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Abstract: In plants, NADPH oxidase (NOX) is also known as a respiratory burst oxidase homolog
(Rboh). This highly important enzyme, one of the main enzymatic sources of superoxide radicals
(O2•−), is involved in the metabolism of reactive oxygen and nitrogen species (ROS and RNS),
which is active in the non-climacteric pepper (Capsicum annuum L.) fruit. We used sweet pepper
fruits at two ripening stages (green and red) to biochemically analyze the O2•−-generating Rboh
activity and the number of isozymes during this physiological process. Malondialdehyde (MDA)
content, an oxidative stress marker, was also assayed as an index of lipid peroxidation. In red fruits,
MDA was observed to increase 2-fold accompanied by a 5.3-fold increase in total Rboh activity.
Using in-gel assays of Rboh activity, we identified a total of seven CaRboh isozymes (I–VII) which
were differentially modulated during ripening. CaRboh-III and CaRboh-I were the most prominent
isozymes in green and red fruits, respectively. An in vitro assay showed that CaRboh activity is
inhibited in the presence of nitric oxide (NO) donors, peroxynitrite (ONOO−) and glutathione (GSH),
suggesting that CaRboh can undergo S-nitrosation, Tyr-nitration, and glutathionylation, respectively.
In summary, this study provides a basic biochemical characterization of CaRboh activity in pepper
fruits and indicates that this O2•−-generating Rboh is involved in nitro-oxidative stress associated
with sweet pepper fruit ripening.

Keywords: NADPH oxidase; nitric oxide; nitration; pepper fruit; peroxynitrite; respiratory burst
oxidase homolog (Rboh); S-nitrosation; ripening; Tyr-nitration

1. Introduction

NADPH oxidase (NOX) is considered to be the most important enzyme responsible for superoxide
radicals (O2•−) generation in mammalian cells. In humans, seven genes encoding NOX isozymes,
involved in a wide range of cellular processes including apoptosis, host defense, cellular signal
transduction, oxygen sensing, and angiogenesis have been identified [1]. In plants, the NOX enzyme
is referred to as a respiratory burst oxidase homolog (Rboh). It is composed of six conserved
transmembrane domains, the C-terminal harboring FAD and NADPH hydrophilic domains, two heme
groups, and two N-terminal Ca2+-binding EF-hand motifs indicating that Rboh activity is regulated by
Ca2+. Although the Rboh gene is ubiquitously expressed, the distribution and abundance of its different
isozymes are cell- and tissue-specific. This suggests that each Rboh isozyme is involved in distinct
physiological and stress functions, including seed germination, root hair formation, lignification,

Antioxidants 2019, 8, 9; doi:10.3390/antiox8010009 www.mdpi.com/journal/antioxidants

http://www.mdpi.com/journal/antioxidants
http://www.mdpi.com
https://orcid.org/0000-0002-3678-5503
https://orcid.org/0000-0001-6673-3571
https://orcid.org/0000-0002-1814-9212
http://www.mdpi.com/2076-3921/8/1/9?type=check_update&version=1
http://dx.doi.org/10.3390/antiox8010009
http://www.mdpi.com/journal/antioxidants


Antioxidants 2019, 8, 9 2 of 11

stomatal closure, senescence, systemic signaling, pollen tube growth, as well as abiotic and biotic
stress [2–10], and in establishing symbiotic associations with Rhizobium [11,12].

