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A B S T R A C T

Background: The mitochondrion and its associated genes were heavily implicated in developing and therapy tu-
mors as the primary cellular organelle in charge of metabolic reprogramming and ferroptosis. Our work focuses
on discovering new potential targets while analyzing the multi-omics data of mitochondria-related genes in lung
adenocarcinoma (LUAD).
Methods: The Cancer Genome Atlas (TCGA) database provided multi-omics data for LUAD patients. Based on the
expression profile of the genes associated with mitochondria, the patients were grouped by the unsupervised
clustering method. R was used to explore the differential expressed protein-code gene, miRNA, and lncRNA, as
well as their enriched functions and ceRNA networks. Additionally, the discrepancy between immune infiltration
and genetic variation was comprehensively characterized. Our clinical samples and in vitro experiments inves-
tigated the hub gene determined by LASSO and batch analysis.
Results: Two clusters are distinguished using unsupervised consensus clustering based on mitochondrial hetero-
geneity. The integrated analysis emphasized that patients in cluster B had a worse prognosis, higher mutation
frequencies, and less immune cell infiltration. The hub genes DARS2 and COX5B are identified by further analysis
using LASSO penalization. In vitro experiments indicated that DARS2 and COX5B knockdown inhibited tumor cell
proliferation. The specimen of our hospital cohort conducted the immunohistochemistry analysis and validated
that DARS2 and COX5B's expression was significantly higher in the tumor than in adjacent normal tissue and
correlated to LUAD patients' prognosis.
Conclusion: Our observations implied that LUAD patients' tumors had distinct mitochondrial function heteroge-
neity with different clinical and molecular characteristics. DARS2 and COX5B might be critical genes involved in
mitochondrial alterations and potential therapeutic targets.
1. Introduction

Lung cancer accounts for the highest rate of tumor-correlated mor-
tality worldwide [1, 2], especially lung adenocarcinoma (LUAD), the
most common subtype of lung cancer. Despite the advance in oncology,
the five-year survival rate of patients with LUAD has not improved
significantly over the past decades [2, 3]. Hence, continued efforts to
Lin), wang.hao@zs-hospital.sh.c
an Zhang, and Qihai Sui.

form 7 November 2022; Accepted
evier Ltd. This is an open access a
identify novel potential targets and therapeutical strategies in LUAD are
urgently needed.

Since Warburg described the metabolic feature of tumor cells as
"aerobic glycolysis" in 1956 [4], Hanahan and Weinberg extended the
concept of "aerobic glycolysis" and proposed a crucial cancer hallmark,
namely deregulating cellular metabolism [5, 6]. As cellular ATP is mainly
produced by mitochondria metabolism, The cellular metabolic
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reprogramming procedure of tumor cells requires mitochondria biology
[7]. Meanwhile, mitochondria are cellular suicidal weapons storage
rooms linked to another hallmark of cancer: evasion of cell death. Both
apoptosis and ferroptosis have been widely reported to be mediated by
the mitochondria through the diverse biological process like the pro-
duction of ROS, lipid peroxidation, and intrinsic mitochondrial apoptotic
signaling pathways [8, 9]. Mitochondria, the pivotal organelle in cellular
metabolism and cell death, was a promising target for developing anti-
cancer therapy [10, 11].
Figure 1. The flow chart of our research and the clustering procedure. (A) The flowc
is represented as heat maps for k ¼ 2. (C) The Cumulative distribution function (CDF)
the relative change in area under the CDF curve. (E) The principal component anal
patients in clusters A and B by transcriptomes.
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In recent years, machine learning has been widely used in biomedi-
cine [12, 13, 14]. Though the application in the clinical setting remains
limited, the unsupervised algorithm in multi-omics data for identifying
novel molecular targets holds excellent promise. In previous research,
Wang demonstrated that clustering analysis helped to dissect cancer
heterogeneity [15]. Woolley used the unsupervised cluster analysis to
identify the subgroups of patients with heart failure [16]. By bioinfor-
matics analysis, Shi et al. identified hypoxia-derived gene signatures to
predict clinical outcomes in Stage one LUAD. However, Unsupervised
hart shows the main flow of the fundamental research. (B) The consensus matrix
curve is used to select the optimal Cluster. (D) The delta curve diagram indicates
ysis (PCA) and T-distributed stochastic neighbor embedding (t-SNE) (F) plot of



Table 1. The baseline demographic data of cluster A and B.

