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Abstract: Understanding the structural evolution process after the yielding of networks in polymer
nanocomposites can provide significant insights into the design and fabrication of high-performance
nanocomposites. In this work, using hydroxyl-terminated 1,4-polybutadiene (HTPB)/organo-clay
nanocomposite gel as a model, we explored the yielding and recovery process of a polymer network.
Linear rheology results revealed the formation of a nanocomposite gel with a house-of-cards structure
due to the fully exfoliated 6 to 8 wt% organo-clays. Within this range, nonlinear rheologic experi-
ments were introduced to yield the gel network, and the corresponding recovery processes were
monitored. It was found that the main driving force of network reconstruction was the polymer–clay
interaction, and the rotation of clay sheets played an important role in arousing stress overshoots. By
proton double-quantum (1H DQ) NMR spectroscopy, residual dipolar coupling and its distribution
contributed by HTPB segments anchored on clay sheets were extracted to unveil the physical network
information. During the yielding process of a house-of-cards network, e.g., 8 wt% organo-clay,
nearly one-fourth of physical cross-linking was broken. Based on the rheology and 1H DQ NMR
results, a tentative model was proposed to illustrate the yielding and recovery of the network in
HTPB/organo-clay nanocomposite gel.

Keywords: nanocomposite gel; dynamics structure evolution; yielding; solid-state NMR; rheology

1. Introduction

A polymer matrix constructed with nanoparticle networks inside is usually an efficient
strategy to achieve a high-performance material in industry [1–4]. Yielding the inner
nanoparticle networks, especially nanoparticles with large aspect ratios, would lead to
huge differences in structures, properties, and end uses in comparison to materials with
intact networks [5]. Clay is a kind of typical nanoparticle with a larger aspect ratio, and
well-exfoliated clay sheets may construct a house-of-cards structure in the polymer/clay
nanocomposites [6–8]. Different degrees of yielding may induce different inner networks,
resulting in versatile material performance [9]. Thus, understanding and controlling the
yielding and aligning processes are considered to be very important in polymer science
and engineering.
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The linear and nonlinear viscoelastic behavior of complex fluids in nanocomposites
reflects information on the microstructure and molecular interactions therein [10–17]. Small-
amplitude oscillatory shear (SAOS) experiments were the canonical method for probing
the linear viscoelastic properties of nanocomposites with intact structures, while large-
amplitude oscillatory shear (LAOS) experiments or startup flow were used to yield the
inner structure and show information thereafter, which controlled the system response
in most processing operations [9,18,19]. Wu et al. reported that the transient stress over-
shoot behaviors in polylactic acid/clay and polylactic acid/graphene nanoplatelets were
tightly linked with the percolation network density [20–22]. Winter et al. used the liquid
rubber/clay nanocomposites as a model sample to elucidate the yielding process by ap-
plying LAOS experiments [23,24]. Solomon et al. reported that the attractive interactions
between the multi-nanosheet domains in polypropylene/clay would lead to the quiescent
structure evolution and network reconstruction after shearing [3]. Their research showed
that the rheological measurement of polymer/clay nanocomposites could reveal the gen-
eration, destruction, and reconstruction of the network, and the responses of the highly
anisotropic layers dispersed in the viscoelastic polymer matrix. Until now, a molecular-level
understanding of structural changes before and after yielding was still missing.

Solid-state nuclear magnetic resonance (NMR) technology has developed rapidly
in the past few decades and has gradually become an irreplaceable tool for character-
izing polymer microstructures and segment dynamics at the molecular level [25–27]. In
polymer-based nanocomposites or gel, due to the existence of cross-linking points, the chain
segments between cross-linkages typically undergo anisotropic motions, resulting in a resid-
ual dipolar coupling (Dres) among protons, typically around kHz [28]. As a result, Dres and
its distribution were a unique prober, as extracted from proton double-quantum (DQ) NMR
experiments, to explore the cross-linking density [29–31] and structural heterogeneity [32,33]
of the network. Zhang et al. used DQ NMR to explore the hydrogen-bonding network of
self-healing materials [29]. Kay et al. used it to reveal the contribution of grafted silica to
the cross-link density of the elastomer matrix [34]. Wu et.al. showed the inhomogeneity in
the network of natural rubber via 1H DQ NMR [35]. However, few works on yielding a
nanocomposite by 1H DQ NMR have been conducted yet, partly because of the lack of a
model sample with a well-defined network inside that could be yielded within the NMR
experiment temperature range.

