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Ephaptic entrainment in hybrid 
neuronal model
Gabriel Moreno Cunha1, Gilberto Corso1,3, José Garcia Vivas Miranda4 & 
Gustavo Zampier Dos Santos Lima1,2*

In recent decades, there has been a growing interest in the impact of electric fields generated in the 
brain. Transmembrane ionic currents originate electric fields in the extracellular space and are capable 
of affecting nearby neurons, a phenomenon called ephaptic neuronal communication. In the present 
work, the Quadratic Integrated-and-Fire model (QIF-E) underwent an adjustment/improvement to 
include the ephaptic entrainment behavior between neurons and electric fields. Indeed, the aim of 
our study is to validate the QIF-E model, which is a model to estimate the influence of electric fields 
on neurons. For this purpose, we evaluated whether the main properties observed in an experiment 
by Anastassiou et al. (Nat Neurosci 14:217–223, 2011), which analyzed the effect of an electric field 
on cortical pyramidal neurons, are reproduced with the QIF-E model. In this way, the analysis tools 
are employed according to the neuronal activity regime: (i) for the subthreshold regime, the circular 
statistic is used to describe the phase differences between the input stimulus signal (electrode) and 
the modeled membrane response; (ii) in the suprathreshold regime, the Population Vector and the 
Spike Field Coherence are used to estimate phase preferences and the entrainment intensity between 
the input stimulus and Action Potentials. The results observed are (i) in the subthreshold regime the 
values of the phase differences change with distinct frequencies of the input stimulus; (ii) in the supra-
threshold regime the preferential phase of Action Potentials changes for different frequencies. In 
addition, we explore other parameters of the model, such as noise and membrane characteristic-time, 
in order to understand different types of neurons and extracellular environment related to ephaptic 
communication. Such results are consistent with results observed in empirical experiments based 
on ephaptic phenomenon. In addition, the QIF-E model allows further studies on the physiological 
importance of ephaptic communication in the brain, and its simplicity may open a door to simulate 
the ephaptic response in neuronal networks and assess the impact of ephaptic communication in such 
scenarios.

Understanding the interplay between mind and brain is one of the most challenging endeavors in science1,2. Dis-
coveries in neurosciences have provided a unique insight through which we can observe the complex dynamics 
of the brain3–6. An important phenomenon in neuroscience studies involves neuronal communication7–9. Nerve 
cells communicate in various ways, via the exchange of small molecules and ions, as in the case of electrical and 
chemical synapses, or exclusively via electric fields. Communication made exclusively through electric fields is 
called ephaptic entrainment10–16.

The neuronal ephaptic entrainment is a communication known for several decades12,14. However, its physi-
ological action and function are not very clear to this day11,17. Despite the lack of clarity regarding the physi-
ological function of ephaptic entrainment, there are empirical studies that indicate a role for ephaptic entrain-
ment in synaptic plasticity18, in the synchronization of neuronal activity by geometrical disposition16,19–23, in 
addition to the relation between ephaptic entrainment and neuronal dysfunctions, such as epilepsy and Parkin-
son disease24–26. In recent decades, advances in interdisciplinary science areas could only be achieved through 
appropriate mathematical approaches. In this sense, the physical sciences have contributed to the field of neu-
roscience in the study of biological phenomena and in the development of analytical tools to better understand 
experimental results8,16. However, analyzing physical phenomena requires sophisticated mathematical techniques, 
which include, among others, non-linear dynamics27, stochastic differential equations28,29, maximum entropy via 
microstates30, recurrence analysis31 or computational mathematics32,33. Thus, modeling is an essential component 
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of scientific construction and support in understanding the behavior of nature in the most diverse areas of sci-
ence. At this point, physical science can assist neuroscience in the elaboration and improvement of theories that 
involve, for example, extracellular electric field phenomena with the aid of mathematical models7,17,34.

