
Diabetic retinopathy (DR) is a leading cause of blindness 
in adults [1,2]. Almost 23.7% of the Saudi Arabian popula-
tion older than the age of 30 has diabetes, and the number 
of affected individuals is predicted to keep growing due to 
changes in lifestyle and diet [3]. The overall prevalence of 
DR is 19.7%; 9.1% have non-proliferative diabetic retinopathy 
(NPDR), and 10.6% have proliferative diabetic retinopathy 
(PDR) [4], the more severe form of the disease. Diabetes is 
also a global health problem. For example, approximately 4.1 
million American adults older than 40 years of age have DR 
[1]. Diabetes duration, level of hyperglycemia, and age are 
the most significant risk factors for DR [4]. Additional risk 
factors are nephropathy, neuropathy, insulin use, hyperten-
sion, and male gender [5,6]. However, these factors explain 
only a limited amount of the variance in the risk and severity 
of DR. Although most patients with longer than 30 years 

of diabetes exposure show evidence of retinal damage, the 
onset and severity of DR vary significantly among individual 
patients [7,8]. As the disease progresses, severe NPDR often 
enters an advanced or proliferative stage (PDR) when blood 
vessels proliferate [9]. Ischemia-induced retinal neovascu-
larization in association with the development of fibrovas-
cular epiretinal membranes at the vitreoretinal interface is a 
specific feature of PDR that often results in severe visual loss 
due to hemorrhage and/or tractional retinal detachment [10].

Attention to blood glucose, blood pressure, and blood 
cholesterol levels can help reduce the risk and rate of progres-
sion of PDR. However, even with good medical management 
and strong patient compliance, PDR will continue to develop 
in many patients. Patients who develop PDR can reduce their 
risk of blindness by 95% with timely treatment and appro-
priate follow-up care [10-12]. However, if left untreated, or 
not treated early enough, PDR can lead to severe vision loss 
and even blindness. Thus, to limit the development of vision 
loss and blindness, early diagnosis and treatment of PDR is 
an important public health goal [10,11].
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Purpose: The risk of vision loss from proliferative diabetic retinopathy (PDR) can be reduced with timely detection and 
treatment. We aimed to identify serum molecular signatures that might help in the early detection of PDR in patients 
with diabetes.
Methods: A total of 40 patients with diabetes were recruited at King Khaled Eye Specialist Hospital in Riyadh, Saudi 
Arabia, 20 with extensive PDR and 20 with mild non-proliferative diabetic retinopathy (NPDR). The two groups were 
matched in age, gender, and known duration of diabetes. We examined the whole genome transcriptome of blood samples 
from the patients using RNA sequencing. We built a model using a support vector machine (SVM) approach to identify 
gene combinations that can classify the two groups.
Results: Differentially expressed genes were calculated from a total of 25,500 genes. Six genes (CCDC144NL, DYX1C1, 
KCNH3, LOC100506476, LOC285847, and ZNF80) were selected from the top 26 differentially expressed genes, and 
a combinatorial molecular signature was built based on the expression of the six genes. The mean area under receiver 
operating characteristic (ROC) curve was 0.978 in the cross validation. The corresponding sensitivity and specificity 
were 91.7% and 91.5%, respectively.
Conclusions: Our preliminary study defined a combinatorial molecular signature that may be useful as a potential 
biomarker for early detection of proliferative diabetic retinopathy in patients with diabetes. A larger-scale study with an 
independent cohort of samples is necessary to validate and expand these findings.
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Currently, DR is usually detected through a compre-
hensive eye exam that includes visual acuity testing, tonom-
etry, anterior segment observation, and a dilated eye exam. 
However, all too often, diabetic patients do not receive regular 
ophthalmologic examinations, and complicating the problem, 
PDR can develop without symptoms. Therefore, the devel-
opment of a simple blood-based test for early diagnosis and 
identification of patients who are at high risk for PDR could 
significantly improve the visual outcome of patients with 
diabetes. With this goal in mind, several serum biomarkers of 
DR (e.g., apolipoprotein AI and B) have been reported [13,14]. 
However, to date, the markers identified suffer from limited 
specificity and sensitivity [15-17]. One possible limitation of 
prior studies is that they were mainly based upon a candi-
date approach, which is limited by our current knowledge of 
DR. As an alternative approach, we undertook an unbiased 
and systematic approach to identify novel blood-accessible 
molecular signatures for PDR based on genome-wide gene 
expression profiling.