Characteristics Mito-Cluster A Mito-Cluster B P value

N ¼ 279 N ¼ 218

Age 67.0 [59.8; 74.0] 65.0 [58.0; 71.0] 0.002

Age_group: 0.015

<60 69 (26.4%) 67 (33.3%)

60–70 87 (33.3%) 79 (39.3%)

>70 105 (40.2%) 55 (27.4%)

Sex: 0.003

Female 168 (60.2%) 101 (46.3%)

Male 111 (39.8%) 117 (53.7%)

Race: 0.079

White 226 (81.0%) 158 (72.5%)

Black 24 (8.60%) 27 (12.4%)

Other 29 (10.4%) 33 (15.1%)

Smoke: <0.001

No 141 (51.8%) 58 (27.5%)

Yes 131 (48.2%) 153 (72.5%)

Tstage: 0.008

T1 111 (40.1%) 55 (25.3%)

T2 136 (49.1%) 131 (60.4%)

T3 21 (7.58%) 22 (10.1%)

T4 9 (3.25%) 9 (4.15%)

Nstage: 0.062

N0 191 (70.7%) 130 (60.2%)

N1 47 (17.4%) 47 (21.8%)

N2 31 (11.5%) 38 (17.6%)

N3 1 (0.37%) 1 (0.46%)

Mstage: 0.007

M0 176 (63.8%) 155 (71.4%)

M1 9 (3.26%) 15 (6.91%)

MX 91 (33.0%) 47 (21.7%)

Stage_group: 0.006

Early stage 229 (83.3%) 156 (72.6%)

Later stage 46 (16.7%) 59 (27.4%)

Radiotherapy: 0.036

No 217 (89.3%) 142 (81.6%)

Yes 26 (10.7%) 32 (18.4%)

Tumor_site: 0.255

Lower lobe 94 (33.7%) 74 (33.9%)

Middle lobe 10 (3.58%) 11 (5.05%)

other site 6 (2.15%) 11 (5.05%)

Upper lobe 169 (60.6%) 122 (56.0%)
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clustering has not been investigated for mining mitochondria-associated
genes in LUAD to discover novel targets and biomarkers.

In this work, we first used the unsupervised machine learning clus-
tering approach to cluster genes related to mitochondrial function and
then investigated the multi-omics discrepancies across the clusters to
dissect the mitochondrial function molecular pattern in LUAD. Our
findings should contribute to a better understanding of the molecular
mechanisms behind mitochondrial changes and suggest potential mito-
chondrial target genes.

2. Methods and materials

2.1. Multi-omics data collection and mitochondrial function related genes
query

The RNA sequencing (RNA-seq) expression, copy number variation
(CNV), and somatic mutation data of LUAD samples, and the corre-
spondent clinical features of The Cancer Genome Atlas (TCGA) were
collected from the UCSC Xena (https://gdc.xenahubs.net). The CNV data
was integrated into the MAF file using the R package maftools [17].
Lastly, all the multi-omics analyses were based on the TCGA patients'
data to acquire accurate and consistent results unless expressly stated.
1136Mitochondrial function-related genes are obtained from the Human
MitoCarta 3.0 database [18] and 1626 genes from the Integrated Mito-
chondrial Protein Index database, containing 1184 known and 442 pre-
dicted from experimental data using the SVM algorithm [19]. The
detailed information and classification of Mitochondrial function-related
genes are listed in Supplementary Table S1.

2.2. The unsupervised consensus clustering methods

The Unsupervised consensus clustering was conducted using Con-
sensusClusterPlus R package [20]. Using the k-means method, setting the
euclidean distance as the measurement of distance, and the maximum
number of evaluated clusters was k ¼ 6, we performed the machine
learning cluster. Empirical cumulative distribution function (CDF) plots
show consensus distributions for each k. Moreover, the delta area plot
showed a relative increase in cluster stability. The optimal K is obtained
based on the minimum PAC algorithm.

