 

Figure 4.  The figure shows the hyperparameter tuning for selecting the best kernel parameters.
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module 5 are involved in the Nuclear Factor-kappaB (NF-κ B) signaling pathway that play an important role in 
PDAC progression, development and are frequently found in upregulated PDAC  cells55. Also, a subset of genes 
in the key module 5, ‘NFKBIA’, ‘RIPK2’, ‘IRAK2’, ‘NFKB1’, ‘BIRC3’, ‘RELB’, ‘PRKCH’, ‘AKR1B1’, ‘HSPA1B’ are 
responsible for I-κ B kinase/NF-κ B signaling and positive regulation of NF-κ B transcription factor activity which 
has vital roles in constitutive growth of PDAC. Interleukin-1 (IL-1) induces activation of NF-κ B transcription 
 factor56. ‘NFKBIA’, ‘IL1A’, ‘RIPK2’, ‘IRAK2’, ‘SQSTM1’, ‘NFKB1’, ‘ANKRD1’ inside the key module 5 play active 
roles in IL-1-mediated signaling pathway and cellular response to IL-1. High level expression of functional 
adherens cell junctions has been seen in cultured cells of PDAC (in-vitro)57. In key module 6, ‘PTPRB’, ‘SMAD3’, 
‘RAC2’ genes are associated with the Adherens junction pathway. We found that ‘TGFB2’, ‘SMAD3’, ‘RAC2’ inside 
key module 6 are directly associated with Pancreatic cancer pathway. Additionally, ‘TGFB2’, ‘SMAD3’, ‘INHBE’ 
are responsible for TGF-beta signaling pathway in the key module 6. Activation of the TGF-β signaling pathway 
leads to increased chemotherapeutic resistance of pancreatic cancer  cells58.

Figure 8 shows the top 15 gene ontology terms (biological processes) performed by the genes in the ‘key 
module 1’ with their proportion of counts in the module. These GO terms have been selected according to the 
lowest p-values. This analysis for the other 5 key modules has been attached in the Supplementary Fig. 10–14. 
Additionally, we have analyzed genes in the top 6 key modules for their direct association with PDAC through 
the DisGeNET web server. We have found that 11, 10, 13, 11, 11, 7 genes are directly associated with PDAC in 
the key modules 1, 2, 3, 4, 5, 6, respectively. The names of the genes have been tabulated in Table 3.

Methods
The present section provides an overview of our systematic approach to data collection, data preprocessing, and 
the overall framework for the different methodologies used in our present analysis [Fig. 9].

Data preparation. We have collected the PDAC microarray gene expression profiles of pancreatic stel-
late cell line samples from the Gene Expression Omnibus (GEO) via the accession number  GSE1442659. The 
dataset has 48701 genes and 30 samples of each gene, along with their periodic gene expression changes. Sam-
ples include cubic spline-normalized intensity values of two conditions, viz., pancreatic stellate cell line before 
and after being treated with a 1-molecular concentration of all-trans retinoic acid (ATRA) on plastic. The gene 
expressions were recorded at 5-time points (30 min, 4 hours, 12 hours, 24 hours and 168 hours), having 3 repli-
cates at each time  point60. Gene expression dataset was log2-transformed before further analysis. Annotation of 
Illumina gene identifiers to official gene symbols was carried out by augmenting the information available in the 
GEO Illumina human platform information (GPL6102) and the R/Bioconductor package org.Hs.eg.db61. Later, 

Figure 5.  The heatmap shows the posterior similarity matrix obtained from clustering.
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Figure 6.  The figure shows the trajectories of gene expression of the DE genes in top six key modules (clusters).

Table 2.  Biological significance analysis of key regulators in each key module.