Unlike tomato (Solanum lycopersicum L.), pepper (Capsicum annuum L.), which also belongs
to the Solanaceae family, is a non-climacteric fruit due to its ethylene-independent ripening [13].
The numerous pepper fruit varieties differ in shape, color, and capsaicin content, but are all
characterized by high vitamin C content [14]. Fruit ripening is a genetically programmed physiological
process involving many phenotypical modifications that reflect the profound biochemical and
molecular changes taking place during this developmental stage. In the case of sweet peppers,
previous studies have indicated that different subcellular compartments, including peroxisomes,
mitochondria, and plastids, are involved in the active metabolism of reactive oxygen species (ROS)
and reactive nitrogen species (RNS) [15–19]. Thus, there is significant information indicating that
NADPH-generating enzymes and antioxidant systems are modulated to different degrees [15,16,20–22].
Proteomic analyses have also shown that sweet pepper fruit ripening is accompanied by an increase
in protein nitration, a NO-derived post-translational modification which triggers the inhibition of
the antioxidant catalase, one of the most abundant proteins identified by proteomic approaches [23].
Ascorbate biosynthesis and S-nitrosothiols are also differentially modulated by NO [24,25]. However,
to our knowledge, no information exists on how O2•−-generating Rboh activity is modulated during
pepper fruit ripening and on the number of Rboh isozymes present in this non-climacteric fruit.
This study therefore focuses on providing a basic biochemical characterization of Rboh activity in
sweet pepper fruits and its profile during the ripening process.

2. Materials and Methods

2.1. Plant Material

California-type sweet pepper (Capsicum annuum L., cv. Melchor) fruits, obtained from Syngenta
Seeds Ltd. (El Ejido, Almería, Spain), were used at two different ripening stages: Green immature
and ripe red. Pepper plants were cultivated with optimal nutrient levels applied on rockwood as
the soil substrate in the experimental greenhouse owned by Syngenta Seeds, Ltd., according to the
usual crop program designed by the company, which usually involves planting seeds and germination
in July to August, flowering in late September, and pollination and fruit setting from mid-October
to late November [22]. Fresh fruits from the same plants at two distinct maturation stages (fully
green and fully red) were collected at the same time from five different plants. Figure 1 shows a
representative picture of the used sweet pepper fruits at the green and red ripening stages showing no
external damages.
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Figure 1. Sweet pepper (Capsicum annuum L.) fruit at distinct maturation stages (fully green and
fully red).

2.2. Preparation of Pepper Fruit Samples

Pepper fruits were ground in liquid N2 using a mortar and pestle, and the resulting powder
was suspended in 50 mM Tris-HCl buffer, pH 7.5, containing 0.1 mM EDTA, 0.1% (v/v) Triton X-100,
1 mM MgCl2, 10% (v/v) glycerol to a final plant material/buffer ratio of 1:1 (w/v). Homogenates were
then filtered through two layers of Miracloth and centrifuged at 27,000 g for 30 min. The supernatants
were used for the assays.
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2.3. Lipid Peroxidation Content

Lipid peroxidation was estimated by determining the thiobarbituric acid reacting substance
(TBARS) content with the aid of malondialdehyde (MDA), which was used to prepare the standard
curve [26].

2.4. Rboh Spectrophotometry Activity Assay

Superoxide (O2•−) generated by Rboh activity was measured using nitro blue tetrazolium (NBT)
dye as an electron acceptor as described previously [27,28]. Briefly, NBT was rapidly converted
to monoformazan by two O2•− molecules. This reduction was spectrophotometrically detected at
530 nm. Monoformazan concentrations (thus equimolar to those of O2•−) were calculated using a
12.8 mM−l cm−l extinction coefficient. The NBT reduction rate was linear over time up to 15 min and
linearly dependent on the protein concentrations in the pepper samples. The reaction contained a
mixture of 50 mM Tris-HCl buffer (pH 7.8), 1 mM CaCl2, 0.1 mM NBT, 0.1 mM NADPH plus the sample
in a final volume of 1 ml. For this spectrophotometric assay of Rboh activity in pepper fruit samples,
it was crucial to eliminate low molecular weight compounds which could cause significant interference
through a nonspecific reduction of NBT. The pepper samples were then loaded on a PD-10 desalting
column containing Sephadex™ G-25 which enabled high (Mr > 5000) and low (Mr < 1000) molecular
weight substances to be separated through desalting and buffer exchange, thus eliminating interference.
No reduction in NBT in the absence of NADPH was observed in the pepper samples. As an additional
control to evaluate the specificity of this assay, activity was also assayed in the presence of 50 µM
diphenyleneiodonium (DPI) which specifically inhibits superoxide radical generation by Rboh [29].