2.3. Differential analysis, enrichment function, ceRNA construction, and
genomics analysis

The differential analysis between the two Mito-function clusters was
conducted using the R package limma [21]. Moreover, the DE (Differ-
entially expressed) mRNAs, DEmiRNAs, and DElncRNAs were identified
by the threshold (FDR<0.05 and Log (Foldchange) > 1). The Cluster-
Profiler package was used for GO (gene ontology), KEGG (Kyoto Ency-
clopedia of Genes and Genomes), and GSEA (Gene Set Enrichment
Analysis). The protein-protein interaction network was established using
STRING, and the network's visualization, shrinkage, and hub gene se-
lection were made in Cytoscape. The ceRNA interactions were identified
in the miRWalk [22], Targetscan [23], and lncSEA [24] under the
threshold p < 0.05. The maftools R package17 analyzed the distribution
of mutated genes and the summary of frequently mutated genes. Tumor
mutational burden (TMB) was calculated as the number of somatic base
substitutions or indels per megabase (Mb) of the coding region target
territory of the test (currently, 1.11 Mb).

2.4. Immune infiltration estimation and drug resistance prediction

Patients' immune infiltration and cell composition estimation was
based on multiple approaches. The R package 'GSVA' [25] was performed
based on the bulk RNA-seq data and the 24 gene sets on Bindea's pub-
lications [26]. Cibersort, Xcell, and MCPCounter deconvolution methods
for cell fraction estimate were also conducted to improve the accuracy of
3

tumor microenvironment estimate. The Genomics of Drug Sensitivity in
Cancer (GDSC) database was used to predict the half-maximum inhibi-
tory concentration (IC50) in 198 kinds of drug response. The R package"
pRRophetic" was used to predict the drug response [27, 28].

2.5. LASSO algorithm model construction

LASSO is a widely used regression method appropriate for analyzing
data with high dimensions and strong relationships like high throughput
data. We used glmnet [7] implementation of LASSO in R language to
establish a LASSOmodel, including a built-in cross-validation function to
adjust the L1 regularization parameter lambda for variables selection and
identify marker genes.

2.6. Cell culture, transfection, viability, and proliferation assays

A549 and H538 were purchased from the Chinese Academy of Sci-
ence Cell Bank and cultured in Dulbecco's Modified Eagle's Medium

https://gdc.xenahubs.net
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Figure 2. The survival analysis of Cluster A and B (a) The Kaplan Meier survival plot of overall survival (OS); (b) The forest plot of OS multi-variable COX model
analysis; (c) The nomogram plot predicting the overall survival probability. (d) The Calibration curves of the nomogram using the bootstrap method in internal
validation, Error bars validated standard error of the mean within the current data set.
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(DMEM Beyotime, CN) supplemented with 10% Fetal bovine serum (FBS,
EveryGreen, Zhejiang, China) and 1% antibiotics at 37 �C in 5% CO2.
Small interfering RNA (siRNA) and the corresponding negative control
(siNC) were purchased from Ribobio (Shanghai, China). A549 and H358
cells were transfected with siDARS2, siCOX5B, and siNC using the
Lipo8000 Transfection Reagent (Beyotime Biotechnology, China). A549
cells with GFP fluorescence were obtained as reported previously [29].
Cell viability assay was also performed using Cell Counting Kit -8 (CCK-8)
assay (Beyotime, CN) according to the previous study. The relative cell
viability was calculated as follows: Relative Cell Viability ¼ (Test
absorbance/Mean absorbance of control wells). At the logarithmic
growth phase, 1500 cells were seeded into 24-well plates (Corning, NY,
USA) at 100 μL of cell suspension per well. Cell proliferation was
measured according to corresponding fluorescence intensity after incu-
bation for 0, 24, 48, 72, 96, and 120 h at 37 �C. Images were acquired on
4

the Opera Phenix High Content Screening System (PerkinElmer) and
analyzed on Harmony High-Content Imaging and Analysis Software.