Among several well-known neuronal simulation models35, the Integrate-and-Fire types are a wide family 
that originate from the model proposed by Lapicque in 19078. This linear model uses a very simple circuit, but 
with great application in the neuronal area. Despite this, it is known that the relation between the total current of 
membrane ions and the voltage of a neuron membrane is not linear35,36. Thus, it is necessary to think of a gener-
alization of the model proposed by Lapicque—which is not only done for the mathematical motivation of having 
a richer dynamic behavior—but also for the biological reasons mentioned above36. In this context, the Quadratic 
Integrate-and-Fire model (QIF)—a nonlinear model—was chosen because it comes from the analysis of the 
dynamic space of equations describing different types of excitable membranes37. Despite all that, the QIF was 
not designed—and until now not even used/applied—to simulate the case of ephaptic neuronal communication.

Ephaptic quadratic integrate‑and‑fire model.  The so-called integrate-and-fire models constitute a 
class of simple models of neurons that capture two basic elements of neuronal excitability: passive integration of 
subliminal inputs (below the threshold), and generation of identical pulses when the voltage reaches the trigger 
threshold. The QIF is a non-linear model because the relation between the total ionic current of the membrane 
and the voltage of the membrane of a neuron is non-linear (revealed by experimental studies). The quadratic 
integrate-and-fire model (QIF) is a model of neuronal dynamics, having two interesting characteristics, simplic-
ity and low computational cost38. The QIF was proposed by Ermentrout37 and became very useful for the simu-
lation of cortical neurons, as it shows the bifurcation of the saddle-node in the phase space38. The QIF model 
equation is given by:

and, if Vm ≥ Vpeak ,Vm = c . In Eq. (1), Cm is the membrane capacitance, Vm the membrane potential, Vrest the 
rest potential, Vtresh the threshold of excitation value, Rm the membrane resistance and I(t) the leak current 
across the membrane.

To adapt the QIF model to the ephaptic entrainment (QIF-E) we decompose the current [I(t)], as follows: 
I(t) = Iephap(t)+ I0 , where I0 is a constant current (inside membrane observed in the empirical study11) to 
differentiate regimes: subthreshold ( I0 = 0 ) and suprathreshold ( I0  = 0 ). The electric potential is a physical 
magnitude that is useful when computed between two points. The law of Ohm, for instance, is always estimated 
with the potential difference between the terminals of a resistor. The estimated electric potential in our method-
ology is computed with help of the Ohm’s law across cell membrane. That means, the ephaptic current, Iephap(t) , 
that crosses the membrane is estimated by the Ohm’s law Iephap(t) = Vin−Vout

Rm
 . In the absence of the electrode, 

we have Vin = −65 mV and Vout = 0 mV (grounded brain hypothesis39). When the electrode is turned on, the 
Vout will be given by the Holt and Koch equation using the approximation of the electrical potential induced 
by a point spherical current source7,15. Indeed, our approach is in agreement with references11,40, given that the 
proposed model uses an extracellular potential derived from the solution of the Poisson equation for a current 
source inserted in the Ohmic conducting medium. Therefore, our approach implicitly considers the electrical 
potential gradient in the extracellular medium.

where ǫ(t) is a noise added to the current, and r the distance between the neuron and the current source (input 
stimulus = Iout ). The expression (2), plus the I0 constant current, was replaced in the QIF expression (1), to 
provide the new the Quadratic Integrate-and-Fire Ephaptic model (QIF-E):

Thus, we arrive at the adjusted equation to model the ephaptic entrainment in the QIF. The parameters used 
in this work are shown in the Table 1. The computational work was performed with the Euler method36,41,42 in 
MATLAB [see Supplementary Information for QIF-E step-by-step code].

In order to assess whether the proposed QIF-E model describes the characteristic phenomenology of the 
ephaptic entrainment—verified empirically11—we analyze the neuronal activity for subthreshold and suprath-
reshold regimes (see Fig. 1). So, we induce or not a constant current inside the membrane ( I0 ) producing or not 
spikes in the neurons [see Eq. (3)]. The subthreshold regime is adapted by the absence of the constant current, 
I0 while the suprathreshold regime has the constant current I0 different from zero.