In our previous works, we found that highly anisotropic, organically modified silicates
(organo-clays) exfoliated when embedded in dicarboxyl-terminated 1,4-polybutadiene
(CTPB) or hydroxyl-terminated 1,4-polybutadiene (HTPB), up to a clay concentration of
10 wt% [36–38]. After having mixed the clay into the polymer, rheological experiments
identified the exfoliation process at different temperatures [37,39]. Such exfoliated organo-
clay nanosheets could form an ideal structure of a “house-of-cards”, which could serve as a
reference state to monitor the structural ripening process [40]. A regular rheological pattern
therein was found, which might be typical for physical gelation [40], and the equilibrium
segmental dynamics therein were identified by solid-state NMR [41,42]. The temperature
dependence of structural development in the nanocomposite had been studied utilizing
time-resolved mechanical spectroscopy (TRMS) [43]. Nevertheless, until now, a detailed
understanding of the yielding process and dynamic evolution thereafter at a molecular
level in a polymer/clay nanocomposite physical gel remained an open challenge [44,45].

The current study aims to understand the yielding process and the following struc-
tural evolution of polymer/clay nanocomposite gels. HTPB/organo-clay nanocomposite
served as a model sample where the clay sheets could be well exfoliated. The complete
evolution process from sol to gel, and then the loose to dense network transition, was
revealed by SAOS. Then, startup shear experiments were used to quantitively break the
equilibrium three-dimensional network, followed by exploring the movement of organo-
clay nanosheets. Furthermore, network structures under different yielding/relaxation
processes were quantitatively revealed by 1H DQ NMR. On the basis of rheology and 1H
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DQ NMR results, a tentative model was proposed to elucidate the evolution of the structure
and segmental dynamics in the HTPB/C18-clay nanocomposite gel.

2. Materials and Methods
2.1. Materials

Hydroxyl-terminated 1,4-polybutadiene oligomers (HTPB28) of Mn = 2800 g/mol
and carboxyl-terminated 1,4-polybutadiene oligomers (CTPB) of Mn = 4200 g/mol were
purchased from Aldrich Chemical Co., St. Louis, Missouri, United States. The organ-
oclay containing octadecyltrimethylammonium chloride (C18A), denoted as C18-clay, was
purchased from Fenghong New Material Co. Ltd., Huzhou, China.

2.2. Sample Preparation

HTPB28/C18-clay pre-nanocomposite gel could be conveniently prepared by gently
and quickly mixing the HTPB28 with organo-clay at room temperature [46,47]. In order
to obtain samples with intact network structures, they were loaded onto the fixture for in
situ ripening (heated from 25 ◦C to 120 ◦C with 2 ◦C/min and rested for 5 min at 120 ◦C).
Through this method, a well-developed structure could serve as a repeatable initial state for
the following rheological and NMR measurements [36,40]. The exfoliation of organo-clay
sheets was further proved by TEM images (see Supplementary Materials, Figure S1) and
XRD results (see Supplementary Materials, Figure S2).

2.3. Rheology Experiment

Rheology experiments were all carried out on a strain-controlled rheometer ARES-G2
(TA Instruments, New Castle, Delaware, United States). A 25 mm diameter parallel plate
with a gap between 0.7 and 1.0 mm was used in linear viscoelastic measurements. To
protect samples from degradation, experiments above 80 ◦C were all carried out under a
nitrogen atmosphere. Small amplitude oscillatory shear (SAOS) from 100 to 0.1 rad/s was
performed in a temperature range from −60 to 20 ◦C (0–8 wt%) and 0 to 120 ◦C (5–16 wt%)
with an interval of 20 ◦C in the linear region (e.g., 1% strain rate).

The startup of steady shear and flow reversal measurements was conducted by using
a set of 8 mm cone and plate geometry with a 0.1 rad cone angle. The experimental
procedures of flow reversal measurements were as follows: Firstly, a conventional startup
of steady shear with a 10 s−1 shear rate was applied. Then, the flow was stopped and the
sample was given a certain time to recover. At last, a shear flow with the same shear rate
but opposite direction to the initial startup experiment was applied.