Regulators from REGGAE and 
DbTF (in bold) Key Cluster

Gene Ontology (Biological 
Processes) Biological Pathway (KEGG)

Top 100 GRN inferred 
regulators

GATA6, NFYB, IRF1, TRIM22, 
SREBF1, RFX5, PEX2, HOXA4, 
SMAD3, ID3, STAT1, FOXO1, 
ZNF34, RING1, LYL1, TOP2B, 
ATF3, NR1H4, EGR2, HOXA5, 
HOXA2, RARB, HOXC13, 
DACH1, ARNT2, SMAD6, 
TAF15, FOXF1, RELB, ZNF395, 
FOSB, ZNF281, ID1, LIN54, 
CREB3L2, NKX3-1, MSX1, 
JARID2, TCF3, NR4A2, RREB1, 
HES4, HIVEP1, NFKB1, 
NCAPG, ZBTB20, NOTCH1, 
E2F4, KLF6, RBPJ, LMNA, 
EGR1, DNMT1, MYB, HEXIM1, 
ZNF280D, ELL2, PBX3, E2F7, 
POU2F2, KLF13, SOX9, TBX3, 
FOSL1, PRPF4, ZNF792

Key Cluster 1: STAT1, ZNF34, 
ATF3, EGR2, TAF15, FOSB, 
ZNF281, HIVEP1, ZBTB20, KLF6, 
PBX3

Negative regulation of transport 
(GO:0051051); Positive regulation 
of chemotaxis (GO:0050921)

Melanoma; Breast cancer
SPRR3, OSBP2, TMEM55A, 
TRAF2, CXCR6, CCDC51, EHD4, 
NODAL, C5orf37, PLXNA4B, 
KCTD3, OPTC, LOC645576, 
RDH10, LOC493869, CIB1, 
POLA2, LOC645262, RND2, 
FGFR1OP2, LOC402110, METRN, 
LOC645681, ATP10B, EAF1, 
FLJ40712, CXCR7, LOC441052, 
ANKRD1, UNQ6975, DMRTB1, 
TMCO3, MYO1B, LOC645451, 
PRSSL1, CCDC124, POLR3C, 
NFKBIA, PSMD13, LOC647843, 
CYB5A, DUSP21, ANKRD31, 
RUFY1, TMPRSS12, CLEC14A, 
LOC648603, TRAPPC6B, 
LOC653554, RUSC2, CCDC115, 
IVD, C7orf13, MRPL10, L1CAM, 
YTHDF3, PRLH, LOC643809, 
LOC644325, DLG3, AVIL, 
FLJ10781, DDHD1, HS6ST2, 
PQLC2, OR52N1, LOC653342, 
FLJ42418, LOC646447, EIF3S6IP, 
ENDOGL1, ELAVL4, SNORD54, 
PCBP3, NET1, TMEM61, 
RGS9BP, LOC652216, FLJ31438, 
CD58, LOC442582, LOC650632, 
DDHD2, LOC285307, SMCR7L, 
LOC644403, SLC17A2, 
LOC441098, KIAA2026, 
RHCE, MUC17, LOC389669, 
FLJ31875, LOC650843, OR5AU1, 
LOC647058, OR10S1, C17orf39, 
RPL10L, ATOH1

Key Cluster 2: FOXF1, NKX3-1, 
MSX1, HES4, NOTCH1, POU2F2, 
KLF13, TBX3

Artery morphogen-
esis (GO:0048844); Positive 
regulation of JAK-STAT cascade 
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we have used the gene expression profiles of the annotated 42412 official genes for our differential gene expres-
sion (DE) analysis.

Differential expression analysis. Analysis and detection of differential expression of genes have been 
carried out using the R/Bioconductor splineTimeR  package28 to discover significant DE genes. SplineTimeR 
operates on the values obtained from the parameters of a fitted natural cubic spline regression model, which is 
utilized in our time-course gene expression profiles for control and treated  samples28 (for a detailed description 
see Supplementary text). The differential expression of a gene has been discovered by applying empirical Bayes 
moderated F-statistics on the spline regression model’s coefficient differences. The detection of DE genes using 
 splineTimeR28 has been carried out by setting the Benjamini-Hochberg36 adjusted p-value threshold to 0.05 and 
with a degree of freedom of 4 for all genes. Top regulated genes have been identified as differentially expressed 
and used for our subsequent analysis in module discovery. Supplementary Fig. 1 represents the box and the 
violin plot of the cubic spline normalized gene expressions of samples in each condition across each time point 
for the DE genes.
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Figure 7.  The figure shows the KEGG Pathway (A), Biological Processes (B), and DisGeNET analysis (C) of the 
key module 1.
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Additionally, to identify the DE genes at each time point, we have employed the limma  package37. Limma 
utilizes empirical Bayes smoothing on the estimated fold-changes and standard errors from a linear model fitting 
to assesses the differential gene expression across a pair conditions. Table 4 shows the top 5 DE genes at each 
time point, including the top 5 DE genes across all the time points discovered through limma.

