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Traumatic brain injury (TBI) is one of the most devastating forms of brain injury.
Many pathological mechanisms such as oxidative stress, apoptosis and inflammation
all contribute to the secondary brain damage and poor outcomes of TBI. Current
therapies are often ineffective and poorly tolerated, which drive the explore of new
therapeutic targets for TBI. Autophagy is a highly conserved intracellular mechanism
during evolution. It plays an important role in elimination abnormal intracellular proteins
or organelles to maintain cell stability. Besides, autophagy has been researched in
various models including TBI. Previous studies have deciphered that regulation of
autophagy by different molecules and pathways could exhibit anti-oxidative stress,
anti-apoptosis and anti-inflammation effects in TBI. Hence, autophagy is a promising
target for further therapeutic development in TBI. The present review provides an
overview of current knowledge about the mechanism of autophagy, the frequently used
methods to monitor autophagy, the functions of autophagy in TBI as well as its potential
molecular mechanisms based on the pharmacological regulation of autophagy.

Keywords: traumatic brain injury, autophagy, methods, molecular mechanisms, pharmacological modulation

INTRODUCTION

Traumatic brain injury (TBI) is one of the leading causes of disability and death in modern society,
resulting in high medical costs (Brooks et al., 2013). It is defined as any head injury with traumatic
etiology, such as penetrating or blunt trauma and non-accidental injury. The pathological process
of TBI includes both primary and secondary brain injury. Although the primary brain damage
is the major factor determining the patients’ outcomes, the secondary brain damage induced by
multiple pathological processes, such as inflammation, cell death, apoptosis, oxidative stress and
impaired calcium and iron homeostasis, provides the possibility for clinical intervention (Zhang
and Wang, 2018). Despite the efforts on searching effective methods to attenuate the secondary
brain injury, patients suffering with TBI always end up with poor prognosis (Sun et al., 2015).
Therefore, new and effective strategies of treatment are urgently needed to reduce the heavy disease
and economic burden.

Autophagy is a self-catabolic process by which cells conserve and recycle their organelles
in a stressed or nutrient-deprived state (Levine and Kroemer, 2008). This process is essential
to maintain the metabolism essential for cell survival under stress situations. However,
dysfunction of autophagy is involved in multiple diseases, including infectious diseases,
cancers and TBI (Lipinski et al., 2015; Byun et al., 2017). Therefore, clarifying the molecular
mechanisms of this degradation process may contribute to develop novel treatment protocols for
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FIGURE 1 | The mechanisms of autophagy pathway. There are three main types of autophagy including chaperon-mediated autophagy (CMA), microautophagy and
macroautophagy. CMA involves the recognition of autophagic cargoes bearing a Lys-Phe-Glu-Arg-Gln (KFERQ) motif by heat shock proteins (HSPs), which is
followed by the lysosomal-associated membrane protein 2 (LAMP2)-dependent translocation of chaperoned autophagic cargoes across the lysosomal membrane.
By contrast, cargo delivery during microautophagy occurs upon the direct invagination of the lysosomal membrane. During macroautophagy, an isolation membrane
encloses a portion of cytoplasm, forming a characteristic double-membraned organelle named autophagosome. Autophagosome then fuses with lysosome to form
autolysosome and the cytoplasmic components are subsequently degraded by lysosomal enzymes.

therapeutic purposes. In the present study, we summarize the
process of autophagy and its role in TBI as well as the associated
molecular mechanisms and its regulated agents.

THE PROCESS OF AUTOPHAGY

Autophagy is a process that degrades cytoplasmic proteins and
organelles. Generally, there are three types of autophagy that
have been proposed up to now, including chaperon-mediated
autophagy (CMA), microautophagy and macroautophagy. They
distinguish from each other by how autophagic substrates
are delivered to lysosome (Figure 1; Kaur and Debnath,
2015). CMA is only observed in mammalian cells. In CMA,
autophagic substrates are directly translocated across the
lysosomal membrane dependent on the Lys-Phe-Glu-Arg-

Gln (KFERQ) motif, cytosolic chaperones of the heat-shock
protein family and lysosomal-associated membrane protein 2
(LAMP2; Cuervo and Wong, 2014). Conversely, the delivery
of autophagic substrates in microautophagy involves the
direct invagination of lysosomal membrane (Mijaljica et al.,
2011).

Macroautophagy (hereafter simply referred to ‘‘autophagy’’)
is the most widely studied and best known type among
these three pathways. When autophagy is activated, the
cytoplasmic proteins or organelles are enclosed by an
isolation membrane to form autophagosome. Autophagosome
then fuses with lysosome to form autolysosome and
the cytoplasmic proteins or organelles are subsequently
degraded by lysosomal enzymes (Mizushima and Komatsu,
2011).
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METHODS FOR MONITORING
AUTOPHAGY

Numerous reports have demonstrated that autophagy was
activated in the brain after TBI. Accordingly, to exactly explore
the role of autophagy in TBI, accurate methods to detect
autophagy should be used. In this section, we summarize the
frequently-used methods for detecting autophagy in TBI.

Transmission Electron Microscope (TEM)
Transmission electron microscope (TEM) has long been
considered as the ‘‘gold standard’’ for identification of
autophagic vesicles. It is one of the most precise methods
to examine autophagy, which provides the ‘‘seeing is
believing’’ data (Murakawa et al., 2015). Under TEM,
autophagosome can be typically identified as a double
membrane containing cytoplasmic materials. The cytoplasmic
materials in autophagosome include various organelles,
such as endoplasmic reticulum (ER) and mitochondrion
(Ylä-Anttila et al., 2009). When autophagosome fuses with
lysosomal vesicle to form autolysosome, the outer membrane
of autophagosome fuses with the lysosome membrane.
The cytoplasmic organelles, still surrounded by the inner
membrane, are delivered to the lysosome lumen. This inner
membrane of autophagosome is then degraded to allow
the degradation of the materials. Therefore, at the stage of
autolysosome, TEM usually observes a monolayer structure
containing numerous cytoplasmic materials (Eskelinen,
2008).