2.4. Proton Double-Quantum (DQ) NMR Experiment

All the proton DQ NMR experiments were carried out on a Bruker Minispec (Billerica,
Massachusetts, United States) mq20 at a proton resonance frequency of 20 MHz. The
sample temperature was controlled by a BVT3000 heater (Bruker Minispec, Billerica, Mas-
sachusetts, United States) with an accuracy of ±0.1 ◦C. The 90◦ pulse length is about 3.0 µs,
and the receiver dead time was about 13 µs. A homemade Teflon coaxial cylinder, see
Supplementary Materials Figure S8a, was put into the 10 mm NMR tube, which could be
used to yield the sample as we did in the rheometer. Unannealed samples were put into the
NMR tube with a sample height of around 10 mm. The ripening process was carried out in
situ by heating up from 25 ◦C to 120 ◦C, holding for 5 min at 120 ◦C, then cooling down to
room temperature. MAPE-DQ experiments [48] were performed for all the samples, where
a MAPE (magic and polarization echo) [49] dipolar filter was implemented right before the
DQ recoupling sequences (i.e., Baum–Pine pulse sequence [50]) in order to eliminate the
interference of the signals from a modifier (C18A) anchored on the nanosheets. The total
MAPE filter time was set as 0.32 ms in the MAPE-DQ experiments. The detailed principle
of DQ NMR, as well as the data processing procedures, can be found in the Supplementary
Materials.
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3. Results
3.1. Structural Evolution of Nanocomposite Gels in the Linear Region

SAOS was conducted to explore the gradual formation of network structures and the
diffusion process of nanoparticles in polymer nanocomposites. Master curves obtained by
time-temperature superposition (TTS) are shown in Figures S3 and S4 and the shift factors
belonging to the SAOS master curves are shown in Figure S5. When the concentration
of C18-clay was lower than or equal to 2 wt%, plateau moduli did not exist in the low-
frequency region, displaying a terminal relaxation behavior. As the concentration of
C18-clay increased to 3 wt%, the modulus plateau formed. Plotting tan δ under different
frequencies as a function of C18-clay content [51] gave a more intuitionistic sol-to-gel
transition process (see Figure 1). According to the clear frequency-invariant crossover
of curves, we could identify that a sol-to-gel transition occurred during the range of 2–
3 wt%, whereas the physical gel only had a loose network at this time, inferred from
the weak plateau moduli in Figure S3a. For the sake of showing explicit nonterminal
behaviors at low concentrations, tan δ was superposed onto the bulk HTPB28 (see the
inset of Figure 1). In the high-frequency region, we inferred from the superior overlap
of loss factor that the relaxation behavior was still dominated by polymer, despite the
hydrodynamic contribution of nanosheets. Therefore, we can refer to this region as the
polymer-dominated hydrodynamic part [52]. In the low-frequency terminal relaxation
region, tan δ curves showed a significant upward trend as the polymer concentration
decreased, suggesting that the terminal relaxation was mainly controlled by physical
interactions in the polymer/organo-clay network.
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was 20 ◦C).

The master curves of the nanocomposite gel with high clay concentration (5–16 wt%),
as shown in Supplementary Materials Figure S4a, changed significantly when compared
with low-concentration ones. The shift factors belonging to the SAOS master curves are
shown in Figure S5b. Corresponding crossover modules and frequencies increased with
increasing clay concentration, owing to enhanced restrictions of the organic–inorganic
interface, as shown in Figure 2. Such results were in good agreement with our previous
studies [41]. Furthermore, the crossover modulus and frequency augmented two orders of
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magnitude from 5 wt% to 6 wt%. Such a surge indicated the formation of a dense network
structure with direct contact between nanosheets, forming a house-of-cards structure [13].
As a comparison, the modulus curve in polybutadiene/C18-clay 12 wt% did not have an
explicit plateau modulus except at a very low frequency since the polybutadiene chains
without end-functional groups were difficult to get access to the clay surface, leading to an
absence of a network structure (see Figure S4b in the Supplementary Materials).
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experiment are used as substitutes and displayed in the form of dotted points.