This study aimed to identify a serum molecular signa-
ture for PDR detection. We recruited 40 Saudi patients with 
type 2 diabetes from King Khaled Eye Specialist Hospital 
(KKESH) in Riyadh, Saudi Arabia, 20 with and 20 without 
PDR, obtained blood samples, and used next-generation 
sequencing technology (RNA sequencing) to obtain compre-
hensive serum transcriptomes for these patients. Based on the 
global gene expression profiles we obtained, we proposed and 
validated a molecular signature that can distinguish between 
patients with NPDR versus those with PDR.

METHODS

Ethical approval: All aspects of this project were conducted 
in accordance with the principles of the Declaration of 
Helsinki, and informed written consent was obtained from 
all participants. This project was approved by the Institutional 

Review Boards (IRBs) of the Johns Hopkins University 
School of Medicine (Baltimore, MD) and KKESH.

Patient recruitment: Two groups of patients with type 2 
diabetes were recruited, one group with extensive DR and the 
other without evidence of DR beyond minimal NPDR. A total 
of 40 patients were recruited for this study from KKESH. 
All the subjects are Saudis and have the same ethnic back-
ground. Among them, 20 have PDR, and the other 20 have 
NPDR. The two groups matched in gender, age, and duration 
of diabetes history (Table 1). Additional clinical informa-
tion for the patients was provided, including glucose level, 
antivascular endothelial growth factor (VEGF) treatment 
history, and systemic medications (Appendix 1). The PDR 
group had features such as neovascularization at the disc and 
elsewhere due to widespread capillary non-perfusion of the 
retinal blood supply, retinal and vitreous hemorrhage, and 
tractional retinal detachment [18]. The second group had non-
proliferative DR (NPDR), which is an early stage of diabetic 
retinopathy. Visible signs in NPDR are microaneurysm and 
retinal hemorrhages in one or two quadrants. Whole blood 
was obtained from the patients, and RNA was extracted from 
the blood using a PAX-gene tube.

Whole-genome gene expression evaluation: We used RNA 
sequencing (RNA-seq) to obtain an unbiased gene expression 
profile for each blood sample. Each samples generated about 
63 million reads (Appendix 2), which provided reliable gene 
expression levels. The RNA-seq reads were mapped against 
the human reference genome (build 37) using TopHat2 [19]. 
Quality control analysis was performed and visualized using 
the QoRTs toolset [20], and no major abnormalities or artifacts 
were found (Appendix 3). The aligned reads were assembled 
into transcripts using Cufflinks, and gene expression was 
calculated using Cuffnorm [21]. The expression level of genes 
was determined based on the value of reads per kilo base 
per million (RPKM), which was calculated as the number of 
reads mapped to the transcripts of one gene divided by the 

Table 1. Characteristics of the PDR and NPDR patients.

Variable NPDR PDR P value (Paired t-test)
Age, year     0.383
Mean 62 61.5  
Range 49-75 47-77  
Length, years     0.905
Mean 18.1 18.2  
Range 12267 12114  
Gender, no. (%)     1
Male 16 (80.0) 16 (80.0)  
Female 4 (20.0) 4 (20.0)  
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transcript length and the number of total mapped reads in 
one sample [22].

Identification of differentially expressed genes: Differentially 
expressed genes were identified using the GenePattern plat-
form [23]. The paired t test was chosen to assess the differ-
ential expression for each gene between the two classes of 
matched samples based on the RPKM value. The T score of 
the test statistic was used to rank the differentially expressed 
genes and calculated such that

	

T X
S

N

D

D
=

− µ0

	

where the RPKM differences between all 20 pairs are 
calculated, and XD is the average of the 20 differences. μ0 is 
the mean difference between paired samples under the null 
hypothesis, typically 0. SD is the standard deviation of the 
differences, and N is the number (20) of paired samples. A 
|T score| of greater than 3 and a p value of less than 0.01, 
which corresponds to a false discovery rate (FDR) of about 
20%, were used as the statistical cutoff thresholds. The FDRs 
for the genes that were selected for molecular signature were 
lower than 10%.