Finally, for completeness, we present a control response model that corresponds to the absence of ephaptic sig-
nal. We developed a control response to compare with the QIF-E model. The control response is simulated using 
the standard QIF model, the results are show in Supplementary Informaton with the proper statistical analysis.

Subthreshold statistical methods.  In the subliminal regime ( I0 = 0 ), a noise intensity range is chosen 
(between 2.5 dB and 160 dB) and added to the input stimulus signal (the external electrode source = Iout ). The 
noise is added to simulate the electric fluctuation present in the extracellular space in between the electrode 
source (input stimulus) and the membrane (response stimulus); we use a signal-to-noise ratio (SNR, in decibel). 

(1)Cm
dVm(t)

dt
=

(Vm(t)− Vrest)(Vm(t)− Vtresh)

Rm(Vtresh − Vrest)
+ [I(t)]

(2)Iephap(t) =
−[Iout(t)+ ǫ(t)]

4πσout rRm
,

(3)Cm
dVm

dt
=

(Vm − Vrest)(Vm − Vtresh)

Rm(Vtresh − Vrest)
+

[

−
Iout(t)+ ǫ(t)

4πσout rRm
+ I0

]

.
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Table 1.   Cell membrane biophysical parameters employed in the simulation of the quadratic integrate-and-
fire model.

Quantity Value Description References

Vrest − 65 mV Rest potential 16,43

Vtresh − 55 mV Excitation thresholds 16,43

Cm 1.10−2 F/m2 Membrane capacitance 10

Vpeak + 55 mV Peak value 43

c − 70 mV Hyperpolarization constant 43

σout 0.29 �−1m−1 Conductance of extracellular space 11,44

r 50 µm Distance between current source and the point of Vout
11

Rm 2.10−1�m2 Resistance of the neuronal membrane 10

Figure 1.   Schematic drawing of the cell membrane and its representative RC circuit for the Integrate-and-Fire 
quadratic model with ephaptic entrainment (QIF-E). Simulation of ephaptic neuronal entrainment via hybrid 
neuronal model. (A) Schematic drawing of the experience equivalent to the simulation. Two electrodes on 
the neuronal membrane provide the membrane potential (blue and green). The external electrode produce an 
oscillatory electric field via input stimulus ( Iout in red). The intracellular electrode (blue) can inject a constant 
current ( I0 ), differentiating the two simulation regimes: Subthreshold ( I0 = 0 ) and Suprathreshold ( I0  = 0 ). (B) 
RC circuit representing the QIF-E ephaptic model [see Eq. (3)]. (C) In subthreshold regime the input stimulus 
was represented in red and the frequency is 1 Hz and SNR of 5 dB, and the model response is in green. In blue, 
we see the signal filtered by the Fourier method, with the most intense frequency in the response signal. (D) 
Circular statistics of the phase differences between the input stimulus and the model response, calculated using 
the Hilbert transform method. The medium vector (red) and the classes of the circular histogram—dispersion—
in blue. (E) In suprathreshold regime, the input stimulus is in red, the frequency used is 1 Hz and SNR of 5 
dB. The model’s response indicates that spikes occur only at a certain stage of the stimulus signal. (F) Vector 
population data from (E).
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The choice of the noise is made in order to approximate the data simulated to the QIF-E of the empirical data. 
We tested an entrainment of noise values to add to the external signal ( Iout ) (see Fig. 1).

To verify the effect of ephapticity in the model, we measure the phases of two signals ( Vm and Iout ) and check 
whether the difference between the phases remains constant, via circular statistics. To fit the intensity of the 
ephaptic response, the simulated neuron signal ( Vm ) employs a Fourier filter. The filtering is considered only 
the first harmonic of the series (see Fig. 1C in blue, fitting the signal in green). To verify the phase difference 
between oscillatory signals, it is necessary to get the instant phases from those signals. To perform this task, 
we use the Hilbert transform by MATLAB. The CircStats45 properly represent the phase data. With the circular 
statistics, we estimated means and deviations of the phase difference between the input stimulus and output of 
the QIF-E model response.