From the results of Figures 1 and 2, we can define a sol-to-gel (2–3 wt%) and loose-to-
dense (5–6 wt%) network transition at a very low percolation concentration of around 5 wt%.
Furthermore, the diffusion process of nanosheets in a polymer matrix could be revealed
by the linear rheology, e.g., HTPB28/C18-clay 8 wt%, shown in Figure 3. According to the
diffusion dynamics model of nanoparticles in a polymer matrix described by You et al. [53]
the master curve can actually be split into three stages:

In the first stage, nanosheets are confined in a network of end-functionalized poly-
mers [54], so the relaxation process is delayed corresponding to the first stage modulus,
G′p,chain. The shape of G′p,chain is nearly identical to the G′bulk of bulk HTPB28 in the high-
frequency region (see Figure S3a), implying that the relaxation mode of the nanocomposite
in a short time scale is similar to bulk polymer. However, the corresponding modulus of
HTPB28/C18-clay would be higher, which is mainly due to the hydrodynamic interactions
between HTPB28 and C18-clay [52,55].

In the second stage, the dynamic modulus starts to go down, indicating that the
nanosheets begin to escape from the end-functionalized polymer network. Owing to the
existence of interactions between polymers and nanosheets, the diffusion of nanosheets is
actually still limited.

In the third stage, after escaping from the end-functionalized chain network, the
target nanosheet will be trapped in a new round of constraints caused by the surrounding
nanosheets, thereby forming the second plateau modulus, G′p,cage.

From the results of small-amplitude oscillatory shear, it was found that the diffusion
of nanosheets was similar to spherical nanoparticles, e.g., 30 wt% [53], yet the critical
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concentration (percolation threshold) forming a network structure was greatly reduced in
nanocomposites with nanosheets, e.g., 6 wt% in HTPB28/C18-clay.
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3.2. Fracture of Networks by Transient Nonlinear Rheology

Rheological experiments in the linear region provide effective information about
the microstructure of nanocomposites [6,11,14,56]. However, it was only valid when
the total deformation was quite small, which hindered us from exploring the properties
of the network and the motion of nanosheets. Herein, startup shear experiments were
implemented to probe transient rheological behaviors of nanocomposites.

We applied a startup shear with a shear rate of 10 s−1 to nanocomposites with different
concentrations (see Figure 4). Based on the linear rheology results, we selected several
representative concentrations which could perfectly reveal the key changes during struc-
tural evolution. Transient stress overshoots were dominated by nanosheet contents. The
more nanosheet content added, the higher stress overshoots became, which was due to
a denser network structure when the filler concentration was beyond 5 wt%. It is worth
noting that a nanocomposite containing 2 wt% clay did not show any stress overshoot
behavior. When clay loading up to 3 wt%, the stress overshoot then appeared. Another
special phenomenon occurred between 5 wt% and 6 wt%; an obvious change from a weak
stress overshoot to a strong stress overshoot. These two distinct results were not surprising
because they were in perfect agreement with the results in the linear region. Now, we have
obtained two separate pieces of rheological evidence proving the sol-to-gel transition in
2–3 wt%, and the loose-to-dense network transition in 5–6 wt%.
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Note that in Figure 4, all stress overshoots occurred under the same γ of about 100%;
the same results were found in a shear rate dependence experiment (see Figure S6 in
the Supplementary Materials). Before the critical strain, only elastic deformation took
place, so the network remained intact. After the critical strain, deformation was no longer
recoverable due to the destruction of the network. It required a long process for the stress
curve to flatten out. In other words, the reconstruction of the polymer network obeyed a
slow relaxation mode [57], ascribed to the rotation or roll-over relaxation of clay nanosheets
under ongoing shear.