2.5. In-Gel Rboh Activity Assay and Isozyme Profile

Rboh isozymes were separated using non-denaturing polyacrylamide gel electrophoresis (PAGE)
on 6% acrylamide gels [30] and visualized by a photochemical NBT reduction method described by
López-Huertas et al. [31] and modified by Sagi and Fluhr [2]. After the electrophoresis, the gels were
briefly incubated in the dark for 20 min in a reaction mixture solution containing 50 mM Tris-HCl
buffer (pH 7.4), 0.2 mM NBT, 0.1 mM MgCl2, and 1 mM CaCl2. Subsequently, 0.2 mM NADPH was
added, and the appearance of the blue formazan bands was monitored. The reaction was stopped by
immersing the gels in distilled water. As controls, gels were pre-incubated 30 min with 50 mM DPI,
a specific inhibitor of superoxide radical generation by Rboh [29].

2.6. In Vitro Treatment with Nitric Oxide (NO) Donors, Peroxynitrite (ONOO−) and Glutathione

For the in vitro assay, red pepper samples were incubated at 25 ◦C for 1 h with increasing
concentrations of different potential modulators, including diethylamine NONOate (DEA NoNoate)
and S-nitrosocysteine (CysNO) as NO donors; L-cysteine (L-Cys) and reduced glutathione
(GSH) [20,32,33]. In the case of the peroxynitrite donor SIN-1 (3-morpholinosydnonimine), the samples
were incubated at 37 ◦C for 1 h [34,35]. In all cases, the solutions were freshly made before use. As an
internal control, we determined that none of these chemicals oxidized NADPH in the reaction medium
in the absence of the pepper samples.

2.7. Other Assays

Protein concentration was determined using the Bio-Rad protein assay (Hercules, CA), with
bovine serum albumin as standard. Band intensity was quantified using ImageJ 1.45 software (https:
//imagej.nih.gov/ij/). Data are presented as the mean ± SEM of at least three independent biological
replicates. With the aid of Statgraphics Centurion software, we used pairwise analysis of variance
(ANOVA) to detect differences between green and red peppers.

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/


Antioxidants 2019, 8, 9 4 of 11

3. Results

In this study, we used California sweet pepper (Capsicum annuum L., cv. Melchor) fruits at the
green and red ripening stages with no external damage (Figure 1). Malondialdehyde (MDA) content,
which was measured as an index of lipid peroxidation, was observed to increase twofold in red fruits
(Figure 2a), indicating that the ripening process involves oxidative stress. As part of an initial assay
set-up for O2•−-generating Rboh activity in pepper samples, several controls were carried out, which
showed that the crude extract samples have certain capacity to reduce NBT in the assay without the
addition of NADPH (data not shown). Thus, to eliminate this interference, it was crucial to use PD-10
desalting columns containing Sephadex™ G-25 as indicated in the Materials and Methods section.
This gel filtration step enabled us to obtain the protein fraction and to totally eliminate the nonspecific
reduction of NBT. According to our assay, the activity in CaRboh was 53% higher in red fruits than in
green fruits (Figure 2b).
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Figure 2. (a) Lipid peroxidation in pepper fruits. (b) Total respiratory burst oxidase homolog (Rboh)
activity in pepper fruits. Data are the mean ± SEM of at least three independent biological replicates.
Asterisks indicate that differences between values were statistically significant at p < 0.05.