There are also limitations of TEM. For example, instead of
whole cell, ultrathin slices of cell, usually of 70–80 nm thickness,
could be observed. Therefore, the sample size is very small and it
is difficult to get a concept of the size and total volume of different
compartments inside the cell (Ylä-Anttila et al., 2009). Besides,
TEM requires expensive equipment and professional technology,
and is also time spending.

Western Blot Assays of Autophagosome
Marker Proteins
Beclin-1 is the mammalian ortholog of the yeast
Apg6/Vps30 gene. It can promote the formation of
autophagosome when overexpressed in mammalian cells
(Liang et al., 1999). In addition, there is a lot of autophagy-
related (ATG) proteins that mediate the activation of autophagy
(Arroyo et al., 2014). Among them, the microtubule-associated
protein light chain 3 (LC3) is widely used as a key marker
for detection of autophagosome (Mizushima et al., 2010).
LC3 is primarily synthesized in an unprocessed form, proLC3.
When autophagy in activated, proLC3 is cleaved by ATG4 to
form LC3-I, LC3-I then binds to phosphatidylethanolamine
(PE) to become lipidated LC3 (LC3-II). Subsequently,
LC3-II conjugates to both inner and outer membrane of
autophagosome and contributes to the formation of autophagy.
This process requires an ubiquitination-like reaction mediated
by ATG3 and ATG7 (Kabeya et al., 2000). Therefore, the
protein levels of Beclin-1, LC3, ATG3 and ATG7 detected

by western blot are usually used to detect the formation of
autophagy.

Fluorescence Microscopy
LC3-I distributes in the cell uniformly when autophagy
levels are low. However, upon the induction of autophagy,
LC3-I turns to LC3-II and binds to the membrane of
autophagosome, which can be visualized and quantified
by fluorescence microscopy through counting LC3 puncta
(Dolman et al., 2013). Monitoring LC3 puncta can depend
on either the signal of green fluorescent protein (GFP)
tagged to LC3 or immunofluorescence using an anti-LC3
antibody (Yoshii and Mizushima, 2017). The main limitation
of fluorescence microscopy is that although LC3 puncta
reflects an image of ATG structures in a cell, it does not
illustrate that the autophagosome would reach the final stage of
degradation.

Autophagic Flux
Autophagy is initiated by the formation of autophagosome.
Subsequently, autophagosome fuses with lysosome to form
autolysosome and promotes cytoplasmic organoids degradation.
This dynamic degradation process is named autophagy flux.
There are generally three methods to detect autophagic flux,
including LC3 turnover, autophagic substrate p62 degradation
and tandem fluorescent-tagged LC3 (tfLC3) assay. At the stage of
autophagic flux, the LC3-II is degraded by autolysosome. Thus,
the lysosomal degradation of LC3-II reflects the progression
of autophagic flux and assaying the expression of LC3-II in
the presence of lysosomal inhibitors provides a reasonable
way to monitor autophagic flux (Jiang and Mizushima, 2015).
Moreover, p62, the adapter protein, promotes the ubiquitination
of cytoplasmic organoids to autophagosome and degraded
by autolysosome. Thus, the down-regulation of p62 suggests
an occurrence of autophagic flux (Klionsky et al., 2016).
In addition, a new autophagic flux observation method has
been proposed by using a tandem monomeric red fluorescent
protein (mRFP)-GFP-tfLC3. The GFP fluorescence signal is
quenched in lysosome with an acidic compartment, whereas
mRFP fluorescence signal remains its intensity in lysosome.
Therefore, colocalization of GFP and mRFP fluorescence
signal (yellow puncta) demonstrates that the tandem protein
exists in an organelle which has not fused with lysosome,
for example the autophagosome. Conversely, a single mRFP
fluorescence signal without GFP (red puncta) demonstrates
the translocation of tfLC3 to lysosome, that is, the formation
of autolysosome. This novel system using tfLC3 allows a
direct assessment of both autophagy induction and autophagy
flux in the absence of any toxic inhibitors (Kimura et al.,
2007).

THE DUAL ROLE OF AUTOPHAGY IN TBI

Autophagy was firstly reported to be activated after TBI by
Diskin et al. (2005). They found that in a mouse modified
weight-drop TBI model, Beclin-1 was significant up-regulated
at 4 h and 24 h in the cortical site of injured brain
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post-TBI. Double staining of Beclin-1 and TUNEL indicated
that most of the injured cells exhibited double staining.
Subsequently, a great number of studies have demonstrated
that autophagy was induced after TBI. For example, in a
mouse weight-drop TBI model, the expression of Beclin-1
was increased at 1 h post-TBI and peaked at 6 h while
the expression of LC3-II was up-regulated shortly after TBI
and peaked at 48 h in the injured cortex and hippocampus.
Instead, the expression of p62 was decreased at 24 and 48 h
in the injured cortex and hippocampus after TBI (Luo et al.,
2011). Moreover, in a rat moderate fluid percussion TBI
model, both autophagosome and autolysosome were detected
in the injured cortical neurons from 4 h to 15 days after
TBI under TEM and the expression of LC3-II was also
up-regulated from 4 h to 15 days post-TBI in the injured
cortex (Liu et al., 2008). More importantly, the induction of
autophagy after TBI was not only found in animal models but
also confirmed in clinical trials. Clark et al. (2008) reported
that both LC3-II and Beclin-1 were increased in the injured
temporal lobe cortex in patients suffering TBI. Although
autophagy enhancement after TBI has been found in both
animal and human models, the role of autophagy in TBI was
still controversial. Different studies may draw different or even
opposite conclusions.

