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Background. Translating mRNA sequences into functional proteins is a fundamental process necessary for the viability of
organisms throughout all kingdoms of life. The ribosome carries out this process with a delicate balance between speed and
accuracy. This work investigates how ribosome structure and function are affected by rRNA base modification. The prevailing
view is that rRNA base modifications serve to fine tune ribosome structure and function. Methodology/Principal Findings.

To test this hypothesis, yeast strains deficient in rRNA modifications in the ribosomal peptidyltransferase center were
monitored for changes in and translational fidelity. These studies revealed allele-specific sensitivity to translational inhibitors,
changes in reading frame maintenance, nonsense suppression and aa-tRNA selection. Ribosomes isolated from two mutants
with the most pronounced phenotypic changes had increased affinities for aa-tRNA, and surprisingly, increased rates of
peptidyltransfer as monitored by the puromycin assay. rRNA chemical analyses of one of these mutants identified structural
changes in five specific bases associated with the ribosomal A-site. Conclusions/Significance. Together, the data suggest
that modification of these bases fine tune the structure of the A-site region of the large subunit so as to assure correct
positioning of critical rRNA bases involved in aa-tRNA accommodation into the PTC, of the eEF-1ANaa-tRNANGTP ternary
complex with the GTPase associated center, and of the aa-tRNA in the A-site. These findings represent a direct demonstration
in support of the prevailing hypothesis that rRNA modifications serve to optimize rRNA structure for production of accurate
and efficient ribosomes.
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INTRODUCTION
Modification of ribonucleotides represents a way to expand the

topological potentials of RNA molecules beyond those afforded by

each of the four bases alone. Extensive research into rRNA

modification has resulted in mapping of the majority of

pseudouridine (Y) and 29-O-methylation (Nm) residues in

eukaryotic and archaeal ribosomes, and in identification of the

snoRNA molecules that guide their modification. Despite this,

little is understood about the functional roles of nucleotide

modification. It is known that nucleotide modifications within

the ribosome are not located randomly. This is most clearly seen in

the ribosomal large subunit, where modifications cluster in highly

conserved areas of the ribosome devoted to peptidyl transfer, sites

of A- and P tRNA binding, the peptide exit tunnel and

intersubunit bridges [1–4]. This clustering is conserved in

organisms ranging from E. coli to humans with the number of

modifications increasing with evolutionary complexity [5]. In vitro

reconstituted E. coli ribosomes lacking rRNA modifications were

severely defective in catalytic activity [6], and global disruption of

Y or Nm formation in vivo resulted in strong growth defects in

yeast [7,8]. These essential modifications tend to be performed by

snoRNPs that also harbor components essential for rRNA

processing. However, most snoRNAs responsible for guiding

rRNA modification can be individually deleted with minimal

detriment to the organism [3,9]. In fact, disruption/deletion of

pseudouridine synthase proteins responsible for modification of

only two or three residues in E. coli did not produce discernable

differences in exponential growth rates between wild-type and

mutant stains in vivo. However, rRNA modification mutants were

strongly out competed by isogenic wild-type strains in competition

experiments, suggesting a growth advantage conferred by the

modifications [10,11]. The prevailing hypothesis is that, although

rRNA modifications are individually dispensable for survival,

together they may serve to optimize rRNA structure for

production of accurate and efficient ribosomes.

Based on the chemical properties of Y and Nm residues, their

possible functional roles can be inferred but not established. It has

been suggested that Y residues may contribute to RNA stability by

altering potentials for base stacking, and by offering an extra

hydrogen bond donor as compared to uridine [12,13]. Nm

residues offer protection against hydrolysis by bases and nucleases

and can promote RNA structural changes by changing the

hydration sphere around the 29 oxygen, blocking sugar edge

interactions and favoring the 39endo ribose configuration [13,14].

Thermodynamic and NMR based studies revealed that a Y
residue can stabilize an RNA hairpin structure when located at

a stem loop junction, and is slightly destabilizing when located in

single-stranded loop regions [15]. Recent NMR studies of the

highly conserved and highly modified large subunit rRNA (LSU)

helix 69 of the human ribosome observed discernable but subtle

secondary structure differences between rRNA with and without

the modifications [16]. Functional and structural studies have

shown that rRNA modification defects can impact on translation

rates and ribosome integrity. In E. coli, mutants lacking
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methylation of the m1G745 residue located in the LSU exhibited