An additional step in the biochemical characterization of CaRboh activity is the detection of
different isozymes by non-denaturing PAGE. Given that total CaRboh activity was higher in red fruits,
total protein loaded per lane for each sample needed to be optimized in order to obtain clearly visible,
well separated activity bands in the gels, as some activity bands could not be detected with low protein
amounts, while the bands appeared too wide and overlapped when larger amounts of protein were
used. Figure 3 shows the optimized CaRboh isozyme pattern in green fruits using 80 µg protein
(Figure 3 left panel), with 48 µg protein being sufficient to detect well defined CaRboh isozymes in red
fruits (Figure 3 right panel). Thus, a total of seven CaRboh isoforms, with different electrophoretic
mobility and abundance, could be globally detected in green and red fruits as considered both together.
Table 1 shows the number of each CaRboh isozyme (I to VII according to their increasing electrophoretic
mobility) and its relative abundance in green and red fruits, with CaRboh I being the most prominent
in red fruits, accounting for 61% of the total activity. In green fruits CaRbohIII was the most abundant
isozyme with around 35% of the total activity.

Given that fruit ripening is associated with nitro-oxidative stress and changes in NO and
S-nitrosothiol content [17,23], we carried out in vitro assays to analyze the potential effect of increasing
concentrations of different NO donors including DEA NONOate and CysNO. In all these assays,
we used red fruit samples due to their higher levels of Rboh activity. DEA NoNoate at a concentration
of 2 mM was found to significantly inhibit Rboh activity by around 30% (Figure 4a), while CysNO
caused an inhibition of 48% at the same concentration (Figure 4b). In addition, peroxynitrite (ONOO−)
at a concentration of 2 mM resulted in an inhibition of 21% (Figure 4c). On the other hand, while L-Cys
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(Figure 4d) had no significant effect on Rboh activity at any of the concentrations assayed, 2 mM of
reduced glutathione (GSH) promoted an inhibition of 25% (Figure 4e).Antioxidants 2018, 7, x FOR PEER REVIEW  5 of 12 
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Figure 4. Effect of nitric oxide (NO) and peroxynitrite (ONOO-) on CaRboh activity in red
green pepper fruits. (a) Effect of diethylamine NONOate (DEA NoNoate, nitric oxide donor).
(b) Effect of S-nitrosocysteine (CySNO, NO donor). (c) Effect of 3-morpholinosydnonimine (SIN-1,
peroxynitrite donor). (d) Effect of L-cisteine (L-Cys). (e) Effect of glutathione (GSH). Treatments
with DETA-NONOate and S-nitrosocysteine (CySNO) as NO donors, L-Cys and GSH were done by
incubating the pepper samples with these compounds at 25 ◦C for 1h. In the case of SIN-1, the assay
was done at 37 ◦C for 1 h. Data represent the mean ± SEM of at least three independent biological
replicates. Asterisks (*) indicate significant differences (p < 0.05) in comparison to the control.
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Table 1. Identification (I to VII) and relative abundance (%) of the respiratory burst oxidase homolog
(CaRboh) isozymes detected in green and red pepper (Capsicum annuum L.) fruits by the NBT reducing
method after non-denaturing PAGE. Band intensity was quantified using ImageJ 1.45 software.

Pepper Fruit Stage
CaRboh Isozymes (%)

I II III IV V VI VII

Green ND 25.6 34.7 23.1 4.8 11.8 ND
Red 61 ND 27.5 2.5 5.4 ND 3.6

ND: not detected.

4. Discussion

Recently, the metabolism of ROS and RNS, which causes nitro-oxidative stress, was found to be
active during sweet pepper ripening [36]. However, to our knowledge, no information is available on
the potential involvement of Rboh activity in this process. In this study, we therefore analyzed Rboh
activity during pepper ripening and identified the principal isozymes present in both green and red
pepper fruits.

4.1. Rboh Activity Increases during Pepper Fruit Ripening

Under our experimental conditions, the data obtained clearly show that total CaRboh activity
significantly increases during pepper ripening, which opens up new questions about its potential
role as the principal O2•−-generating enzyme [2]. This increase closely correlates with that observed
in lipid peroxidation, a recognized marker of oxidative stress. However, its precise role is probably
related to the ripening process, in which many biochemical pathways are redefined. In this respect,
anthocyanin synthesis in the peels of apple (Malus domestica) fruits has been shown to directly correlate
with an increase in Rboh activity [37], thus suggesting that O2•− acts as a regulator of anthocyanin
content. Anthocyanins are also well known to play an important role in determining the color of many
fruits including some pepper fruit varieties [38,39].