The Protective Role of Autophagy in TBI
The protective role of autophagy in TBI was firstly proposed
by Erlich et al. (2007) using rapamycin. Rapamycin activate
autophagy by inhibition of the phosphatidylinositide 3-kinases
(PI3K)/protein kinase B (AKT)/mammalian target of rapamycin
(mTOR) signaling pathway (Heras-Sandoval et al., 2014).
They found that rapamycin could increase the protein levels
of Beclin-1 and induce an augmented autophagic response
after TBI. Besides, administration of rapamycin improved
neurobehavioral function, increased neuronal survival, reduced
inflammation and gliosis in injured brain. Therefore, they
concluded that rapamycin was neuroprotective following TBI
by activation of autophagy. In another study, Zhang et al.
(2008) demonstrated that within 1 day after TBI, there

were few caspase-3 (+)/LC3 (+) overlapped cells. Whereas
after d, the number of caspase-3 (+)/LC3 (+) overlapped
cells significantly increased, indicating that autophagy was
activated in apoptotic cells after TBI. Furthermore, the protective
role of autophagy in TBI was also proposed by Sarkar
et al. (2014). Results of their study indicated that impaired
autophagy flux was involved in cell death and apoptosis
following TBI. Additionally, many neuroprotective drugs have
been suggested to attenuate TBI-induced secondary brain
injury via activation of autophagy (Xu et al., 2014; Ding
et al., 2015; Lin et al., 2016; Gao et al., 2017; Zhang et al.,
2017).

The Detrimental Role of Autophagy in TBI
Support for the detrimental role of autophagy in TBI was initially
according to the study conducted by Lai et al. (2008) Oxidative
stress could induce autophagy after TBI (Scherz-Shouval et al.,
2007), so they used an antioxidant, γ-glutamylcysteinyl ethyl
ester (GCEE). Treatment of GCEE alleviated TBI-induced brain
tissue loss and neuron death, increased antioxidant reserves,
improved Morris-water maze performance and suppressed
autophagy formation. Consequently, they speculated that
autophagy played a detrimental role in TBI. Moreover,
bafilomycin A1 (BafA1) and 3-methyladenine (3-MA), two
autophagy inhibitors, were also used. Inhibition of autophagy
by BafA1 or 3-MA attenuated behavioral outcome, reduced
cell injury, lesion volume and apoptosis after TBI, supporting
that autophagy was detrimental for TBI (Luo et al., 2011).
Besides, it has been shown that treatment of ketamine could
prevent TBI-induced inflammation and exert beneficial effects
on memory and behavior by down-regulating Beclin-1 and
LC3, suggesting that suppression of autophagy might be a
potential therapy to attenuate functional deficits for TBI
(Wang C. Q. et al., 2017). Consistent with these conclusions,
there were also numerous studies confirming the detrimental
role of autophagy in TBI (Feng et al., 2017a; Jiang et al.,
2017; Liu et al., 2017; Shen et al., 2017; Tang et al.,
2017).

TABLE 1 | Mechanisms of regulation of autophagy in TBI.

Mechanisms Factors Associated molecules References

Improve cognitive function Reduce neuronal loss in the
hippocampus and cortex

/ Feng et al. (2016)

Attenuate brain edema Inhibit permeability of endothelial cells / Bao et al. (2015) and Tang et al. (2017)
Preserve BBB function Reduce endothelial cell markers and

tight junction protein loss
/ Xu et al. (2014)

Suppress oxidative stress Interact with Nrf2-ARE pathway and
up-regulate the antioxidant enzyme
superoxide dismutase activity

Nrf2, HO-1, NQO-1 Zhang et al. (2017)

Reduce apoptosis Reduce cellular blebbing,
chromosomal DNA fragmentation
and formation of apoptotic bodies

PI3K/AKT/mTOR, FoxO3a, Drp1 Shen et al. (2017); Sun et al. (2017); Wu
et al. (2018)

Inhibit inflammation Decrease inflammatory factors and
attenuate inflammatory response

TLR4, NF-κB Feng et al. (2016, 2017a,b) and Jiang
et al. (2017)

TBI, traumatic brain injury; BBB, blood-brain barrier; Nrf2, NF-E2-related factor 2; ARE, antioxidant response element; HO-1, heme oxygenase-1; NQO-1, NADPH:quinine
oxidoreductase-1; DNA, deoxyribonucleic acid; PI3K/AKT/mTOR, phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin; FoxO3a, forkhead
box O 3a; Drp1, dynamin-related protein 1; TLR4, toll-like receptor 4; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells.
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FIGURE 2 | Possible autophagy signaling pathways in traumatic brain injury (TBI). TBI could inhibit phosphatidylinositide 3-kinases (PI3K)/protein kinase B
(AKT)/mammalian target of rapamycin (mTOR) pathway and microRNA-27a (miR-27a), activate nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1
(HO-1), nicotinamide adenine dinucleotide phosphate, quinine oxidoreductase-1 (NQO-1), forkhead box O 3a (FoxO3a), toll-like receptor 4 (TLR4), nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) and dynamin-related protein 1 (Drp1). Regulation of these molecules by TBI further promotes the formation
of autophagosome. This step requires unselective or selective targets, such as damaged mitochondria, for degradation. Mild autophagy leads to adenosine
triphosphate (ATP) generation and free amino acid release, which are beneficial for TBI. Conversely, excessive autophagy results in autophagic cell death or
apoptosis.

THE REGULATION MOLECULES OF
AUTOPHAGY IN TBI

Although the accurate role of autophagy in TBI was
confused, one undisputable fact was that autophagy was
activated after TBI and regulation of autophagy could
provide neuroprotection by improvement of cognitive
function, decrease of brain edema, protection of blood-
brain barrier (BBB) function and suppression of apoptosis,
inflammation and oxidative stress (Table 1). The detailed
mechanisms mediating the activation of autophagy after
TBI is unclear, some regulatory molecules have been
suggested which may explain its activation in TBI. It has
been shown that TBI could inhibit the phosphatidylinositide
3-kinases/protein kinase B/mammalian target of rapamycin
(PI3K/AKT/mTOR) pathway, activate forkhead box O 3a
(FoxO3a), dynamin-related protein 1 (Drp1), nuclear factor
erythroid 2-related factor 2/antioxidant response element
(Nrf2/ARE) pathway and toll-like receptor 4 (TLR4)/nuclear
factor kappa-light-chain-enhancer of activated B cells
(TLR4/NF-κB) pathway. In addition, these molecules were
in the upstream of autophagy and regulation of these molecules
by TBI could promote the formation of autophagosome
(Figure 2).