Suprathreshold statistical methods.  In the suprathreshold regime ( I0  = 0 ) (see Fig. 1E) the analyzes 
are focused on the relation between input stimulus signal (external electrode) and spikes (membrane response). 
To perform these analyses, the frequency, noise, and amplitude of the input stimulus signal are varied. Relation 
between spikes and input stimulus signals are analyzed using specific tools: the Population Vector (Fig. 1F), the 
Spike Triggered Average, and the Spike Field Coherence.

The Vector Population tool was developed to quantify spike’s angular preference using phase information43,46,47. 
In this way, the Hilbert transform supplies the instant phases of the input stimulus signal based on the spikes 
phase positions. The circular statistic provided the spike membrane preference related to input stimulus (see 
Fig. 1F).

The Spike Triggered Average (STA) is a specific tool to calculate the mean profile to occur a spike in a neuron 
related to the preference input stimulus phase48. In this estimation it is necessary two signals: an input stimulus 
signal and the membrane potential signal (model response). To obtain the STA one should take slices, li , of the 
input stimulus interval around the spikes instants in the neuron signal49. The slices, li are chosen with a time 
window defined by simulation conditions. In the present work, the temporal window adopted to obtain the STA 
is 1f  for f the stimuli frequency.

Finally, the Spike Field Coherence (SFC) is a tool that measures how strong is the synchronization between 
a stimuli signal and a spike train, based in the STA analysis11,50. The SFC it is defined between 0 (without signal 
synchrony) and 1 (totally synchronous signal)50. The calculation to SFC is performed by the expression51 
SFC =

�(STA)
1
n

∑n
i=1 �(li)

 , where �() is the power spectrum, STA is the Spike Triggered Average; the mean of the power 
spectrum estimated in the li slices is the Spike Triggered Power (STP)51.

Results
Subthreshold regime.  In the subliminal regime, we explore several parameters within the proposed model 
following empirical studies, such as the frequency and the oscillation amplitude of the input stimulus signal, 
the noise, and the characteristic time. In Fig. 2 are shown the circular statistics of the phase difference for the 
subliminal regime, for a range of characteristic-times (0.3*τ to 3*τ ) and distinct frequencies (1 Hz, 8 Hz, 30 Hz 
and 100 Hz) of the input stimulus signal. Furthermore, we use noise and amplitude of the input stimulus signal 
fixed at 20 dB and 100 nA, (for a complete study of the parameters employed in the simulations of the ephaptic 
entrainment, see Supplementary Figs. 1 to 4).

Figure 2 display the phase difference (circular statistics) between input stimulus signal and membrane poten-
tial signal. To analyze the effect of the input stimulus signal oscillations in the neuron membrane response, four 
input signal frequencies were chosen—((A) 1 Hz, (B) 8 Hz, (C) 30 Hz, (D) 100 Hz)—the same frequencies as the 
analyzed empirical study11. Thus, we observe a dependence between the frequency of the input stimulus signal 
and the membrane potential response. In this way, the subthreshold regime outcomes of the QIF-E model follow 
the analyzed experimental data11, as shown in Table 2.

In addition, in Fig. 2 we also show how the choice of the characteristic membrane time ( τ ) affects the phase 
difference between the input stimulus signal and the membrane potential response. The characteristic time of 
the neuronal membrane ( τ ) is shown in each column, to compare with the experimental data presented in the 
literature11. To validate our model, we tested τ around the standard value reported in the literature ( τ = 2 ms)10 
and multiply it by an arbitrary factor around the value ( 0.3τ to 3τ ) of the model response to LFP-type stimuli 
characteristic of the ephaptic entrainment.