Molecular signature identification and evaluation: The 
molecular signature identification process is shown in 
Appendix 4. With fivefold cross validation, the matched 
samples were randomly divided into a training set and a test 
set. The training set included 80% of the samples (i.e., 16 
patients with PDR and 16 patients with NPDR), and the test 
set included the remaining samples (i.e., four patients with 
PDR and four patients with NPDR). We randomly selected 
samples for the training or test set. For a given gene set, 
1,000 different sets (i.e., training and test sets) were chosen. 
Among the differential genes, all gene combinations from 
one gene to six genes were used to build support vector 
machine (SVM) models using the linear kernel and C-support 
vector classification [24] and were fitted to the training set. 
Then the models were used to test the remaining 20% of the 
samples (i.e., four patients with PDR and four patients with 
NPDR). For each gene set, the mean area under the receiver 
operating characteristic (ROC) curve (AUC) was calculated 
based on the 1,000 sample sets (training and test sets). The 
gene combination with the highest mean AUC was chosen 
as a PDR molecular signature. The model was evaluated in 
terms of sensitivity and specificity. Sensitivity is defined as 
the true-positive (individuals with PDR who test positive for 
the condition) expressed as a percentage of all tested indi-
viduals who have that disease (total of true positives and false 
negatives). Specificity describes the true-negative (tested 

individuals without PDR who test negative for the NPDR) 
expressed as a percentage of all tested individuals who do 
not have that disease (the total of true negatives and false 
positives). They were calculated as

	
Sensitivity TP

TP FN
=

+ 	

	
Specificity TN

FP TN
=

+ 	

where the true negatives (TN) are the patients with 
NPDR correctly classified as negative. The true positives 
(TPs) refer to patients with PDR correctly classified as posi-
tive. The false negatives (FNs) are patients with PDR incor-
rectly classified as negative, and the false positives (FPs) are 
patients with NPDR incorrectly classified as positive.

RESULTS

Overall study design: The study flow is shown in Figure 1. 
First, all blood samples were collected and processed, and 
RNA-seq was performed (Table 1, Appendix 1). Using TopHat 
[19] and Cufflinks [21], reads were aligned, and then the gene 
expression levels were calculated. The gene expression data 
of matched sample pairs were used to identify differentially 
expressed genes based on the GenePattern paired t test [23]. 
Then the top differential genes were chosen to build SVM 
models. The gene combination with the best performance was 
considered the PDR molecular signature.

Differentially expressed genes between NPDR and PDR: The 
expression levels of more than 25,500 genes were calculated 
using TopHat and Cufflinks (Appendix 5). As each sample 
contains more than 33 million reads (Appendix 4), the gene 
expression levels could be estimated accurately. Approxi-
mately 19,000 genes were expressed in each sample. To assess 
the quality of the expression profiles, we performed standard 
quality control analysis for each sample, and the analyses 
suggested that the sequencing quality was high (Appendix 
2). Furthermore, we calculated the correlation coefficient of 
the gene expression levels between any two samples, and the 
correlation coefficients were all above 0.93, indicating the 
overall high quality of the expression profiles (Appendix 6).

We then calculated the differentially expressed genes 
through paired t test statistics analysis using the GenePattern 
platform [23]. A total of 155 differentially expressed genes 
were identified based on the statistical cutoff (|T score| greater 
than 3.00, p value of less than 0.01, which corresponds to a 
false discovery rate of about 20%; Appendix 7). Among the 
155 genes, 95 were upregulated, and 60 were downregulated. 
Examples of the differentially expressed genes are shown in 
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Figure 2. We then performed a Gene Ontology (GO) enrich-
ment analysis using the DAVID tool [25]. The differentially 
expressed genes were classified into different functional 
categories such as RNA splicing, protein localization, and 
tube development (Appendix 8).

Comparison of differentially expressed genes with chemical 
induced expression changes: To explore the possible mecha-
nisms of these differentially expressed genes in DR, we 
compared the PDR differentially expressed gene set with lists 

of genes whose expression has been found to be perturbed by 
exposure to various chemicals. Connectivity Map (cMAP) is 
a database that includes the gene expression changes induced 
by drugs or other chemical components [26,27]. We compared 
the differentially expressed genes with the expression change 
profiles in cMAP, which includes expression changes with 
1,309 chemicals. Specifically, the differentially expressed 
genes in PDR were used to query the cMap to find chemicals 
that induced a consistent and opposite cellular response. 
Thirty-eight chemicals are significantly ranked with the 
PDR query (p value of less than 0.01; Appendix 9). Among 
them, thapsigargin and mitoxantrone had the highest positive 
mean score and the lowest negative mean score, respectively 
(Figure 3). Consistent with this finding, it has been reported 
that mild endoplasmic reticulum stress induced by low 
concentrations of thapsigargin promoted two critical angio-
genic functions, endothelial cell proliferation and migration, 
and that in vivo administration of thapsigargin accelerates 
retinal neovascularization in a murine oxygen-induced 
retinopathy (OIR) model [28]. In contrast, mitoxantrone, an 
anthracenedione antineoplastic agent, was found to show 
antiangiogenesis activity and no untoward toxicity in the rat 
cornea in a previous study [29]. Our findings suggest that 
the differentially expressed genes identified in PDR might be 
associated with angiogenesis and relevant to the PDR process.