PI3K/AKT/mTOR
PI3K/AKT/mTOR signaling pathway is a crucial intracellular
pathway in regulation of metabolism, inflammation, cell

growth and survival (Huang T. et al., 2018). In addition, this
pathway is imbalanced at the occurrence of brain injury (Li
et al., 2016). Researches have offered compelling evidence
to demonstrate that activation of the PI3K/AKT/mTOR
pathway could reduce apoptosis by regulating autophagy
in brain injury models (Huang et al., 2017; Lv et al., 2017),
including TBI. It has been shown that TBI significantly
increased the neurological injury, brain water content,
neuron apoptosis and expression of Beclin-1 and LC3-II,
while decreased the expression of Phosphorylated (p)-PI3K,
p-AKT and p-mTOR in rats. Treatment with dexmedetomidine,
a neuroprotective agent, attenuated brain injury, reduced
the expression of Beclin-1 and LC3-II, and elevated the
expression of the p-PI3K, p-AKT and p-mTOR. Whereas
treatment with LY294002, a PI3K/AKT/mTOR pathway
inhibitor, observed the opposite trends, indicating that
activation of the PI3K/AKT/mTOR pathway provided
neuroprotection in TBI via inhibition of autophagy (Shen
et al., 2017).

The mechanisms of how PI3K/AKT/mTOR pathway
regulates autophagy have been fully explained. mTOR is
combined by two mTOR complexes, mTORC1 and mTORC2.
mTORC1 (composed of mTOR, Raptor, GLβ and other proteins)
is a key negative modulator of autophagy (Cuyàs et al., 2014) and
PI3K/AKT pathway is a major regulator of mTORC1 (Manning
and Cantley, 2007). AKT activates mTOR by phosphorylation of
TSC2 at serine residue 939 (Nellist et al., 2002). Phosphorylated
TSC2 subsequently results in the activation of Rheb and
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promotes mTOR activity (Long et al., 2005; Miyazaki et al.,
2010). Therefore, inhibition of AKT suppresses mTOR activity,
leads to dephosphorylation of autophagy and Beclin-1 regulator
1 (AMBRA1), activation of unc-51 like autophagy activating
kinase 1/2 (ULK1/2) complex, phosphorylation of focal adhesion
kinase family interacting protein 200 (FIP200) and finally
initiation of autophagy (Wojcik, 2013).

Nrf2
Nrf2 is a basic leucine zipper redox-sensitive transcription
factor that regulates the redox state of cell in harmful stresses
(Villeneuve et al., 2010). Under normal conditions, Nrf2 is
retained in the cytoplasm by Kelch-like ECH-associated protein
1 (Keap1; Kobayashi et al., 2004). However, under harmful
conditions such as oxidative stress, Nrf2 dissociates from
Keap1, translocates to the nucleus and activates numerous
antioxidant enzymes such as malondialdehyde (MDA),
glutathione peroxidase (GPx), heme oxygenase-1 (HO-1)
and nicotinamide adenine dinucleotide phosphate, NQO-1 by
binding to ARE (de Vries et al., 2008). To date, Nrf2 has been
confirmed to provide neuroprotection in various central nervous
system (CNS) diseases (Wang et al., 2007; Chen et al., 2011),
including TBI (Yan et al., 2008).

There were also studies showing that Nrf2 could regulate
autophagy (Li L. et al., 2015; Pajares et al., 2016). The regulation
of autophagy by Nrf2 in TBI has been suggested by Zhang
et al. (2017) They proposed that the Nrf2-autophagy pathway
was activated after TBI to provide neuroprotection both in vivo
and in vitro. However, Nrf2 failed to activate autophagy in
Nrf2−/− mice after TBI. Moreover, they found that fucoxanthin,
a marine carotenoid extraction from seaweeds, could alleviate
TBI-induced brain injury by activation of the Nrf2-autophagy
pathway.

But how Nrf2 regulated autophagy has not been fully
understood. There were several explanations and these
explanations were consistently associated with p62. p62 possess
dual-binding sites for ubiquitin chains and LC3. It bound to
ubiquitin chains via an ubiquitin-associated (UBA) domain
and LC3 through an LC3-interacting region (LIR), leading
to the initiation of autophagy (Noda et al., 2008). Moreover,
another study indicated that Keap1 uncoupled from Nrf2 could
bind to p62, interact with LC3 and transport the ubiquitin
conjugate to autophagosome for degradation (Fan et al.,
2010). The detailed mechanism of how Nrf2 regulated
autophagy was unclear, further studies were needed to
clarify it.

FoxO3a
FoxO3a belongs to the fork frame transcription factor family.
It can regulate muscle atrophy, glucose metabolism and
apoptosis in cells (Chaanine et al., 2016). Moreover, FoxO3a is
expressed in the brain such as the cerebral cortex, hippocampus
and cerebellum (Hoekman et al., 2006). Recent studies have
revealed that FoxO3a participated in the damage of brain.
It has been suggested that FoxO3a was involved in cerebral
ischemia and promoted stroke, hence inhibition of FoxO3a
could provide neuroprotection against ischemic injury

(Yoo et al., 2012; Li D. et al., 2015). Furthermore, FoxO3a
was implied in neuronal apoptosis in a rat subarachnoid
hemorrhage (SAH) model (An et al., 2015). In addition,
FoxO3a has also been confirmed to regulate autophagy.
Activated FoxO3a could induce autophagy by directly
increasing the transcription of Atgs, such as Beclin-1, LC3,
Atg5 and Atg7 (Liu et al., 2015). Besides, FoxO3a could also
avtivate autophagy indirectly. Phosphorylation of FoxO3a
by AMP-activated protein kinase (AMPK) may repress
transcription of S phase kinase-associated protein 2 (SKP2),
which subsequently initiated autophagy formation (Sanchez
et al., 2012).