Gene network reconstruction and prediction of gene function. GAN Construction. In this work, 
we have performed a gene association network (GAN) reconstruction from the identified DE genes’ time-course 
data using a regularized dynamic partial correlation  method62.  GeneNet62 has been used to analyze covariance 
matrices with a dynamic shrinkage method. Analyses have been performed with a posterior probability cutoff of 
0.8, and 0.9. GAN reconstruction has been implemented using splineNetRecon function from the splineTimeR 
 package28 to identify regulatory association between genes under a specific condition (treatment)28. Top sig-
nificant edges have been identified based on their cutoff posterior probability. We have identified the top genes 
by analyzing the overall graph topology in the resultant GAN based on a higher partial correlation score and 
widely used centrality measures: degree, betweenness and closeness centrality. These centrality measures were 
aggregated for selecting the top 150 ranked genes by taking the average of the quantile normalized values of these 
measures to perform gene function prediction.

GeneMANIA32 infers possible connections between the query genes by searching many large, publicly avail-
able biological databases to find related genes. These include gene and protein expression data, protein-protein, 
protein-DNA and genetic interactions, pathways, reactions, protein domains and phenotypic screening profiles. 
GeneMANIA operates on a ridge regression-based fast heuristic algorithm to integrate multiple functional gene 
association networks using a label propagation algorithm. GeneMANIA weights data sources based on all genes’ 
connectivity strength with each other in the query list and suggests relatively similar non-queried genes and 
their connection types. It returns an interactive functional gene association network of all resultant genes and 
their relationship. It also performs gene functions prediction of queried genes based on non-negative weights 
of gene sources (i.e. association of two genes) as a binary classification problem. GeneMANIA further returns a 

3.85

12.82

17.95

3.85

5.13

6.41

5.13

6.41

5.13

2.56

8.97

2.56

3.85

10.26

7.69

Positive regulation of cytokine secretion involved in immune response

Schwann cell differentiation

Negative regulation of endocytosis

Positive regulation of mesenchymal cell proliferation

Skeletal muscle cell differentiation

Positive regulation of MAPK cascade

Defense response to Gram−positive bacterium

Negative regulation of protein kinase activity

Peptidyl−tyrosine phosphorylation

Defense response to virus

Response to drug

Inflammatory response

Transcription from RNA polymerase II promoter

Positive regulation of transcription, DNA−templated

Positive regulation of transcription from RNA polymerase II promoter

GO:0002741

GO:0014037

GO:0045806

GO:0002053

GO:0035914

GO:0043410

GO:0050830

GO:0006469

GO:0018108

GO:0051607

GO:0042493

GO:0006954

GO:0006366

GO:0045893

GO:0045944

%04%03%02%01%0

Percentage of genes in the module

G
en

e 
O

nt
ol

og
y 

: B
io

lo
gi

ca
l P

ro
ce

ss
es

Figure 8.  The figure shows the lollipop plot describing the percentage of genes in key module 1, contributing to 
the top 15 gene ontology terms.

Table 3.  Genes related to PDAC in each key module.