The values of characteristic time for a membrane are chosen as having: 0.3 times, 1 time, and 3 times the speed 
(for more analysis of time characteristic values and phase difference see Supplementary Figs. 3 and 4). Knowing 
that a fast membrane response is associated with a small characteristic time value ( τ ) and that a slow membrane 
response is linked to a large characteristic time value ( τ ), we observe that, for a fast membrane ( 0.3τ column), 
all frequencies produce an answer close to 180◦ in phase difference. This characteristic is lost when we make the 
model slower ( 3τ column), mainly for higher frequencies (> 30 Hz), indicating that the model according to the 
desired electrophysiological characteristics for a given neuronal membrane.

To finish the study of the subthreshold regime, we analyzed two other parameters of our model: (i) the noise 
intensity and (ii) the signal amplitude ( Iout(t) ), both results are shown in the Supplementary Figs. 1 and 2. These 
results show that as noise increases (independent of the frequency), the circular statistics become more dispersed 
around the mean, but the phase difference does not change as observed in Supplementary Fig. 1 in Supplementary 
Information. Likewise, we observe that the model responds to different input stimulus signal amplitudes with 
different response amplitudes, but this change in its input stimulus intensity does not alter the phase differences 
either (see Supplementary Fig. 2 in Supplementary Information). These outcomes are expected because in the 
expression of, the difference in membrane potential ( Vm ) is directly proportional to the intensity of the input 
current ( Iout(t) ). Therefore, in this study, we take a current amplitude at 100nA and noise at 20bB to better fit the 
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results of the subliminal experimental results and do not influence the phase difference between the electrode 
and the neuron signals11. Table 2 summarizes the data from the QIF-E model that best fits the empirical data11. 
This table shows the errors made by the QIF-E in estimating the subthreshold phase difference.

Suprathreshold regime.  For the supra-threshold regime, Eq. (3) is used, in which the constant current, 
different from zero I0 , plays the role of a non-ephaptic stimulus applied to the model. This extra stimulus inside 
the membrane is necessary since the ephaptic communication studied in this work does not have enough inten-
sity to produce spikes in the QIF-E model, here we also compare our results with the empirical experiments 
in the current literature11. To treat the data obtained in this regime, three different analysis tools are used: the 
population vector tools; Spike Triggered Average (STA), and Spike Field Coherence (SFC). For a more extensive 
study of these parameters related to ephaptic entrainment, see Supplementary Figs. 5 to 8.

Figure 2.   Subthreshold circular statistics for different parameters of characteristic times and frequencies. The 
characteristic time of the neuronal membrane has a defined value based on the experimental data present in 
the literature. Such values represent an increase (greater than 1) or a reduction (less than 1) of the LFP-type 
response speed model characteristic of ephaptic entrainment. In addition, we show how the various values of 
the frequency parameters of the input signal induce a phase difference. The columns show the circular statistics 
for a membrane: 0.3 times, 1 times, 3 time what is reported in the literature, with the associated frequencies (In 
the lines (A) 1 Hz, (B) 8 Hz, (C) 30 Hz, and (D) 100 Hz). In all results we chose the fixed amplitude (100 nA) 
and noise (20 dB) intensities that best suit the results of the experimental results. To guide the eyes and reference 
the intensity of the statistical value of the phase difference (red), all graphs show, on the right and above, two 
numbers (between 0 and 1) related to the radius size of the inner and outer circle, respectively.

Table 2.   Results of subthreshold empirical phase differences, and phase differences obtained by the QIF-E 
model. The last column contains the relative errors. Model data configuration of 100 nA, 20 dB and τ.

Frequency (Hz) Empirical11 (Grad) QIF-E (Grad) Error (%)

1 190
◦

180
◦ 5.0

8 188
◦

187
◦ 1.1

30 210
◦

201
◦ 4.0

100 231
◦

233
◦ 0.8
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Figure 3 shows the results of the supra-threshold regime. In panel (A) we observe the population vector for 
a 1 Hz frequency stimulus. Note that, like the subliminal regime, noise does not change the direction of the 
population vector, but it can change the distribution of the preferred phases for the model’s spike. Thus, we chose 
a fixed noise in the input stimulus signal of 20dB for the analysis of other parameters and tools. For a complete 
analysis of varying noise and intensities, see supplementary material. In (B) we observed that the intensity of 
the STA spectrum, given a frequency, is directly related to the signal intensity (1.25 nA, 2.5 nA, 5 nA, and 10 
nA). For this test, it is noticeable that the STA peaks occur with a frequency equal to the frequency of the input 
stimulus signal, which in this case is 8 Hz.