FoxO3a also facilitated autophagy to decrease secondary
injury after TBI. Knockdown of FoxO3a by small interfering
ribonucleic acid (siRNA) significantly inhibited TBI-induced
autophagy, thus reversing neuronal damage in the hippocampus
and improving neurobehavioral dysfunctions. Whereas
activation of autophagy showed the opposite effects (Sun
et al., 2018).

FoxOs are a family of proteins that have been found to
regulate various cellular functions (Zhou et al., 2012). Besides
FoxO3a, other isoforms of FoxO, such as FoxO1, FoxO4 and
FoxO6 also express in mammalian cells (Wang et al., 2014).
Although they share overlapping structure and function, each
member appears to have different tissue-dependent expression
patterns and exert a specific biological role. In addition
to FoxO3a, other isoforms of FoxO were also showed to
regulate autophagy. For example, FoxO1 has been reported to
mediate putative kinase 1 (PINK1) transcription and promote
autophagy in response to mitochondrial oxidative stress in
murine cardiomyocytes (Li W. et al., 2017). However, no reports
so far have studied the effects of other FoxO isoforms except
FoxO3a on autophagy in TBI models. Therefore, this is an
interesting aspect worth exploring.

TLR4
TLR4 is the first reported mammalian TLR, which has
been considered to play an crucial role in initiating the
inflammatory reactions and ultimately resulting in neurological
defcits in CNS (Wang C. et al., 2012; Fang et al., 2013). For
example, the expression TLR4 significantly increased in brain
after ICH, and knockout of TLR4 signifcantly ameliorated
ICH-induced neurological impairments, cerebral edema
and infammatory cytokines expression (Lin et al., 2012).
Furthermore, the expression of TLR4 was up-regulated in
transient cerebral ischemia, and TLR4-defcient decreased infarct
volumes, improved neurobehavioral function and suppressed
inflammation after ischemic brain injury (Hyakkoku et al.,
2010). The mechanism of how TLR4 regulates inflammation
attributes to its initiation of two parallel signaling pathways,
the myeloid differentiation primary-response protein 88
(Myd88)/NF-κB pathway and the toll receptor associated
activator of interferon (TRIF) pathway. These two signaling
pathways subsequently activate transcription factors that
regulate proinflammatory cytokine genes (Buchanan et al.,
2010).
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TLR4 has also been suggested to regulate autophagy in
brain injury models such as TBI. Jiang et al. (2017) found that
knockdown of TLR4 ameliorated neuroinfammatory response
after TBI by inhibition of autophagy. In addition, many
drugs such as resveratrol, resatorvid and apocynin have been
reported to provide neuroprotection in TBI by inhibiting the
TLR4-mediated autophagy pathway (Feng et al., 2016, 2017a,b).
But howTLR4 enhanced autophagy remained unclear. AnNF-κB
binding site has been found in the promoter region of Beclin-1
genes. Therefore, activation of NF-κB by TLR4 may up-regulate
Beclin-1 expression and promote autophagy (Copetti et al.,
2009).

TLRs are a group of pattern recognition receptors present
in cytoplasm and cell membrane, and can specifically recognize
pathogen-associated molecular patterns. Interestingly, in a white
matter injury (WMI) model, TLR3 was colocalized with the
ER and autophagosome in ventral lateral posterior neurons,
indicating that autophagy could be regulated by TLR3 (Vontell
et al., 2015). Since TLR3 also participated in the process
of inflammation (Liu et al., 2018), so whether inhibiton of
TLR3 could suppress TBI-induced inflammation by modulation
of autophagy was unclear, which required further researches.

Drp1
Drp1 is a dynamin-like GTPase shuttling between the
mitochondrial and cytoplasm surface and it mediates
mitochondrial fission by calcium-dependent dephosphorylation
(Smirnova et al., 2001). Drp1 is highly expressed in brain
neurons and has been investigated in Alzheimer’s disease,
Parkinson’s diseases (PDs), stroke, epilepsy and TBI (Knott and
Bossy-Wetzel, 2008; Qiu et al., 2013; Zuo et al., 2014; Kim et al.,
2016). Recent researches showed that inhibition of Drp1 could
decrease brain injury and apoptosis after TBI by maintaining
mitochondrial functions (Wu et al., 2016).

Drp1 is also a crucial upstream protein of autophagy. When
Drp1 is stimulated by reactive oxygen species (ROS) or damaged
mitochondrial deoxyribonucleic acid (DNA), mitochondrion
becomes depolarized and damage. The damaged mitochondrion
is then recognized by autolysosome for degradation, this process
is named mitophagy (Song et al., 2015). It has been suggested
that Drp1 not only mediated BCL2/adenovirus E1B 19 kilodalton
interacting protein-3 (BNIP3)-induced mitophagy in adult
cardiomyocytes (Tanaka et al., 2010) but also participated
in Parkin-induced mitophagy in mouse embryonic fibroblast
(MEF) cells (Lee et al., 2011). Consistent with these results,
one study demonstrated that suppression of Drp1 alleviated
TBI-induced BBB disruption and apoptosis by inhibiting
mitophagy.

OTHER UPSTREAM MOLECULES OF
AUTOPHAGY WORTH STUDYING IN TBI

TBI is a complex disease involving many pathological processes.
There are several molecular targets responsible for the secondary
damage of TBI. Although the effects of molecules such as Nrf2 on
autophagy have been widely described in TBI, the effects of

other molecules such as long noncoding RNA (LncRNA) and
BNIP3 on autophagy in TBI have not been fully explained so far.