Key module 1 Key module 2 Key module 3 Key module 4 Key module 5 Key module 6

IL6, F2RL1, CLIC3, PRKD1, 
TNFRSF11B, ROR2, CDK4, 
FGF7, ERBB3, KLF6, 
ITGA11

PTGS2, LGALS3, CSF2, 
KRT19, NOTCH1, ISG20, 
TBX3, NUMB, MTSS1, 
KHDRBS1

CDKN2A, IGF2BP3, FN1, 
CXCL12, FOXC1, NCOA3, 
TCF3, ST6GAL1, SFRP4, 
CNN2, MMP11, IDH1, 
RPL17

NUPR1, TNFRSF10B, ADM, 
SAV1, SLC7A5, KRT7, KIT, 
GCHFR, DDR1, BTG1, 
CCDC51

IL1A, TFPI2, HOXB9, 
NFKB1, THBS1, GDF15, 
SQSTM1, TAP1, NR4A2, 
LIMS1, CADM1

GATA6, IGFBP3, SMAD3, 
SREBF1, TIMP3, GPRC5A, 
PCDH10
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ranked gene list presumably sharing phenotypes with queried genes based on it’s large and diverse databases. We 
have analyzed the top 150 ranked genes obtained from GAN for gene function prediction using  GeneMANIA32.

GRN Inference. Dynamical GENIE3 (dynGENIE3)31 is an adaptation of the GENIE3 method for gene regula-
tory network (GRN) inference that handles time series and steady-state data jointly. It is based on a semi-para-
metric model that models gene expression’s temporal evolution using a non-linear ordinary differential equation 
(ODE). An ensemble of non-parametric regression tree (Random Forest) model is used to learn transcription 
function in each ODE. It assesses each input feature’s importance to measure the variable importance scores 
(VIS) by considering the Mean Decrease Impurity measure. Finally, it uses the normalized sum of VIS to assign 
ranks for each learning sample from which the tree was built to identify regulators of each target gene. In our 
work, we have identified regulators for each target gene by GRN inference for the whole set of genes using the 
dynGENIE3 algorithm from the time-course gene expression data of PDAC.

Figure 9.  The figure shows an overview of the whole framework adopted in the present work.

Table 4.  Differentially Expressed Genes using Limma.

30 minute 4 hour 12 hour 24 hour 168 hour
Final DE 
Genes

SNAR-A1 CXCL2 FKBP11 CYP26B1 CYP26B1 Hs.7413

HMOX1 CCL20 MYH10 SYNPO2L FHOD3 CYP26B1

LFNG DHRS3 CRLF1 CXCL1 NPPB NPPB

BCYRN1 IL8 SLC12A8 NPPB ACTC1 SFRP4

LOC255783 SMAD3 Hs.559673 LOC340598 SFRP4 Hs.562219
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Finding gene modules from time-series data. Piece-wise Aggregate Approximation (PAA) has been 
used from the TSrepr R  package63 for dimensionality reduction of multivariate time-series data. The DEGs 
obtained from the dataset contained 3 replicate values for each time point, which have been converted into 
univariate expression values using the mean function of PAA. These expression values were clustered to form 
the gene modules.

We have utilized a non-parametric model-based approach, the Dirichlet Process Gaussian Process mixture 
model (DPGP), presented by McDowell et al.14 to obtain gene modules from the univariate time-course expres-
sion data. It can simultaneously model cluster number with a Dirichlet process (DP) and temporal dependencies 
with Gaussian Processes (GP). DPGP uses a Bayesian non-parametric model for time course paths P ∈ R

N×T , 
where N is the number of genes and T is the number of time points (see the Supplementary text for a detailed 
description of DPGP method). For Markov chain Monte Carlo (MCMC), we have estimated the probability of 
the trajectory of gene j inside the cluster i according to the DP prior with the likelihood that gene j belongs to 
class i according to the cluster-specific GP distribution. Neal’s Gibbs Sampling “Algorithm 8” has been used to 
compute the posterior distribution of the trajectory class  assignments64.