In general, what is categorically observed in the STA and in its frequency spectrum, is that the input stimulus 
signal that produces the occurrence of spikes coincides with the provided input stimulus signal. This input stimu-
lus profile is lost when increasing the noise intensity in the input stimulus, indicating again that the proposed 
QIF-E entrainment model is sensitive to noise and can reduce the ephaptic communication. Panel (C) shows 
that the SFC calculated for the QIF-E model indicates that the higher the frequency of the input stimulus signal 
(30 Hz—in black), the less intense is the entrainment between the peaks and the input stimulus. Otherwise, for 
the frequency below 1 Hz, the stimuli assume a high value. In panel (D) the SFC calculated for different noise 
intensities in the input stimulus signal, the previous observations regarding the intensity of the entrainment 
between the input stimulus signal and the model’s response.

From Fig. 2 we see that the intensity of the input stimulus signal ( Iout ), as well as its frequency and noise, 
are factors that influence ephaptic entrainment in the suprathreshold regime. Based on the SFC analysis, we 
noticed that the modeled entrainment is sensitive to the intensity of the input stimulus, the frequencies of the 
input stimulus, and also to the intensities of noise. This low entrainment intensity between the input stimulus 
signal and the model’s suprathreshold response is most likely responsible for the characteristics observed in the 
population vector. All of these observations agree with the suprathreshold behaviors from empirical results.

Table 3 shows the relative errors between the population vector phase values of the QIF-E model and the 
population vector phase values given by the empirical study11. It is important to note that the angular deviation 
measured in population vectors via QIF-E are large enough to reach the empirical values and reduce errors.

Figure 3.   Results of the suprathreshold regimen. In panel (A) we show the population vector (spike phase 
preference) for a 1 Hz frequency and 10 nA amplitude of external stimulus. The noise does not change the 
direction of the population vector (for complete analysis with different frequencies, amplitudes and noises see 
Supplementary Figs. 5 and 6 in Supplementary Information). In (B) we observed that the intensity of the STA 
spectrum, given a frequency (8 Hz), is directly related to the signal intensity (5 nA and 10 nA). For this test the 
peaks occur with a frequency equal to that of the supplied stimulus, of 8 Hz. The outcomes for 1 Hz and 30 Hz, 
with 1.25, 2.5, 5 and 10 nA were observed in Supplementary Fig. 7 in Supplementary Information. (C) The SFC 
(entrainment intensity) results indicate that the higher the frequency of the stimulus signal (30Hz—in black), 
the less intense is the entrainment between the peaks and the external stimulus. Otherwise, for the frequency 
equal to 1 Hz, the SFC assumes a high value (in red). In panel (D) the SFC, for 8 Hz, were calculated for different 
noise intensities (10 dB, 40 dB and 160 dB) in the external signal. For the same analysis for 1 Hz and 30 Hz, see 
Supplementary Fig. 8 in Supplementary Information. Our results are similar to empirical outcomes.
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According to Anastassiou et al.11, there is an average behavior involving ephaptic communication relating to 
the two studied regimes. Thus, under the same initial conditions (parameters and variables) in the suprathreshold 
regime as the input stimulus current of the external electrode increases, the membrane potential phase preference 
tends to the same value observed in the subthreshold regime of the phase difference between the input stimulus 
and the membrane response. Thus, there is a neurological response—relating the two regimes—in the empirical 
study that is similar in the QIF-E model. This result is possibly related to the membrane’s time to recharge and 
fire again as it receives an external field stimulus intensity. Thus, Table 4 shows this difference—phase difference 
(Table 2) and phase preference (Table 3)- –between the results of the two regimes: sub- and supra-thresholds, 
respectively, for both analysis: QIF-E model and empirical outcomes. Thus, increasing the current amplitude 
shows a decrease in the difference between these two results, decreasing the error between them. The QIF-E 
model obtained a result of this behavior (increase in amplitude decrease in relative error) similar to that found 
in the empirical study.