LncRNA
LncRNA is an RNA molecule that is longer than 200 nucleotides
and is not translated to a protein (Spizzo et al., 2012).
LncRNAs were primarily regarded as transcriptional by-
products. However, there was considerable evidence indicating
that lncRNAs were invloved in many pathological processes
(Batista and Chang, 2013). Indeed, the role of lncRNAs in TBI
was definite. The expression of LncRNAs was significant changed
in the injury brain after TBI (Zhong et al., 2016; Wang C. F.
et al., 2017). Knockdown or overexpression of lncRNAs could
suppress TBI-induced inflammation and apoptosis, resulting in
better outcome in mice (Yu et al., 2017; Zhong et al., 2017).

Additionly, lncRNAs was emerging as new factors involved
in autophagy in brain injury models. It has been revealed that
down-regulation of metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) attenuated neuronal cell death by
suppressing autophagy in cerebral ischemic stroke (Guo
et al., 2017). Moreover, MALAT1 played a protective role
against oxygen-glucose deprivation/reoxygenation-induced
injury in brain microvascular endothelial cell (BMEC)
by enhancing autophagy (Li Z. et al., 2017). Furthermore,
lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1)
stabilized phosphatase and tensin homolog (PTEN)-induced
PINK1 protein by promoting 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced autophagy in PD (Yan
et al., 2018). Thus, it can be speculated that lncRNAs could
also regulate autophagy in TBI. Further studies are needed to
clarify it.

BNIP3
BNIP3 belongs to the unique family of death-inducing
mitochondrial proteins (Chen et al., 1997). Under hypoxic
conditions, BNIP3 is activated by transcriptional factor hypoxia
inducible factor 1 (HIF-1) and promotes cell survival (Swiderek
et al., 2013). BNIP3 has also been studied in TBI. It has
been shown that inhibiton of BNIP3 by 2-methoxyestradiol
(2ME2) could provide neuroprotection after TBI by inhibiton of
secondary brain damage such as apoptosis and oxidative stress
(Schaible et al., 2014).

The role of BNIP3 in autophagy is well established (Xin et al.,
2011; Lu et al., 2016). BNIP3 can suppress mTOR by binding to
and inhibiting Rheb, and subsequently induce autophagy (Zhang
and Ney, 2011). Furthermore, BNIP3 can trigger the dissociation
of Beclin-1 and B-cell lymphoma 2 (Bcl-2) by competing with
Beclin-1 for binding to Bcl-2 to activate autophagy (Glick et al.,
2010). So, it is necessary to examine whether BNIP3 could
regulate autophagy in TBI in future studies.

RELATED THERAPEUTICS AGENTS
TARGETING AUTOPHAGY IN TBI

Numerous proof-of-principle studies have indicated that
regulation of autophagy by pharmacological activators or
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inhibitors could attenuate TBI-induced brain injury in preclinical
studies and represent a promising therapeutic approach for TBI.
Therefore, we elucidate the autophagy activators and inhibitors
used in TBI in this section (Table 2).

Autophay Inducers
Luteolin
Luteolin was shown to activate autophagy in TBI (Xu
et al., 2014). Luteolin is a member of the flavonoid family
and is abundant in vegetables and fruits such as broccoli,
parsley and celery (Mencherini et al., 2007). Luteolin has
a variety of pharmacological properties such as antioxidant,
anti-inflammation and cancer preventive effects (Neuhouser,
2004). Besides, luteolin was reported to regulate autophagy
in multiple models including TBI (Zhang B. C. et al., 2016;
Cao et al., 2017). It has been shown that autophagy was
protective after TBI and treatment of luteolin further enhanced
autophagy by activating NF-κB, leading to decreased brain
injury, inflammation and apoptosis following TBI (Xu et al.,
2014).

Melatonin
Melatonin (N-acetyl 5-methoxytryptamine) was reported to
activate autophagy in TBI (Ding et al., 2015). It is an autocrine
hormone mainly produced by the pineal gland and regulates
the sleepe cycle (Brzezinski, 1997). Melatonin can cross the
BBB easily to provide neuroprotection (Cheung et al., 2006).
Melatonin has been recognized as a powerful antioxidant that
protect antioxidative enzymes from oxidative damage (Galano
et al., 2013). In addition, studies have shown that melatonin
activated autophagy in many models inclduing TBI (Chen et al.,
2014; Kucharewicz et al., 2018; Pan et al., 2018). Activation of
autophagy by melatonin was found to provide neuroprotection
in TBI by suppression of inflammation and oxidative stress,
suggesting that autophagy was beneficial for TBI (Ding et al.,
2015).

Fucoxanthin
In 2017, fucoxanthin was proposed to exhibit neuroprotective
effects after TBI by activation of autophagy (Zhang et al.,
2017). Fucoxanthin is the most abundant marine carotenoid
extraction in seaweeds and is considered as a powerful
antioxidant (Sugawara et al., 2002). It has been proposed
to exhibit a variety of pharmacological properties such as
inhibiting tumor growth, repressing inflammation reaction and
reducing oxidative stress by activation of autophagy (Hou
et al., 2013; Moskalev et al., 2018). Furthermore, activation of
autophagy was shown to provide neuroprotection after TBI
and administration of fucoxanthin post-TBI could attenuated
TBI-induced neurological defcits, cerebral edema, brain lesion,
neuronal apoptosis and oxidative stress by further promoting
autophagy (Zhang et al., 2017).

Tetrahydrocurcumin (THC)
Tetrahydrocurcumin (THC) is extracted from the roots of the
Curcuma longa Linn. It owns antioxidant and anti-inflammatory

activity in vitro and in vivo (Wu et al., 2014). Besides, THC could
protect cerebral ischemia and neurodegenerative diseases against
oxidative stress by modulation of autophagy (Mishra et al., 2011;
Tyagi et al., 2012). Furthermore, the effects of THC on autophagy
after TBI has also been investigated in 2017. Gao et al. (2017)
found that THC improved neurological function, ameliorated
cerebral edema, reduced oxidative stress and decreased the
number of apoptotic neurons by activation of autophagy in a
rat model of TBI, confirming the protective role of autophagy in
autophagy.