2.7. RNA isolation and real-time quantitative polymerase chain reaction
(RT-qPCR)

Total RNA from cells was extracted using TRIzol reagent (TIANGEN
Biotech, Shanghai, China). The cDNA synthesis was performed using the
PrimeScript™ RT Master Mix (Yeasen, Shanghai, China). Real-time PCR
was conducted with the SYBR-Green kit (Yeasen) to detect the expression
levels of DARS2 and COX5B. The gene and primer were listed in:
DARS2:forward primer sequence, 5'–ATGTGGAGAGTTGCGTTCGTC,
reverse primer sequence, 50-TGTTTTGCCTTCGGTACTGAATC, COX5B:
forward primer sequence, 50-ATGGCTTCAAGGTTACTTCGC, reverse
primer sequence, 50-CCCTTTGGGGCCAGTACATT. GAPDH was used as a



Table 2. Univarible and multivarible resluts of overall survival identifying the
prognostic value of cluster.

Univarible analysis Multivarible analysis

Characteristics HR (95% CI) P-Value HR (95% CI) P-Value

Group Cluster A Ref Ref

Cluster B 1.59
(1.16–2.17)

0.004 1.44 [1.04,
1.99]

0.03

Age_group <60 1.19
(0.87–1.62)

0.269

60-70 0.95
(0.64–1.41)

0.798 1.03 [0.68,
1.54]

0.904

>70 1.23 (0.84–1.8) 0.297 1.47 [0.97,
2.22]

0.067

Sex female Ref

Male 1.18
(0.87–1.61)

0.285

Smoke No Ref

Yes 1.18
(0.86–1.62)

0.301 1.26 [0.89,
1.79]

0.201

T stage T1 Ref Ref

T2 1.59
(1.09–2.32)

0.015 1.38 [0.94,
2.03]

0.102

T3 3.05
(1.78–5.22)

<0.001 2.30 [1.32,
4.00]

0.003

T4 3.17
(1.62–6.22)

0.001 1.80 [0.88,
3.69]

0.106

N stage N0 Ref Ref

Nþ 2.23
(1.64–3.04)

<0.001 1.81 [1.30,
2.53]

<0.001

M stage M0 Ref

M1 1.91
(1.05–3.48)

0.034

MX 0.75
(0.51–1.11)

0.147

Stage I Ref

II 2.23
(1.52–3.27)

<0.001

III 3.03
(2.04–4.51)

<0.001

IV 3.32
(1.77–6.23)

<0.001

Stage_group early stage

Later stage

Tumor_site:Lower lobe Ref

Middle lobe 1.37
(0.54–3.43)

0.508

Upper lobe 1.36
(0.62–2.97)

0.447

other site 0.9 (0.65–1.25) 0.515

Radiotherapy:No/
unknown

Ref Ref

YES 2.26
(1.65–3.08)

<0.001 1.93 [1.40,
2.67]

<0.001

Significant p-values given in bold. 95% CI, 95% confidence interval; HR, hazard
ratio.
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background control gene. The primer sequences for GAPDH were as
follows: forward primer sequence, 50-TCTGCTCCTCCTGTTCGACAGT-30,
reverse primer sequence, 50-ACCAAATCCGTTGACTCCGAC-3'.

2.8. Patients and LUAD specimens

Tissue specimens, including tumor and adjacent noncancerous tissue,
were obtained from 112 patients with LUAD who underwent surgical
resection at the Department of Thoracic Surgery, Zhongshan Hospital,
Fudan University from February 2012 to November 2016 (30–75 years
old). The diagnosis of lung adenocarcinoma was confirmed in each case
by histopathological analysis.

2.9. Immunohistochemical staining analysis

One hundred and twelve tissue specimens were performed immuno-
histochemical staining. Primary antibodies used in IHC, including DARS2
(ab154606, 1:200 for IHC), and COX5B (ab110263, 1:250 for IHC), all
antibodies were purchased from Abcam, Cambridge, UK. The procedure
was constructed as previously reported [30]. For the quantification of IHC
images, the ImageJ IHCToolbox pluginwas used in ImageJ software (NIH).