Discussion and conclusion
To validate our QIF-E model, we test the characteristics of ephaptic communication in individual neurons, 
corroborating the empirical data from Anastassiou et al.11. In the current panorama of the study on ephaptic 
entrainment, some models consider the dynamics of communication activity in neurons. In fact, most models 
simulate the ephaptic effects caused in the propagation of the nerve impulse along nerve fibers and axons16,17,52, 
using a cable theory approach34. However, such models are not the best options since they often use continu-
ous neural models, which are, in general, more costly than integrate-and-fire models53. Besides that, the use of 
continuous models can be an arduous and thankless task in the case of simulations with numerous neurons. 
To overcome this obstacle, the development and use of an integrate-and-fire (hybrid) model with the ephaptic 
entrainment concept may be computationally more suitable than other neuronal models.

The main characteristics of dynamic behavior from the neuronal ephaptic entrainment of the QIF-E model 
are presented and compared with the empirical study11; such as the existence of an anti-phase, total or partial, 
between the input stimulus signal and the membrane response. The noise is implemented in our model so that 
the result becomes closer to the empirical experiment, once it better simulates the extracellular environment 
between the external electrode (input stimulus) and the neuronal membrane. We notice that the phase difference 
is not altered by noise (see Supplementary Information). The analysis of different intensities of input stimulus 
signal and the respective phase difference responses are shown in the supplementary material as well. The vari-
ation in the intensity of the input stimulus signal shows that the phase difference present between signals in the 
QIF-E model does not depend on the intensity of the input stimulus signal. This is due to the fact that the phase 
shown in Eq. (1) depends neither on the intensity nor on the current nor on the potential difference applied to 
the circuit. These results reinforce the adequacy of this model to simulate the characteristics of ephaptic com-
munication already observed in the literature11,17.

In addition to the aforementioned characteristics, it is possible to generalize the model so that not only the 
phenomenology of the sub-threshold regime is compatible with the experimental results. The generalization 
of the model can be done with variations in the value of the model’s response time parameter, τ , and should be 
done based on the physiological aspects of the neuronal membranes since the τ is related to the capacitive and 
resistive properties of the neuronal membrane. Thus, Fig. 2 shows the phase difference, via circular statistics, 
when we vary the characteristic time of the model associated with the neuronal membrane. The characteristic 

Table 3.   Results of suprathreshold empirical population vector phases, and population vector phases obtained 
by the QIF-E model. The last column display the relative errors. Model data correspond to the configuration of 
1 Hz, 10 dB.

Stimulus amplitude (nA) Empirical11 (Grad) QIF-E (Grad) Error (%)

2.5 250
◦

200
◦ 20

5 242
◦

194
◦ 20

10 241
◦

183
◦ 24

Table 4.   Results of suprathreshold empirical population vector phases, and population vector phases obtained 
by the QIF-E model. The last column contains the relative errors. Model data corresponds to the configuration: 
frequency of 1 Hz and noise of 10 dB.

Stimulus amplitude (nA)

Empirical11 (Grad) Error (%) QIF-E (Grad) Error (%)

Supra − sub = � �/sub Supra − sub = � �/sub

2.5 250
◦ − 190

◦ = 60
◦ 32 200

◦ − 180
◦ = 20

◦ 11

5 242
◦ − 190

◦ = 54
◦ 28 194

◦ − 180
◦ = 14

◦ 8

10 241
◦ − 190

◦ = 51
◦ 27 183

◦ − 180
◦ = 3

◦ 2
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time of the membrane causes a phase difference between this time and the electrode signal. Therefore, the phase 
difference is associated with the response time of the model to the input signal and the response of the neuron.