3.3. Recovery Properties of the Network

In addition to one-way startup shear experiments, flow reversal measurements were
conducted to probe the recovery ability of the dynamic network formed by pairwise
interactions between polar groups [36]. For the following research on the recovery ability
of the dynamic network and motion pattern of nanosheets, we had to select a suitable clay
concentration so as to comprise all the information needed. The selected concentration
cannot be too low or too high, otherwise, we would obtain an incompact structure or the
coexistence of exfoliation and an intercalation structure [36,37,39]. Hence, a concentration of
8 wt% was chosen in the following flow reversal measurements, forming a dense network
with exfoliated silicate layers. At room temperature, the structure was irrecoverable
for hours (see Figure S7 in the Supplementary Materials) [23]. We chose 60 ◦C as the
experimental temperature because higher temperatures can enhance chain relaxation and
thus speed up the network reconstruction process. Obviously, the magnitudes of the stress
overshoots in the flow reversal measurement have a strong dependence on the rest time
(see Figure 5). As the recovery time became longer, the magnitudes of stress overshoots
increased. It is worth noting that the process of reconstruction was not at a constant rate,
but fast in the range of 0–300 s then slow from 300 to 600 s, obeying a slow relaxation
mode, as mentioned above. Through the flow reversal measurements, a complete process
of structural evolution can be revealed. During the first startup shear, highly anisotropic
clay sheets were oriented under the shear field due to the fracture of the percolation
network [58,59]. However, the broken network will reconstruct under static conditions.
Nevertheless, what was the driving force in the reconstruction process? According to
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previous work by Solomon and Krishnamoorti [3,60], it was sure that the Brownian motion
was not the major driving force for the reorganization of the network. Assuming that the
shape of the clay nanosheets dispersed in the polymer matrix was circular and plate-like,
the rotational relaxation time, tD, due to Brownian motion, is approximately [16]:

tD ≈
(
π
2
)2

Dr0
=
π2ηmd3

3kBT
(1)

where Dr0 is the rotary diffusivity by Brownian motion, ηm is the viscosity of the polymer
matrix, d is the diameter of the nanosheets, kB is the Boltzmann constant, and T is the
temperature. For HTPB28/C18-clay nanocomposites, ηm of the HTPB28 matrix at 60 ◦C
was determined to be 2.35 Pa·s, and d was about 200 nm. As a result, tD was calculated to
be 6.72 × 107 s, which was five orders of magnitude larger than the time scale of recovery
time during the flow reversal measurements. Therefore, it can be well concluded that the
Brownian motion was not the driving force for the reconstruction of the network. Instead,
we argue that attractive interparticle and polymer–particle interactions are more likely to be
the major driving force to promote the reconstruction of the network, as discussed below.
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It should be mentioned that stress overshoots were mainly caused by fractures of
the network structure, but also affected by hydrodynamic interactions and the behavior
of orientations. In the normal startup experiments, the network broke down and the
nanosheets oriented under the shear field, so overshoots were obviously observed, as
shown in Figure 4.

Consider the reason why stress overshoots might occur in the reverse flow without
any recovery time, as shown in Figure 6. Firstly, the network structure was not completely
destroyed in the forward flow. In fact, it was highly unlikely, because the applied shear rate
of 10 s−1 was far beyond the linear response. The reverse flow was in the opposite direction
against the initial shear, so it caused the rotation or roll-over of nanosheets and further led
to collisions and friction between nanosheets. By increasing the clay concentration or matrix
viscosity to raise the probability of collision or the difficulty of rotation, such speculation
can be confirmed by the results in Figure 6. Firstly, with a higher clay concentration, more
obvious stress overshoots in the reverse flow curves appeared (Figure 6a,b). This suggests
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that the collisions between nanosheets did affect the stress overshoots. In addition, if we
replaced HTPB28 with CTPB, as shown in Figure 6b,c, a more obvious stress overshoot
appeared. In our previous work, we proved that CTPB was also a good one to interact
with C18-clay [37]. In the meantime, the viscosity of CTPB is 99.96 Pa·s at 20 ◦C, which
is 3.88 times the value of HTPB28 (25.75 Pa·s at 20 ◦C). A higher matrix viscosity meant
more difficulty in rotation, resulting in more obvious stress overshoot in the reverse flow
curves. Therefore, it is reasonable that the transient overshoots were caused by the rotation
or roll-over of nanosheets under reverse flow.

Polymers 2022, 14, x FOR PEER REVIEW 9 of 14 
 

 

such speculation can be confirmed by the results in Figure 6. Firstly, with a higher clay 
concentration, more obvious stress overshoots in the reverse flow curves appeared (Figure 
6a,b). This suggests that the collisions between nanosheets did affect the stress overshoots. 
In addition, if we replaced HTPB28 with CTPB, as shown in Figure 6b,c, a more obvious 
stress overshoot appeared. In our previous work, we proved that CTPB was also a good 
one to interact with C18-clay [37]. In the meantime, the viscosity of CTPB is 99.96 Pa·s at 
20 °C, which is 3.88 times the value of HTPB28 (25.75 Pa·s at 20 °C). A higher matrix vis-
cosity meant more difficulty in rotation, resulting in more obvious stress overshoot in the 
reverse flow curves. Therefore, it is reasonable that the transient overshoots were caused 
by the rotation or roll-over of nanosheets under reverse flow. 