2.10. Statistical analysis

Statistical analysis was conducted using R Statistical Software. (Version
4.0.4; R Foundation for Statistical Computing). When appropriate, cate-
gorical variables were compared by the chi-square test and Fisher's exact
test. The normality of datawas determined by the Shapiro-WilkW-tests and
determined to use the unpaired t-test or the two-tailed nonparametric
Mann-Whitney test when comparing two groups. Spearman's nonpara-
metric analysis determined correlations between all profiles. The Log-rank
survival analysis and univariate and multivariate Cox proportional hazards
regression by the stepwise method were performed under the R language.
The nomogram construction, validation, and calibration were performed
and plotted using "rms" and "Hmisc" R packages. For all tests, a p-value �
0.05 was considered significant. The exact values are listed. Furthermore,
One asterisk represents p < 0.05, two asterisks represent p < 0.01, three
asterisks represent p < 0.001, and ns represent not significantly.

3. Results

3.1. The unsupervised machine learning clustering based on mitochondria-
related genes

The research flow diagram is shown in Figure 1A. LUAD patients with
transcriptome data were collected from the TCGA database. Genes with
mitochondrial-associated functions, total 1626, discarding the genes
detected no significant difference in the paired analysis of tumor and
normal tissues (Table S2), cleaning the genes with ubiquitous low
expression levels and excluding the duplicated genes from the Mitocarta
3.0 and MitoMap database.

We carried out the unsupervised consensus clustering using the log
(FPKMþ1) of the mitochondrial gene expression profile, as shown in
Figure 1B. The most appropriate k value was two after checking out the
heatmaps of the consensus matrices and the CDF plot (Figure 1C, D). The
durability of our clusters was indecently confirmed by the consistent
outcome of different clustering algorithm approaches (Figure 1E, F).
Based on the aforementioned results, we divided the TCGA-cohort pa-
tients into two clusters linked to mitochondrial function and gave them
names Cluster A and Cluster B.

3.2. Clinical and survival differences between mitochondrial-function-
related clusters

Table 1 shows that Cluster A's patients were more likely to be older
women (Age, p ¼ 0.002; Sex p ¼ 0.003) and with a lower pathological
5

stage (Stage group p ¼ 0.006), highlighting Cluster A's favorable prog-
nostic clinical characteristics. To investigate the clinical differences be-
tween Cluster A and B, we enrolled all 497 LUAD patients in the Kaplan
Meier survival analysis. The overall survival (OS) results revealed that
patients in Cluster A exhibited a better survival prognosis (Figure 2A).
The median time to the survival of Cluster A was 46.0 (95% CI:
40.3–57.5) months, whereas patients in Cluster B had a considerably
shorter median survival time (39.8 [33.3, 48.5] months).

Cluster B was found to be an independent prognostic factor, as shown
in Table 2 (Univariate cox: HR 1.59 [1.16, 2.17], p ¼ 0.004 and
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Multivariate cox: HR 1.44 [1.04, 1.99], p ¼ 0.030) (Figure 2B). A
nomogram incorporating the predictors, including group, pathologic T
stage, pathologic Nþ stage, and radiotherapy, was then constructed with
a 0.673 C-index (Figure 2C). According to Figure 2D's calibration curves,
the internal validation of the nomogram model performed well in terms
of reproducibility and predictability.
Figure 3. The differential and enrichment analysis of Cluster A and B (a) The volcan
genes, gray represents no significant difference, and blue represents downregulated ge
and B, the top bars were colored and indicated the clinical features of the patients; (
analysis terms and the DE genes. (d) The PPI network of the DE genes, green and red,
are enriched in down-regulated and upregulated genes (purple: upregulated DE gen
DElncRNA, DEmiRNA, and DEgenes.