Molecular signature identification and analysis: We then 
selected gene combinations from the differentially expressed 
gene set that can best separate the NPDR and PDR samples. 
Due to computational limitations, we tested combinations 
consisting of up to six genes from the top 26 differentially 
expressed genes for the modeling. We used fivefold cross 
validation to evaluate the performance of a given gene 
combination. In other words, we built a model using an 
SVM approach based on randomly selected 32 samples as 
the training set and evaluated the performance of the model 
using the remaining eight samples as the test set. We repeated 
the separation between the training and test sets 1,000 times. 
The performance was assessed with the ROC curve. The 
AUC represented the balanced measurement of sensitivity 
and specificity. The overall performance of a given gene set 
was obtained based on the mean value of AUC from the 1,000 
cross validations.

To identify the best molecular signature, we tested a total 
of 313,911 models, which included all gene combinations (n 
= 1–6) chosen from 26 differentially expressed genes. When 
only one gene was used, the best performance yielded AUC 
= 0.851. The performance improved with the inclusion of 
more genes (Figure 4). The best model we tested included 
six genes (CCDC144NL- Gene ID 339184, DYX1C1- Gene 

Figure 1. Overall study design.
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Figure 2. Boxplots of the expression data of the top nine differentially expressed genes in the NPDR and PDR samples. The suffixes “_NPDR” 
and “_PDR” indicate the reads per kilo base per million (RPKM) distribution of the non-proliferative diabetic retinopathy (NPDR) samples 
and the proliferative diabetic retinopathy (PDR) samples, respectively.

Figure 3. Two highly ranked 
perturbagens with the prolif-
erative diabetic retinopathy (PDR) 
signature.
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Figure 4. Performance of all tested 
gene combinations.

Figure 5. The evaluation of the identified molecular signature for PDR/NPDR prediction. A: Receiver operating characteristic (ROC) 
curve from 1,000 cross-validations. B: PCA plot of 20 non-proliferative diabetic retinopathy (NPDR) samples and 20 proliferative diabetic 
retinopathy (PDR) samples.
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ID 161582, KCNH3- Gene ID 23416, LOC100506476- Gene 
ID 100506476, LOC285847- Gene ID 285847, and ZNF80 - 
Gene ID 7634), which yielded a molecular signature with a 
mean AUC of 0.945 (Figure 5A). The p value via permuta-
tion testing was less than 1.0×10−6. The corresponding sensi-
tivity and specificity for prediction were 91.7% and 91.5%, 
respectively. Principal component analysis also showed good 
separation of the two groups of samples using the expression 
of these six genes (Figure 5B) [30].

DISCUSSION

Significance and implication: In this study, we conducted 
RNA-sequencing analysis of blood samples from 40 patients 
with diabetes. Based on the 40 samples with matched age 
range, gender, and duration of diabetes, we identified a 
combinatorial molecular signature for PDR. We believe that 
our discovery of the molecular signature has significance in 
clinical application and basic research. First, early detection 
of proliferative diabetic retinopathy is crucial for timely treat-
ment and visual loss prevention. Serum molecular signatures 
can help lighten the clinical burden and accurately detect the 
disease. Second, the molecular signature could help provide 
insight into the molecular basis of DR. Our Gene Ontology 
analysis indicated that some differentially expressed genes 
might be relevant to the PDR process. For example, DLC1-
Gene ID 10395, CAV2-Gene ID 858, MAN2A1- Gene ID 
4124, SMAD4- Gene ID 4089, and KDR- Gene ID 3791 were 
involved in tube development. The early stages of neoangio-
genesis, one of the main mechanisms of PDR, include three 
main steps: endothelial cell proliferation, migration, and tube 
development [31,32]. KDR and SMAD4 have been reported 
to be related to retinopathy. Kinase insert domain receptor 
(KDR, also known as VEGFR2) is the primary responder to 
the VEGF signal regulating endothelial cell migration and 
proliferation [33]. VEGF-A or VEGF-C activation of KDR is 
involved in the formation of capillary-like tubular structures 
[31]. Several reports have implicated that KDR plays a role in 
the etiology of diabetic retinopathy [34,35]. Smad 4 (SMAD4) 
plays the most important role in transforming growth factor-
beta (TGF-β) signal transduction. Increased expression 
of TGF-β1 and Smad 4 on oxygen-induced retinopathy in 
neonatal mice indicated that Smad 4 may play an important 
role in regulation of ocular vascular development [36]. After 
the PDR signature was queried in the Connectivity Map 
in this study, thapsigargin and mitoxantrone were found to 
have strong connections with the signature. Thapsigargin is a 
non-competitive inhibitor of the sarco/endoplasmic reticulum 
Ca2+ ATPase (SERCA) and an endoplasmic reticulum (ER) 
stress inducer [28]. Thapsigargin was observed to have highly 