Autopahgy Inhibitors
Necrostatin-1 (NEC-1)
As a special receptor-interacting protein-1 (RIP-1) inhibitor to
depress necroptotic cell death, Necrostatin-1 (NEC-1) has been
a hot topic of therapeutic agent in different models (Degterev
et al., 2008). NEC-1 has been shown to improve functional
outcomes and reduce the disrupture of brain tissue in TBImodels
(You et al., 2008). Moreover, previous studies have indicated
that necroptosis was closely associated with autophagy and
apoptosis, and thereby, suppression of necroptosis by NEC-1
may interfere with the process of autophagy and apoptosis.
Rosenbaum et al. (2010) found that NEC-1 could decrease
the expression of LC3-II after retinal ischemic. Furthermore,
NEC-1 was found to inhibit autophagy in TBI in 2012. Wang
Y. Q. et al. (2012) proposed that activation of autophagy could
increase apoptosis after TBI and treatment of NEC-1 suppressed
TBI-induced autophagy, leading to decreased apoptosis. These
results indicated that autophagy played a detrimental role in
TBI.

Apelin-13
Apelin-13 is the endogenous ligand of the APJ receptor. It is
extracted from bovine stomachs (Tatemoto et al., 1998). Previous
studies have shown that apelin-13 could attenuate postischemic
cerebral edema and brain injury by suppressing apoptosis
(Khaksari et al., 2012). Besides, apelin-13 could suppress glucose
deprivation-induced cardiomyocyte autophagy (Jiao et al., 2013).
The effects of apelin-13 on autophagy in TBI has also been
confirmed in 2014. Bao et al. (2015) suggested that autophagy was
activated and lead to secondary brain damage such as apoptosis
after TBI. Adminstration of apelin-13 could reverse TBI-induced
secondary brain damage by inhibiting autophagy.

Ketamine
Ketamine is usually used for starting and maintaining anesthesia
(Green et al., 2011). Other functions of ketamine include
sedation and acesodyne in intensive care (Zgaia et al., 2015). In
addition to these effects, ketamine has been shown to provide
neuroprotection for TBI patients by decreasing glutamate
excitotoxicity and inflammatory factors (Chang et al., 2009;
Bhutta et al., 2012). Moreover, in 2017, one study showed that
autophagy promoted apoptosis and inflammation after TBI while
treatment of ketamine could decrease autophagy by activation of
the mTOR signaling pathway, thus ameliorating apoptosis and
inflammation in TBI (Wang C. Q. et al., 2017).
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TABLE 2 | Summary of therapeutics development targeting autophagy in TBI.

Methods or Initial Effects on Doses Functions in TBI References
Compounds research time autophagy

Luteolin 2014 Activate 30 mg/kg Reduced neuronal degeneration, alleviated brain edema
and BBB disruption, inhibited inflammatory response

Xu et al. (2014)

Melatonin 2015 Activate 10 mg/kg Improved neurological deficits, decreased brain edema
and apoptosis

Ding et al. (2015)

Moderate hypothermia 2015 Activate / Decreased cell death Jin et al., 2015
17AAG 2015 Activate 24 mg Attenuate brain edema, neuronal death and apoptosis,

improved the recovery of motor function.
Ma et al. (2015)

FTY720 2016 Activate 0.5 mg/kg Improved neurobehavioral function, alleviated brain edema
and apoptosis

Zhang L. et al. (2016)

LY294002 2016 Activate 10 µmol/L Increased neurological injury and brain water content Zhang L. et al. (2016)
Methylene blue 2016 Activate 1 mg/kg Ameliorated neurological functional deficits, inhibited

cerebral lesion volumes, brain edema and microglial
activation

Zhao et al. (2016)

THC 2017 Activate 5 mg/kg Improved neurological function, reduced the brain water
content, oxidative stress and apoptosis

Gao et al. (2017)

Fucoxanthin 2017 Activate 100 mg/kg,
0.05 mmol/L

Improved neurological deficits, decreased cerebral edema,
brain lesion, neuronal apoptosis and oxidative stress

Zhang et al. (2017)

3-MA 2011 Suppress 400 nmol/L Improved behavioral outcome, reduced cell apoptosis and
lesion volume

Luo et al. (2011)

BafA1 2011 Suppress 4 nmol/L Improved behavioral outcome, reduced cell apoptosis and
lesion volume

Luo et al. (2011)

Necrostatin-1 2012 Suppress 2.6 µg Reduce tissue damage, functional deficits and apoptosis Wang Y. Q. et al. (2012)
Humanin 2013 Suppress 0.1 µg Improved motor performance, reduced lesion volume and

apoptosis
Wang et al. (2013)

Resveratrol 2014 Suppress 100 mg/kg,
5 µmol/L

Attenuated brain edema, improved spatial cognitive
function and neurological impairment, decreased
apoptosis and inflammation

Lin et al. (2014)

Ceftriaxone 2014 Suppress 200 mg/kg Attenuated brain edema and cognitive function deficits Cui et al. (2014)
Hydrogen sulfide 2014 Suppress 1

µmol/kg
Ameliorated motor performance, reduced brain edema
and apoptosis

Zhang et al. (2014)

Apelin-13 2015 Suppress 0.05 mg Attenuated neural cell death, lesion volume and neural
dysfunction

Bao et al. (2015)

Chloroquine 2015 Suppress 3 mg/kg Reduced cerebral edema and motor and cognitive
functional deficits, suppressed inflammation

Cui et al. (2015)

Rosiglitazone 2015 Suppress 2 mg/kg Reduced neuronal apoptosis and inflammation, increased
functional recovery

Yao et al. (2015)

Quercetin 2016 Suppress 50 mg/kg Improved cognitive function and neurological impairment,
attenuated apoptosis

Du et al. (2016)

Ketamine 2017 Suppress 10 mg/kg Ameliorated behavioral and histopathological outcomes,
exerted anti-inflammatory effects, increased ATP content

Wang C. Q. et al. (2017)