 
Figure 6. Transient stress response of samples with different clay concentrations (a) HTPB28/C18-
Clay-5 wt%; (b) HTPB28/C18-Clay-8 wt% and matrix viscosity (c) CTPB/C18-Clay-8 wt% in the re-
verse flow measurements at 20 °C. A shear rate of 10 s−1 was chosen. 

3.4. Heterogeneous Structures of Polymer-Based Nanocomposite 
Proton DQ NMR experiment is a powerful tool to probe polymer structures, such as 

physical cross-linking in physical gels [26]. From the DQ experiments, we could obtain 
two sets of data: IDQ and Iref, which are DQ and reference signal intensity, respectively. The 
buildup curve of IDQ along with τDQ, as shown in Figure S9, suggests that the DQ signal 
intensity was proportional to the clay concentration due to the confinement effect of clays. 
Via the numerical fitting of the nDQ buildup curve, the distribution of Dres can be ex-
tracted, indicating the structural heterogeneity of the polymer network. The detail of the 
fitting method can be found in the Supplementary Materials and our previous works [29]. 
We plotted the nDQ buildup curves with different clay concentrations in Figure 7a. The 
nDQ signal buildup rate was proportional to the clay concentration because of the in-
creased physical cross-linking density. There was an obvious buildup rate change be-
tween 5 wt% and 6 wt%, indicating the loose-to-dense network transition. The obtained 
Dres distribution curves are shown in Figure 7b, while the obtained Dm and σ values are 
summarized in Table 1. Note that in the numerical fitting of the nDQ curves, a log-normal 
distribution for Dres was assumed, where Dm and σ represent the median Dres and standard 
deviation, respectively. When the clay concentration increased from 5 wt% to 16 wt%, the 
Dm increased at the same time, indicating the enhanced constraint on polymer dynamics. 
However, when the clay concentration increased from 5 wt% to 16 wt%, the σ value de-
creased first, leveled off from 8 to 12 wt%, then decreased again at 16 wt%. When the clay 
concentration was less than 6 wt%, the exfoliated clay sheets could not reach each other 
to form a house-of-cards structure, resulting in a heterogeneous distribution of physical 
cross-linking in the gel. Therefore, the σ was as large as 0.71. When clay sheets were 
enough to form a house-of-cards structure, e.g., 8 wt%, the σ leveled off at a value around 
0.59. However, when more clay was added, the intercalation structure dominated and the 

Figure 6. Transient stress response of samples with different clay concentrations (a) HTPB28/C18-
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reverse flow measurements at 20 ◦C. A shear rate of 10 s−1 was chosen.

3.4. Heterogeneous Structures of Polymer-Based Nanocomposite

Proton DQ NMR experiment is a powerful tool to probe polymer structures, such as
physical cross-linking in physical gels [26]. From the DQ experiments, we could obtain two
sets of data: IDQ and Iref, which are DQ and reference signal intensity, respectively. The
buildup curve of IDQ along with τDQ, as shown in Figure S9, suggests that the DQ signal
intensity was proportional to the clay concentration due to the confinement effect of clays.
Via the numerical fitting of the nDQ buildup curve, the distribution of Dres can be extracted,
indicating the structural heterogeneity of the polymer network. The detail of the fitting
method can be found in the Supplementary Materials and our previous works [29]. We
plotted the nDQ buildup curves with different clay concentrations in Figure 7a. The nDQ
signal buildup rate was proportional to the clay concentration because of the increased
physical cross-linking density. There was an obvious buildup rate change between 5 wt%
and 6 wt%, indicating the loose-to-dense network transition. The obtained Dres distribution
curves are shown in Figure 7b, while the obtained Dm and σ values are summarized in
Table 1. Note that in the numerical fitting of the nDQ curves, a log-normal distribution
for Dres was assumed, where Dm and σ represent the median Dres and standard deviation,
respectively. When the clay concentration increased from 5 wt% to 16 wt%, the Dm increased
at the same time, indicating the enhanced constraint on polymer dynamics. However, when
the clay concentration increased from 5 wt% to 16 wt%, the σ value decreased first, leveled
off from 8 to 12 wt%, then decreased again at 16 wt%. When the clay concentration was less
than 6 wt%, the exfoliated clay sheets could not reach each other to form a house-of-cards
structure, resulting in a heterogeneous distribution of physical cross-linking in the gel.
Therefore, the σ was as large as 0.71. When clay sheets were enough to form a house-of-
cards structure, e.g., 8 wt%, the σ leveled off at a value around 0.59. However, when more
clay was added, the intercalation structure dominated and the σ decreased again. Such
structural change agrees well with the TEM and XRD results, shown in Figures S1 and S2.
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Figure 7. (a) Normalized DQ (nDQ) signal intensity as a function of DQ excitation time for the
HTPB28/C18-clay nanocomposites with different clay concentrations (the solid lines are numeric
fitting results via Equation (6) in the Supplementary Materials); (b) Dres distribution curves obtained
from the numeric fitting on the nDQ curves in (a); (c) nDQ signal intensity as a function of DQ
excitation time for the HTPB28/C18-clay-8 wt% nanocomposite in different states—initial state
(black), after shear (red), and recovery at 60 ◦C for 12h after shear (blue) (the solid lines are numeric
fitting results via Equation (6) in the Supplementary Materials); (d) Dres distribution curves obtained
from the numeric fitting on the nDQ curves in (c). All experiments were performed at 30 ◦C.