6

3.3. The enrichment analysis verified the correlation between
mitochondrial function and clusters

The transcriptome profiling difference between the two Clusters was
further investigated using the multi-omics data and bioinformatics
analysis. Due to the diversity of expression patterns, we conducted the
o plot of differential expressed protein-coding genes, red represents upregulated
nes. (b) The heatmap plot displaying the differential expressed gene of Cluster A
c) The Chord plot displaying the relationship between the top 5 GO enrichment
relatively indicates the downregulated and upregulated genes. (e) The GO terms
es in Cluster B, blue: down-regulated DE genes). (f) The ceRNA network of the
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differential analysis separately in a different type of transcriptome. Of all
19971 protein-coding genes, 123 downregulated and 73 upregulated
were identified in Cluster B (threshold: LogFC> 1, adjust p value< 0.05).
Similarly, we obtained 99 differential expressed miRNAs of 2248 miRNA
isoforms, and 82 differentials expressed lncRNAs(Figure 3A, Supple-
mentary Figure S2A, B, C, D). As illustrated in Figure 3B, the heatmap
display of the expression profile could distinguish the two clusters and
show the fold change difference.

Further enrichment analysis on the DEGs was interesting. GO and
KEGG analysis showed that most of the enriched terms or pathways were
related to the mitochondria's function, like cell cycle checkpoint,
7

Oxidative phosphorylation, ROS formation, etc. (Figure 3C, Supple-
mentary Figure S3 A, B, C, D)

Additionally, we discovered the protein-protein interaction (PPI)
network of DEGs using the STRING online database and displayed it
using Cytoscape. Cytoscape calculated the DEGs' degree levels. Figure 3D
also shows the PPI network, from which the DEGs were found to have
interacted with each other and could be divided into two main modules.
The upregulated modular genes in Cluster B were enriched in the mito-
chondrial function terms, while the signaling and immune function-
related terms were significantly enriched among the downregulated
module genes, as shown in Figure 3E. Similar results were further
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Figure 5. The hub gene identification and prognostic validation. The Venn plot(a) showed the identification of the two hub genes. The pan-cancer dot plot identified
the DARS2(b) and COX5B(c) expression profiles across all tumor samples and normal tissues. The violin plot showed the correlation between clinical stage and the
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endorsed by an unbiased Gene Set Enrichment Analysis (GSEA) (Sup-
plementary Figure S3E, F, G, H).

The specific mitochondrial function-related ceRNA network shown in
Figure 3F was constructed by 195 pairs of lncRNA-miRNA-gene,
involving four lncRNAs, six miRNAs, and 156 genes bioinformatic anal-
ysis. Among the network, the downregulated lncRNA BAIAP2-AS1,
HAGLR, and LINC00342 and the upregulated lncRNA H19 were identi-
fied as critical regulatory lncRNAs in the ceRNA network.

3.4. Cluster B harbored a heavier tumor mutation load, poorer immune cell
infiltration, and higher targeted drug tolerance

After detecting the RNA-seq alterations and the enriched functions in
the above section, the investigation of the two clusters in the genomic
layer was conducted for further comparison. Our study examined single-
nucleotide polymorphism (SNP), insertion and deletion (INDEL), and
copy number mutation changes in genomics (CNV). We integrated the
genomic CNV data into the MAF file using the maftools package in the
data handling procedure.

The frequencies and types of variations observed in the two clusters
are shown in Figures 4A and B and Supplementary Figure S4A and B.
Clusters A and B shared a similar distribution of top mutant genes and
8

variant classification. However, cluster B had significantly more varia-
tions per sample than cluster A. (Median: cluster B 240 vs. Cluster A
109.5). Notably, as shown in Figure 4D and Supplementary Figure S4, the
bar plots illustrated that Cluster B exhibited greater frequencies of so-
matic mutations in the genes KEAP1 (10% vs. 20%, p < 0.001), TP53
(39% vs. 59%, p < 0.001), and ADAMTS12 (12% vs. 26%, p < 0.001).

The following pathway forest plot verified that the higher level of
mutation variations gives rise to the activation and interaction of various
oncopathways in ClusterB (for example, Hippo, A vs. B, Odds Ratio:
0.373, P< 0.001). Consistent with the mutation analysis above, cluster B
holds an elevated TMB (Figure 4C). The above results suggested that
patients in Cluster B typically bear more genomics abnormity.