On the other hand, it is well known that many fruits are stored at low temperature because this
is a very effective method to extend the shelf life of fruits. However, there is experimental evidence
which showed the correlation between cold induced oxidative injuries and the O2•− generation by
Rboh activity. Apple (Malus domestica Borkh) fruits stored for long periods at low temperatures can
develop superficial injuries. The development of these damages is associated with oxidative reactions
due to a burst of O2•− and H2O2 as a consequence of Rboh activity, which leads to lipid peroxidation,
cell membrane damage, and cell death [40,41]. Conversely, subtropical fruits such as mango or banana
are sensitive to cold. For example, in mango (Mangifera indica) fruits storage at 5 ◦C it was observed an
increase in lipid peroxidation with concomitant rises of genes involved in the linolenic acid oxidative
pathway as well as of five Rboh genes [42]. Instead, this Rboh activity could have also some potential
beneficial effects due to a transitory oxidative stress which stimulates the antioxidant system as a
priming effect. Thus, mature green banana (Musa acuminate) fruits exposed to heat treatment previous
to storage at 7 ◦C showed less cold damage. The reason is that this heat treatment triggered an increase
in the expression of a Rboh gene which was accompanied by a concomitant increase of ROS content
(O2•− and H2O2) and ascorbate peroxidase (APX) activity/gene expression. Thus, authors suggested
that the observed chilling resistance of banana fruits was correlated with the increase of the antioxidant
system, specifically APX [43].

4.2. Total Rboh Activity is Inhibited in the Presence of NO Donors, Peroxynitrite and GSH

Given that NO metabolism is also modulated during pepper ripening when NO content
diminishes [20,23–25], we used in vitro assays to analyze the inhibitory effect of NO and ONOO−

on CaRboh activity. Our findings are in line with those regarding Arabidopsis thaliana, in which
the isoenzyme AtRboh D involved in plant immunity undergoes S-nitrosation at Cys890, leading
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to low O2•− generation [44]. Similarly, in animal NADPH oxidase (NOX), S-nitrosation inhibits
subunits of NOX2 [45] and NOX5 [46] isozymes. It has been well established that O2•− reacts
very rapidly with NO to generate ONOO− (maximum rate constant for rapid reactions of around
4 × 109 M−1 s−1) [47], which depends on the diffusion capacity of these two molecules. The potent
nitrating molecule peroxynitrate can mediate protein Tyr-nitration [48] which reflects an active
nitro-oxidative metabolism [49]. In this respect, the in vitro assay of ONOO− showed that Rboh activity
is inhibited in pepper samples, which suggests that nitration also takes place. To our knowledge,
no information exists on this process occurring in NOX activity, which could be a cellular mechanism
to limit the increase in O2

·- when ONOO− content is already high. In pepper fruits, other enzymes,
such as catalase and NADP-isocitrate dehydrogenase, which have been reported to be involved in
controlling H2O2 and generating NADPH, are also inhibited by Tyr-nitration [20,23].

Glutathione (GSH), one of the most abundant antioxidants in plants, is also a component of
cellular redox status. In previous reports using several varieties of pepper fruits it was reported that
GSH decreased around 1.5-fold to 1.8-fold during ripening whereas ascorbate (ASC) content was
unaffected [17,18]. In this context, it should be mentioned that GSH can interact with NO to generate
S-nitrosoglutathione (GSNO), a physiological NO donor, which cellular content is regulated by the
enzyme S-nitroglutathione reductase (GSNOR) that catalyzes the NADH dependent reduction of
GSNO to oxidized glutathione (GSSG) and NH3 [50]. In sweet pepper fruits, it has been found that
GSNOR activity and protein expression diminished during ripening whereas S-nitrosylated protein
content increased [25]. Considering the close relationship between NO and GSH, it was also analyzed
the potential effect of GSH. Under our experimental conditions, GSH was also observed to inhibit Rboh
activity, thus suggesting the presence of a glutathionylation mechanism, which, to our knowledge,
has never previously been reported in plant Rboh activity. However, a recent study shows that
S-glutathionylation of NOX2 in human neutrophils allows O2

·−generation to be maintained [51].