Table 1. Dm and σ obtained from the fitting of the corresponding nDQ buildup curves of
HTPB28/C18-clay nanocomposites with different clay concentrations by assuming a log-normal
distribution for Dres.

Clay Concentration 5 wt% 6 wt% 8 wt% 12 wt% 16 wt%

Dm/2π (kHz) 0.25 0.48 0.69 0.86 1.06
σ 0.71 0.71 0.59 0.62 0.40

As shown in the rheology sections, the physical network of HTPB28/C18-clay gels
was yielded after shearing. So, we performed DQ experiments before and after shearing, as
shown in Figure 7c. To perform a proper shearing, we made a Teflon coaxial cylinder in a
10 mm NMR tube, as shown in Figure S8a in the Supplementary Materials. After the MAPE-
DQ experiment on the initial annealed sample, we manually applied shearing for 5 min,
where the shearing was large enough to yield the physical network (network structure after
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manual shearing changed no more than shown in Figure S10). Then, we performed the
same MAPE-DQ experiment on the sample. To explore the recovery behavior, we heated
the sample to 60 ◦C in situ and kept it warm for 12 h, then performed the same MAPE-DQ
experiment again. The nDQ signal buildup rate after shearing decreased significantly,
indicating the fracture of the network, as shown in Figure 7c. There was no obvious
change in the nDQ curve after recovery. That is because only applying high-temperature
conditions will just induce a very weak restoration effect. However, the transient rheology
experiment was very sensitive to the subtle structural changes, as shown in Figure 5, on
account of the dynamic shearing field in the test. The extracted Dres distribution curves
via the numerical fitting of the nDQ curves (Figure 7c) are shown in Figure 7d, while
the obtained Dm and σ values are summarized in Table 2. After shearing, the Dm value
decreased significantly from 0.69 to 0.44 kHz, which agreed well with the decreasing of
modules after shearing. When enough time and temperature were given for recovering,
there was little change for Dm, implying that the nanosheets were oriented and part of
the polymer–organo-clay interaction was thoroughly destroyed. Interestingly, yielding a
well-exfoliated house-of-cards structure resulted in larger σ values, such as 0.68, suggesting
a broader Dres distribution and a more heterogeneous network. Further recovery made the
σ value decrease to 0.64, suggesting a less heterogeneous network thereafter.

Table 2. Dm and σ obtained from the fitting of the corresponding nDQ buildup curves of HTPB28/
C18-clay nanocomposites in different states by assuming a log-normal distribution for Dres.