In Fig. 3 we highlight the evidence of the preferential phase for the population vector for the generated spike, 
regardless of the noise inserted in the signal. The results of the SFC show the dependence with the increase of the 
input stimulus frequency and are consistent with empirical measures11. Further, the faster the oscillation (100 
Hz) of the stimulus signal, the less intensely the spike is related to a preferential phase. So, we conclude that the 
QIF-E model adapted for an ephaptic current adequately simulates the neuronal ephaptic entrainment, since the 
subliminal and supra-threshold properties of the model are consistent with the results observed in the studies.

The monopolar approximation of the electric dipole field employed in the QIF-E model is valid for scales 
smaller than 150 µm , as discussed in Ref.39. This typical size delimits the region where the monopolar approxi-
mation of the dipole field presents an error lesser than 1 % . A more accurate dipole treatment is employed when 
the distances are above 150 µm . In this situation the monopolar approximation becomes inadequate, which is 
the case, for instance, of the experiment presented in Rebollo et al.54. This experiment showed evidence of an 
endogenous field effect and also designed a model that includes ephaptic interactions using dipole–dipole like 
interactions. On the other hand, it is noteworthy that the experimental evidence presented by Anastassiou et al.11, 
shows a monopolar decay of the electric potential (Fig. 1C of11). Thus, the approximation to the monopolar 
electric potential, for dimensions smaller than 150 µm , is adequate for the case of a cell and a close electrode in 
the extracellular space. The QIF-E model suggested here follows the parameters (physical properties) used in 
the empirical experiment by Anastassiou, thus, the monopolar interaction was considered for the simulations. 
In opposition, the Rebollo’s experiment, which considers a tissue with dimensions greater than 150 µ m (around 
0.5 mm), the dipole model is necessary.

For the understanding of ephaptic communication, it is essential to study the impacts of this communication 
on the neuronal cell and its implications on the central nervous system. For this reason, a range of ways to study 
this communication at various levels is essential, from simulations of the propagation dynamics of spikes and 
how this dynamic is affected by the ephaptic entrainment7,15,16,20,52, even the simulation of coupling in sets of 
neurons (network)17, as our model makes possible. So, the formulation of the QIF-E model made in the present 
work makes it possible to raise new hypotheses about the function of coupling in healthy nervous tissues, as well 
as the impact of coupling in dysfunctions already related or not to ephaptic communication. A question raised by 
the model is that modifying the electrophysiological properties of membranes can affect the quality of ephaptic 
entrainment ( the control response model, that means, the case ephaptic off, does not show spike drag and spike 
preferential phase typical of the entrainment phenomenon - see the Supplementary material). This modification 
was shown in the variation of the characteristic time ( τ ) could be—for example—related to demyelination of the 
neuronal membrane24, which causes a change in the capacitance of the membrane, or to a change in the resistance 
of the neuronal membrane, caused by biological variations between individuals, or even by genetic dysfunctions.

It is noteworthy that modeling a scenario close to reality requires simulations with numerous neurons 
involved. In this case, the use of continuous models becomes unfeasible, leaving room for hybrid models, such 
as the models of the integrate-and-fire36 family. Therefore, the study of the impact generated by ephaptic entrain-
ment in simulations with several cells is favorable to the QIF-E model with ephaptic entrainment, proposed in 
the present study, which is the main motivation of the model. As already mentioned, the QIF-E model proved 
to be able to simulate the ephaptic characteristics observed experimentally in cortical pyramidal neurons11. 
Since the QIF model is widely used to simulate pyramidal cortical neurons38, the QIF-E model becomes a natu-
ral candidate for studies on the ephaptic effects in this class of neurons. Finally, whether due to the success of 
the QIF-E in simulating ephaptic entrainment or the possibilities provided by the model, it is evident that the 
QIF-E with ephaptic entrainment is promising for the study of ephaptic communication and its repercussions 
on nervous tissue.
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