The tumor immune microenvironment, including the immune cells
and other mediated immune molecules, is an increasingly important area
in the integrated analysis of tumor features. Our further GSVA algorithm
analysis based on the 24 immune cells revealed that Cluster A showed a
relatively higher immune cell composition (Figure 4F & Supplementary
Figure S5D). Moreover, the investigation of other immune-related gene
expressions (Innate immune, antigen presentation, immune stimulator
and immune inhibitor) exhibits a similar pattern to cell composition
(Figure 4E & Supplementary Figure S5A and B). The boxplot in Supple-
mentary Figure S5C provides a broad overview of the checkpoint gene
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landscape. Immune checkpoint gene expression was lower in Cluster B
patients compared to Cluster A patients. Additionally, we identified the
expression pattern of other targeted therapeutic genes undergoing clin-
ical trials. Surprisingly, Cluster A showed much higher expression of
practically all medication target genes than Cluster B.

The higher immune infiltration activated more potential for immu-
notherapy and targeted treatments. We extensively examined the IC50
values of numerous medications and substances in patients having
transcriptome data using the GDSC database. Patients in Cluster B
demonstrated a decreased IC50 value for targeted therapy medications
such as Afatinib, Osimertinib, and Trametinib, which is consistent with
the earlier findings. The lower sensitivity to targeted drugs also inspired
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us to find novel therapeutic target genes related to mitochondrial
function.

3.5. A combination of LASSO and batch survival analysis identified two
hub genes

Further analysis to seek hub genes was followed, and the mass uni-
variate cox regression was performed to identify OS-related DEmRNAs.
Meanwhile, the LASSO regression analysis (Supplementary Figure S6A)
narrowed the range of hub DEmRNAs selection. The overlap of two
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DEGs, overall survival outcomes, and the LASSO analysis (Figure 5A).
DARS2 and COX5B expression was independently second confirmed in
the PANCANCER data (Figure 5B and C). With little expression in healthy
tissues, DARS2 and COX5B were expressed at higher levels in several
tumor types, such as colon, urinary, cervical, and ovarian cancer.
Moreover, their increased gene expression was correlated to the worse
survival outcome of LUAD patients (Figure 5F and G) and closely linked
to the LUAD tumor staging (Figure 5D and E).

3.6. Knockdown of DARS2 and COX5B significantly attenuated cells'
proliferation

To confirm the bioinformatics findings, we next conducted a series of
cell-based experiments to investigate the function of these two genes in
lung adenocarcinoma cell lines A549 and H358. First, using RT-qPCR
analysis, we validated the knockdown of DARS2 and COX5B
(Figure 5H). Then, the CCK-8 cell viability studies showed that DARS2
and COX5B knockdown reduced tumor cell proliferation (Figure 6A).
Furthermore, the LUAD cells with GFP reporter protein were transfected
with DARS2 and COX5B siRNAs and observed in the high-content system
for five consecutive days (Figure 6B). These findings clearly showed that
suppressing DARS2 and COX5B reduced cell growth.

3.7. DARS2 and COX5B's expression was significantly correlated with lung
adenocarcinoma patients' survival in IHC staining

The next section of our study explored the clinical significance of
these two genes in Real-World Data. Again, we proved that DARS2 and
COX5B are risk factors of prognosis for the LUAD patients in multiple
curated GEO public datasets (Supplementary Figure S6B and C). Next, we
collected the paraffin-embedded sections from our cohort, including 112
lung adenocarcinoma patients who underwent surgery. The IHC results
confirmed that DARS2 and COX5B expression was elevated in LUAD
tumor tissues compared with that in paired normal tissues. Figure 6C
displays statistics for scores as well as typical photos of IHC staining. We
further confirmed that patients with high expression of DARS2 or COX5B
had significantly worse prognoses based on the KM survival analysis.

4. Discussion

This study first collected and integrated the mitochondrial function-
related genes with different databases and then divided the patients
into clusters A and B with distinct clinical and genetic characteristics
using the unsupervised machine learning method. Patients in Cluster B
displayed significant enrichments in cell proliferation, DNA replication,
and essential mitochondrial functions like oxidative phosphorylation,
according to the DE and GSEA analysis, whereas Cluster A's profiles were
enriched in a variety of immune response pathways. Our research also
demonstrated and validated that patients in Cluster A had good survival.