Status Before Shear After Shear Recover

Dm/2π (kHz) 0.69 0.44 0.39
σ 0.59 0.68 0.64

According to the yielding results of DQ NMR, it was worth noting that the Dm/2π of
HTPB28/C18-clay 8 wt% reduced from 0.69 kHz to 0.48 kHz, which is close to the value
of HTPB28/C18-clay 6 wt% with an intact network. When enough time and temperature
were given for recovering, there was little change in Dm, implying that part of the physical
crosslink was thoroughly destroyed. In the HTPB28/C18-clay nanocomposite gel, the only
origin of the physical crosslinks was the HTPB28 attached to the C18-clay. Thus, we could
roughly estimate that 1/4 of HTPB28 segments were detached from the organo-clay surface.
Interestingly, the absolute strength of the stress overshoot in reverse flow reappeared, yet
was lower than the first shearing of the pristine network, as shown in Figure 6. This agreed
well with the results from 1H DQ NMR: the interaction between HTPB28 and C18-clay
lowered because of the detaching of HTPB28 from the C18-clay after yielding. However,
there were still enough HTPB28 chains remaining on the C18-clay. Therefore, the C18-clay
was kept well-exfoliated inside HTPB28. By the rotation or roll-over of nanosheets under
reverse flow, the overshoot with lower stress remained in the reverse flow.

4. Conclusions

In this work, using the hydroxyl-terminated 1,4-polybutadiene (HTPB)/organo-clay
nanocomposite gel as a model with a well-established network, we explored the yielding
and recovering process of its network. A sol-to-gel transition occurs during the concentra-
tion range of 2–3 wt%, and the ripening process from a loose to a dense network occurred
during the concentration range of 5–8 wt%. The diffusion process of 2D nanosheets was
similar to the spherical nanoparticles in polymer-based nanocomposites, while the corre-
sponding percolation threshold at which the network formed was much lower. Nonlinear
rheologic experiments were introduced to yield the physical gel network, and the corre-
sponding recovery processes were monitored. It was found that the rotation or roll-over
of nanosheets under reverse flow could also induce transient overshoots. By proton
double-quantum (1H DQ) NMR spectroscopy, residual dipolar coupling and its distribu-
tion contributed by HTPB segments anchored on clay sheets were extracted to unveil the
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physical network information. As the clay concentration increased, a more homogeneous
network was obtained at first due to the formation of a house-of-cards structure, but then
became heterogeneous owing to the dominance of the intercalation structure. During the
yielding process of a house-of-cards network, e.g., 8 wt% organo-clay, nearly one-fourth
of physical cross-linking was broken. Based on the rheology and 1H DQ NMR results, a
tentative model was proposed to illustrate the yielding and recovery of the network in
HTPB/organo-clay nanocomposites gel.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14081518/s1, Figure S1: TEM images of the (a) 8 wt%
and (b) 16 wt% HTPB28/C18-clay nanocomposites after annealing above 120 °C; Figure S2: XRD
patterns of the C18-clay, PB/C18-clay-8 wt%, HTPB28/C18-clay-8 wt%, HTPB28/C18-clay-12 wt%
and HTPB28/C18-clay-16 wt%; Figure S3: Master curves of (a) G′ and (b) G” of low-concentration
HTPB28/C18-clay (0–7 wt%) versus angular frequency; Figure S4: Master curves of (a) HTPB28/C18-
clay (5–16 wt%) and (b) PB/C18-clay-12 wt% versus angular frequency. Solid symbols represent G′

and hollow symbols represent G”; Figure S5: Shift factors of the nanocomposites with different clay
content (a) 0–7 wt%; (b) 5–16 wt%; Figure S6: Shear rate dependence of HTPB28/C18-clay-8 wt% at
20 ◦C; Figure S7: SAOS curves of HTPB28/C18-clay-8 wt% in different states – initial state (black),
after LAOS shear (red), and after recovering for 5h from LAOS (blue). LAOS was applied with γ = 1.5
andω = 10 rad/s at a temperature of T = 20 ◦C; Figure S8: (a)A homemade Teflon coaxial-cylinder
fixture in 10 mm NMR glass tube was used to mimic shearing in rheometer (b)With the increase of
pulse interval time, the signal in the MSE-FID decreased. In this paper, τ was set as 0.02 ms in the
MAPE-DQ experiments; Figure S9: DQ intensity (normalized to the FID intensity by a single-pulse
experiment) as a function of the DQ excitation time; Figure S10: (a) nDQ signal intensity as a function
of DQ excitation time for the HTPB28/C18-clay-8 wt% nanocomposite in different states. (The solid
lines were numeric fitting results via eq 6 in Supplementary Materials); (b) Dres distribution curves
obtained from the numeric fitting on the nDQ curves in Figure S10a. All DQ experiments were
performed at 30 ◦C.
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