Overexpress of miR-27a 2017 Suppress / Attenuated neurological deficits and brain injury Sun et al. (2017)
Calcitriol 2017 Suppress 1 µg/kg Attenuated neurological deficits and apoptosis Cui et al. (2017)
Apocynin 2017 Suppress 50 mg/kg Ameliorated motor and behavioral impairment, brain

edema, neuronal damage and inflammation
Feng et al. (2017a)

Knockdown of TLR4 2017 Suppress / Improved neurological deficits, reduced brain edema
and neuronal damage, ameliorated neuroinflammatory
response

Jiang et al. (2017)

Resatorvid 2017 Suppress 0.5 mg/kg Attenuated neurons loss, brain edema, neurobehavioral
impairment neuroinflammation responses

Feng et al. (2017b)

Dex 2017 Suppress 15 µg/kg Reduced cerebral edema and inflammatory reaction Shen et al. (2017)
FGF2 2017 Suppress 250 µg/kg Alleviated brain edema, reduced neurological deficits,

prevented tissue loss and increased the number of
surviving neurons

Tang et al. (2017)

DHA 2018 Suppress 16 mg/kg Reduced hippocampal damage and white matter injury,
improved neurological function

Yin et al. (2018)

Knockdown of FoxO3a 2018 Suppress / Improved neurobehavioral dysfunction, reversed neuronal
damage

Sun et al. (2018)

Mdivi-1 2018 Suppress 3 mg/kg Attenuated blood-brain barrier disruption and cell death Wu et al. (2018)
Pifithrin-α 2018 Suppress 2 mg/kg Improved motor deficits, suppressed striatal glial

activation, inflammation, apoptosis and oxidative damage
Huang Y.-N. et al.
(2018)

TBI, traumatic brain injury; BBB, blood-brain barrier; 17AAG, 17-allylamino-demethoxygeldanamycin; THC, tetrahydrocurcumin; 3-MA, 3-methyladenine; BafA1,
bafilomycin A1; ATP, adenosine triphosphate; miR-27a, microRNA-27a; TLR4, toll-like receptor 4; Dex, dexmedetomidine; FGF2, fibroblast growth factor-2; DHA,
docosahexaenoic acid; FoxO3a, Forkhead box O 3a; Mdivi-1, mitochondrial division inhibitor 1.
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Docosahexaenoic Acid (DHA)
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that
is a primary structural component of human brain. It can
be extracted from fish oil and milk or synthesized by
alpha-linolenic acid (Guesnet and Alessandri, 2011). DHA
has been shown to provide neuroprotection by improving
neurological deficits, decreasing infarct volume and reducing
proapoptotic proteins (Belayev et al., 2009; Mayurasakorn
et al., 2011). Furthermore, Yin et al. (2018) found that TBI
significantly elevated the ATG preteins such as sequestosome
1 (SQSTM1/p62), lysosomal-associated membrane proteins
1 (Lamp1), Lamp2 and cathepsin D (Ctsd) in the rat
hippocampusm, which led to decreased cognitive functions
as well as both gray matter and white matter damages
in rats. However, DHA treatment suppressed TBI-induced
autophagy and reversed the hippocampal lysosomal biogenesis
and function, suggesting that autophagy was detrimental for TBI
and suppression of autophagy exhibited neuroprotective effects
after TBI.

Other Autophagy Regulators
Recently, there were some other autophagy activators or
inhibitors that have been proposed in TBI models such as
pifithrin-α (PFT-α; Huang Y.-N. et al., 2018), apocynin (Feng
et al., 2017a), trehalose (Portbury et al., 2017), dexmedetomidine
(Shen et al., 2017), mitochondrial division inhibitor 1 (Mdivi-1;
Wu et al., 2018) and so on (Wang et al., 2013; Cui et al., 2014,
2015, 2017; Lin et al., 2014; Zhang et al., 2014; Jin et al., 2015;
Ma et al., 2015; Yao et al., 2015; Du et al., 2016; Zhang L. et al.,
2016; Zhao et al., 2016; Sun et al., 2017). All these agents exerted
neuroprotective effects in models of TBI, possibly by activation
or inhibition of autophagy.

POSSIBLE REASONS FOR THE DUAL
ROLE OF AUTOPHAGY IN TBI

The mixed results of these studies may be due to the activation
degree of autophagy in TBI. Mild autophagy could lead to
adenosine triphosphate (ATP) generation, which is beneficial
for cell survival. Conversely, excessive autophagy may promote
autophagic cell death or apoptosis (Hakumäki et al., 1999).
Depending on different environment and stimulus of brain
trauma, the activation degree of autophagy may also be different.

Therefore, activation of mild autophagy or suppression of
excessive autophagy could be both benefit for TBI.

In addition, the available studies exploring the role of
autophagy in TBI relied on non-selective drugs that affected
autophagy. Therefore, wemust consider the effects of these drugs
on other signaling pathways instead of the simple influence of
autophagy. For example, 3-MA is a non-specific PI3K inhibitor,
which may also regulate other pathways such as inflammation
and apoptosis. As mentioned above, 3-MA was shown to
decrease neuron cell death and improve neurological function
after TBI. However, it was difficult to determine whether the
protective role of 3-MA was due to its effects on inhibiting
autophagy or inflammation or other pathways. Therefore, these
studies drew diametrically opposing viewpoints as to the role
of autophagy in TBI. The development of specific agents that
regulated autophagy may help to clearly elucidate the role of
autophagy in TBI. Meanwhile, with the help of molecular biology
technology, the precise knockdown or knockout of ATG genes
can be realized. Knockdown of the gene for encoding Beclin-1
protein has been achieved in a cerebral ischemia model (Xing
et al., 2012). These are all directions of future researches.

CONCLUDING REMARKS

Autophagy plays an important role in TBI, it participates in a
variety of cellular and molecular processes of TBI. In this review
article, we describe the mechanism of autophagy, the functions
of autophagy in TBI as well as some upstream moleculars and
pharmacological regulators of autophagy involved in TBI. These
observations make autophagy an attractive therapeutic target for
developing new therapeutic strategies to achieve better outcomes
for patients suffering from TBI.
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