We have executed the MCMC algorithm with two burn-in phases that converged by cluster-switching ratio. 
After the second burn-in phase, the DPGP updates the model parameters and computes the kernel hyper-
parameters’ cluster-specific posterior probabilities by the type II maximum likelihood. For this purpose, we 
have compared the performance of three different optimization techniques, viz., the fast quasi-Newton limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), the function minimization using gradient information 
in a truncated Newton (fmin_tnc), and stochastic conjugate gradient (SCG)65. Here, the cluster assignment 
vector is sampled at every sth iteration ( s = 3 , here) to thin the Markov  chain14. MCMC generates a sequence of 
states produced by a Gibbs sampler, where each state delineates a group of genes into disjoint modules. Results 
generated from Gibbs samples were compiled into a posterior similarity matrix (PSM). The outcomes from the 
Markov chain was summarized with three different clustering criteria, viz., the maximum a posteriori (MAP), 
the maximization of posterior expected adjusted rand (MPEAR), and the least-squares66 to discover the best 
cluster assignment. DPGP conservatively declares convergence ensuring convergence plateau for at least 10 
samples based on the iterative changes in posterior log-likelihood or the squared distance between sampled 
partitions and the posterior similarity matrix. We have also performed hyperparameter tuning for finding the 
concentration parameter ( α ), shape ( αIG ) and rate ( βIG ) parameters for the best clustering solution, which yields 
the highest silhouette width.

Key module identification and biological significance analysis. This subsection provides informa-
tion about approaches that have been used to find the biological significance of our obtained results.

Identification of transcriptional regulators and DNA‑binding transcription factors. We have utilized time-course 
expression profiles of the DE genes across the control and treated samples to identify the key transcriptional 
regulators (TR) using  REGGAE30. It operates by using Kolmogorov-Smirnov-like test statistics and an implicit 
combination of regulator target interactions (RTI’s) for the prioritizing influence of TR’s. REGGAE returns a 
ranked list of key TRs with p-value aggregations. It uses an extensive collection of RTIs that relies on diverse 
external databases: ChEA, ChipBase, ChIP-Atlas, ENCODE, Signalink, Jaspar and TRANSFAC. Some of these 
databases provide manually curated RTIs extracted from the primary literature, while others provide binding 
information extracted from ChIP-Seq experiments. Additionally, we have also identified regulators for each 
target genes through the gene regulatory network inference analysis. We have also identified the DNA bind-
ing transcription factors (DbTF) through a cumulative and high-quality knowledge source of genome-scale 
information,  TFcheckpoint33, from the detected transcriptional regulators obtained using REGGAE. The TFs in 
TFcheckpoint are investigated for experimental evidence supporting their role in specific DNA binding activity 
and RNA polymerase II regulation.

Functional enrichment analysis of the key modules. Identification and analysis of key gene modules which con-
tain the highest number of transcriptional regulators have been performed. The top 6 key modules have been 
analyzed to discover biological processes, pathway analysis and disease-gene associations for the involved genes 
inside each module using  Enrichr35. Additionally, we have studied the genes inside the key modules for their 
direct associations with PDAC.

Conclusion
This article developed a framework to discover the key regulatory genes and the key gene modules from multi-
variate time-series Pancreatic Ductal Adenocarcinoma (PDAC) microarray data. Here, we have identified the top 
differentially expressed (DE) genes with a cubic spline regression model. We have performed the Gene Associa-
tion Network (GAN) reconstruction to discover the regulatory association between genes in PDAC. Moreover, 
identifying key regulatory genes for each target gene has been carried out through a GRN inference analysis. 
Additionally, we have detected transcriptional regulators and DNA binding Transcription Factors (DbTFs) using 
REGulator-Gene Association Enrichment (REGGAE) and TFcheckpoint databases. Gene modules have been 
identified through a Dirichlet Process Gaussian Process (DPGP) mixture model. We have identified and analyzed 
the top 6 key gene modules that contain a significant number of regulatory genes. Biological significance analysis 
reveals that the genes inside the key gene modules are highly associated with PDAC.

Our analysis can be further extended by analyzing integrated multi-omics data of PDAC patients. Common 
symptoms of PDAC include weight loss, indigestion, abdominal and back pain. Thus, studying pathway net-
works of the key gene modules may unravel deep insights into this disease. Moreover, the genes inside the key 
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modules may be further validated using in vitro experiments to reveal some important findings in PDAC and 
its pathogenesis. One may also verify the role of key regulators in the modules as potential biomarkers. Survival 
analysis of the key transcriptional regulators may enlighten us with more significant insights about this disease.

Software used
We have utilized the following software packages in our present study: Inkscape (version 1.0.2), 
 ComplexHeatmap67,  ggplot268,  venn69,  Cytoscape39 (version 3.8.2) to produce the images.
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