4.3. Isozymatic CaRboh Activity is Differentially Regulated in Green and Red Sweet Pepper Fruit

In plants, Rbohs are encoded by a multigene family. For example, in the model plant Arabidopsis
thaliana, up to ten Rboh genes (from AtRboh A to AtRboh J), which are differentially expressed depending
on the tissue, organ, developmental stage, and environmental conditions, have been identified [52–56].
Similarly, up to nine OsRbohs in rice (Oryza sativa) and eight SlRbohs in tomato (Solanum lycopersicum)
have been identified [57–59]. These Rbohs play a versatile role in plant reproduction, growth,
development, and responses to abiotic and biotic stress [60,61]. Accordingly, the seven differentially
expressed CaRboh isozymes identified in pepper fruits would appear to have adaptable functions,
with CaRboh-III and CaRboh-I being the most prominent enzymes in green and red fruits, respectively.
However, in a previous study of pepper leaves exposed to low temperature, only four Rboh isozymes
were found [6]. Similarly, in strawberry (Fragaria vesca) plants, seven genes, with tissue-specific Rboh
gene expression, have been identified: FvRbohA, FvRbohC, FvRbohD, and FvRbohF were detected in
roots, stems, leaves, flowers, and fruits; FvRbohB and FvRbohE were expressed in roots, stems, flowers,
and fruits; and FvRbohH was only present in flowers and fruits [10].

5. Conclusions

This study, which provides novel insights into pepper fruit ripening, shows that
superoxide-generating CaRboh activity increases during this process which closely correlates with
the increase in lipid peroxidation and consequently with the physiological oxidative stress associated
with pepper fruit ripening. Moreover, the number and abundance of the CaRboh isozymes identified
are differentially regulated, suggesting some enzymatic specialization, with CaRboh-III and CaRboh-I
being the most prominent isozymes in green and red fruits, respectively. All this opens up new lines of
research to identify the specific functions of these isozymes in the ripening process. In addition, CaRboh
activity appears to be regulated and inhibited by NO post-translational modifications, especially
S-nitrosation, Tyr-nitration and probably also by glutathionylation. Taken together, these data suggest
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the connection between ROS and RNS metabolism during the physiological process of pepper fruit
ripening. Figure 5 summarizes available information on how the different ROS and RNS parameters
are modulated during pepper fruit ripening [20,36], incorporating data on Rboh activity and lipid
peroxidation, and outlining the active nitro-oxidative metabolism in sweet pepper fruits.

In this context, future research should be focused in the identification of specify enzymatic
systems responsible of the NADPH generation during the fruit ripening necessary for the Rboh activity.
Furthermore, NADPH is also required by the antioxidant system, specifically to regenerate the soluble
antioxidant GSH by the enzyme glutathione reductase (GR) which is part of the ascorbate-glutathione
cycle [61]. An illustrative example which shows the interconnection among all these elements (Rboh,
NADPH, GSH, ascorbate, and antioxidant enzymes) has been described in a recent report on apple
fruit. Thus, during postharvest store of this fruit it has been shown the relevance of Rboh and
antioxidant activities which were supported by the NADPH-generating enzyme, glucose-6-phosphate
dehydrogenase (G6PDH) allowing together an enhance disease resistance against blue mold [62].
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Figure 5. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism during
sweet pepper (Capsicum annuum L.) fruit ripening. In the model previously reported [20,36] it has
been incorporated the total superoxide-generating CaRboh activity as well as the content of lipid
peroxidation both increasing in red ripe fruits as reported in this work. GSNOR, nitrosoglutathione
reductase. H2S, hydrogen sulfide. L-DES, L-cysteine desulfidrase.
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