consistent cellular responses with PDR, which indicates that 
the molecular pathways perturbed by this chemical may be 
related to those involved in PDR. Interestingly, mitoxantrone 
elicits a nearly opposite gene expression response compared 
with PDR, suggesting the possibility that mitoxantrone, or 
a related molecule, may have potential as a treatment for 
PDR. Consistent with this possibility, mitoxantrone, which 
is an anthracenedione antineoplastic agent, was found to 
show antiangiogenesis activity and no untoward toxicity in 
a rat cornea neovascularization model [29]. The inhibition of 
angiogenesis by mitoxantrone can be attributed to inhibition 
of prostaglandin E2 secretion, which is a potent stimulator of 
retinal VEGF secretion [37,38].

Limitations: This preliminary study has several limitations. 
First, we used a limited number of samples (20 patients with 
NPDR versus 20 patients with PDR) to build the model. A 
study of more patients, which we hope to perform in the 
future, will allow us to build a more robust and accurate 
model to diagnose patients with PDR. Second, the model we 
developed in this study was not tested using an independent 
cohort. Although we used cross validation to assess the 
model, an approach that is considered “data dredging” by 
some statisticians, we agree that replication using an indepen-
dent cohort would be a more reliable and rigorous method of 
assessing the validity of our finding. However, we believe that 
as the first study to propose a molecular biomarker for PDR, 
our work provides a new potential signature that is based 
upon reasonable experimental data, one that can be analyzed 
by other investigators, and one that future work will either 
confirm or refute.

Summary: A serum molecular signature (CCDC144NL, 
DYX1C1, KCNH3, LOC100506476, LOC285847, and 
ZNF80) was proposed for proliferative diabetic retinopathy. 
The proposed molecular signature can separate patients with 
PDR and patients with NPDR reasonably well based on gene 
expression from their blood samples. However, this study is 
preliminary, and a larger-scale study with an independent 
cohort of samples will be necessary to validate and expand 
these findings [39]. Additionally, applying this approach to 
longitudinal populations of diabetic patients may help deter-
mine whether the molecular signature identified here, or other 
to-be-discovered signatures, can be used as a prognostic 
factor to predict the development of PDR.

APPENDIX 1. DETAILED CHARACTERISTICS OF 
THE 20 NPDR AND 20 PDR PATIENTS.

To access these data, click or select the words "Appendix 1".
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APPENDIX 2. DISTRIBUTION OF THE NUMBERS 
OF MAPPED READ PAIRS AND EXPRESSED GENES 
OF THE 40 SAMPLES.

To access these data, click or select the words "Appendix 2".

APPENDIX 3. QUALITY CONTROL OF 40 RNA-SEQ 
SAMPLES.

To access these data, click or select the words "Appendix 3".

APPENDIX 4. MOLECULAR SIGNATURE 
IDENTIFICATION PROCESS.

To access these data, click or select the words "Appendix 4".

APPENDIX 5. THE RPKM VALUE OF EACH GENE 
FOR 40 PAIRED SAMPLES.

To access these data, click or select the words "Appendix 5".

APPENDIX 6. SPEARMAN CORRELATIONS 
BETWEEN GENE EXPRESSION PROFILES OF 40 
SAMPLES.

To access these data, click or select the words "Appendix 6".

APPENDIX 7. IDENTIFIED 155 DIFFERENTIALLY 
EXPRESSED GENES.

To access these data, click or select the words "Appendix 7".

APPENDIX 8. GENE ONTOLOGY ENRICHMENT OF 
THE 155 DIFFERENTIAL GENES.

To access these data, click or select the words "Appendix 8".

APPENDIX 9. PERTURBAGENS SIGNIFICANTLY 
RANKED WITH THE PDR SIGNATURE.

To access these data, click or select the words "Appendix 9".
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