We created the mitochondrial function-related ceRNA network
through databases search and literature analysis based on the differen-
tially expressed lncRNAs, miRNAs, and mRNAs. HAGLR, as a prognostic
biomarker, was identified in various tumor types, including lung cancer
[31]. An earlier investigation revealed that HAGLR promoted cell
migration and invasion by targeting miRNAs like miR-147a and
miR-133b and promoting lipogenesis in NSCLC [32]. Interestingly, Our
network analysis proposed a new miRNA target of HAGLR, miR-18a-5p,
which was reported to play a dual role in oncogenic processes [33]. The
discovery of the ceRNA networks in our findings offers a fresh perspec-
tive on understanding the mitochondrial function in LUAD.

Furthermore, our study revealed that the mitochondrial function
plays pivotal roles in the tumor immune milieu, including innate im-
munity, checkpoint therapy, and immune cell infiltration. Mitochondria
are essential players in innate immunity pathways, both in signaling
and response, according to West and Banoth's review [34, 35].
10
Additionally, Klein et al. discovered that by reducing ROS production,
limiting mitochondrial dysfunction could improve tumor killer T cell
survival [36]. Our studies also indicated that the EGFR-TKI medication
Osimertinib resistance might be a result of mitochondrial malfunction
from the comparison of Cluster A and B, Recent research revealed that
chemoresistance in malignant tumors was linked to mitochondrial
dysfunction [37]. Zhou et al. proved that the acquired drug-resistant
A549 cells continue to have mitochondrial abnormalities [38]. For in-
dividuals resistant to treatment, identifying candidate genes associated
with mitochondrial function can aid in developing more potent therapy
plans.

Subsequently, we identified the two hub genes DARS2 and COX5B
through continuous screening using the LASSO algorithm, validated their
clinical value as a potential biomarker in LUAD patients, and explored
their protumorigenic tumor phenotype. DARS2 is a mitochondrial
enzyme aminoacylated aspartyl-tRNA. Previous work indicated its defi-
ciency mainly caused leukoencephalopathy and cardiomyopathy [39, 40,
41, 42], but recent studies have identified that DARS2 has prognostic
significance in urinary system cancers [43, 44], hematological malig-
nancies [45], and lung cancer [46]. Jiang et al. demonstrated that DARS2
modulates the proliferation, invasion, and apoptosis of LUAD cells [47],
which aligns with our results. COX5B is the terminal enzyme of the
mitochondrial respiratory chain and is associated with tumor growth and
migration in several cancers [48, 49, 50, 51]. The loss of COX5B inhibits
proliferation and promotes senescence via mitochondrial dysfunction in
breast cancer, as indicated by Gao et al. [52]. For the first time, our work
methodically uncovered the clinical significance and pro-tumor char-
acter of DARX2 and COX5B in LUAD.

Our research has several restrictions. More comprehensive tests were
required better to understand the underlying mechanisms of these two
hub genes. Still, to some extent, we first demonstrated these two proteins'
positive effects on LUAD tumor cell proliferation. Besides, our cohort's
patients' prognostic data was unavailable due to the short follow-up time.
Additional open-source GEO data with RNA-seq data was added to
confirm the clinical value of our study.

5. Conclusion

In conclusion, the purpose of the current study was to reveal the
correlation between the mitochondrial function pattern and multi-omics
characteristics of lung adenocarcinoma and discover the potential tar-
gets. The patients clustered into two patterns based on the transcriptome
of mitochondrial function-related genes showed different clinical out-
comes, mitochondrial activities, genomic features, and immune in-
filtrations. Next, we conducted the LASSO-COX algorithm and PPI
network to anchor the two candidate genes: DARS2 and COX5B.
Furthermore, experimental and clinical specimen results ascertained that
these two genes could promote tumor growth phenotype. The study has
enhanced our understanding of the relationship between mitochondria
activity and metabolism reprogramming, genomic abnormality, and
immune dysfunction in LUAD, suggesting the crosstalk of mitochondrial
activity and tumor progression. DARS2 and COX5B had been initially
identified and validated as potential therapeutic candidate targets in
LUAD.
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