decreased growth rates, decreased rates of polypeptide chain

elongation, defects in ribosome profiles, and resistance to viomycin

[17]. In yeast, knockout strains were made lacking each of six

snoRNA genes that guide pseudouridylation of residues in the

PTC of the ribosome, as well as one strain that lacked all six genes

[18]. Only one individual mutant, the snR10 deletion strain, had

phenotypic defects, but deletion of all six snoRNA genes promoted

moderate defects in growth and translation rates, paromomycin

hypersensitivity, and changes in ribosome profiles. In vivo DMS

studies also revealed altered LSU rRNA structure for the multiple

snoRNA deletion strain. Other functional studies have centered

around two methylated nucleotides, mU2920 and mG2921, in the A

loop of the yeast ribosome. There are two components thought to

be involved in the methylation of these rRNA residues: the guide

snoRNA snR52, and the site-specific methyltransferase Spb1p, an

essential yeast nucleolar protein. Primer extension analysis

revealed a functionally redundant pathway whereby snR52 or

Spb1p could methylate residue Um2920 [19]. Later thin layer

chromatography experiments revealed a different mechanism

whereby Spb1p and snR52 were responsible for methylation of

Gm2921 and Um2920 respectively, and showing that Spb1p could

methylate residue Um2920 in the absence of snR52 [20]. Despite

this discrepancy, it is clear that deleting both snR52 and Spb1p

resulted in strong defects in growth rates, altered polysome

profiles, and paromomycin hypersensitivity [19], making Spb1p an

important exception to the snoRNA guided modification rule in

eukaryotes. The E. coli homolog of Spb1p, FtsJ/RrmJ, methylates

23S rRNA residue Um2552 the equivalent of yeast Um2920 [21],

and deletion of this protein in E. coli resulted in severe growth

defects, temperature sensitivity, and altered ribosome profiles [22].

Despite their high level of conservation and distribution in

functionally important areas of the ribosome, the functions of

individual rRNA modifications belie their importance with a lack

of defects in their absence. However, the changes in ribosome

profiles and rRNA structures in multiple mutants suggest the

intriguing possibility that they may each contribute to refining the

structure and function of the translational apparatus. In order to

more fully understand this, several strains harboring single deletion

mutations, and one containing two gene deletions of previously

characterized snoRNAs known to modify the PTC of the yeast

ribosome were first characterized using a wide variety of genetic

assays designed to assess translational fidelity. The results show

that defects in rRNA modification produce allele specific mutant

phenotypes including increased sensitivity to translational inhibi-

tors; defects in virus propagation; changes in translational fidelity

as monitored by +1 and 21 PRF, discrimination between cognate-

and near-cognate aa-tRNAs, and recognition of termination

codons. These analyses led to more detailed biochemical

characterization of two mutants, demonstrating their increased

affinities for aa-tRNAs and decreased rates of peptidyltransfer.

rRNA chemical deprotection studies using a mutant defective in its

ability to Nm Gm2921 and Um2920 identified structural changes

in five positions. Specifically, at U2923 in the 25S rRNA A-loop in

the peptidyltransferase center, at A2932 and A2933, which help to

coordinate correct folding of the helix 90 – 92 structure, and at

C2848 where the tip of helix 89 interacts with the GTPase-

associated center, and at C2851, where helix 89 interacts with the

T-stem of aa-tRNA. Together, the data suggest that modification

of these bases fine tune the structure of the A-site region of the

large subunit so as to assure correct positioning of critical rRNA

bases involved in aa-tRNA accommodation into the PTC, of the

eEF-1ANaa-tRNANGTP ternary complex with the GTPase associ-

ated center, and of the aa-tRNA in the A-site. These findings

represent the first direct demonstration in support of the prevailing

hypothesis that rRNA modifications serve to optimize rRNA

structure for production of accurate and efficient ribosomes.

RESULTS
In order to more precisely determine the role of rRNA modifications

in the translational fidelity of the ribosome, yeast strains lacking

several previously characterized snoRNAs and one protein that

modify residues around the peptidyltransferase center of the

ribosome were chosen for characterization. The strains contain

single knockouts of the snoRNAs snR10, snR34, snR37, snR42, and

snR46 which together pseudouridylate six rRNA residues in the

PTC of the yeast ribosome, with snR34 modifying two of those

residues. Single and double knockout strain snr52 and a methylase

deficient mutant of the essential yeast protein Spb1, which are

responsible for methylation of mG2921 and mU2920, were also used in

this study. Since Spb1p is an essential yeast protein, a methylase

deficient mutant with a D to A substitution affecting the AdoMet-

binding site was used [19,20]. Mutant strains snr10D, spb1DA, and

spb1DA/snr52D have slow growth phenotypes. The locations of the

modified bases modified are shown in figure 1.

rRNA modification mutants show sensitivity to

translation inhibitors
Protein translation inhibitors that specifically interact with the

ribosome provide sensitive and convenient probes for changes in

ribosome function. Anisomycin, which binds the A-site crevice

that normally accepts the amino acid side-chains of A-site bound

aminoacyl-tRNAs [23] interfering with the binding of 39 end of the

aa-tRNA [24–26], was used to probe the A-site of the

peptidyltransferase center (PTC). Sparsomycin, which binds on

top of the CCA end of a P-site bound substrate and interacts with

it interfering [27] with the binding of the 39 end of the peptidyl-

tRNA [28–30] was also used as a probe for functional changes in

the PTC. Previous studies reported that spb1DA mutants were

sensitive to paromomycin, and that sparsomycin had no effect

[19]. Further, the snr10D mutant was also shown to be sensitive to

paromomycin [18]. To obtain drug sensitivity profiles for all of the

mutants, standard 10-fold dilution spot assays were performed in

the presence of anisomycin or sparsomycin (20 mg/ml each). As

shown in Figure 2 and summarized in Table 1, spb1DA/snr52D
cells were anisomycin hypersensitive, and snr34D and snr46D
strains were hypersensitive to sparsomycin.

Virus propagation in rRNA modification mutants
The yeast killer virus system composed of the dsRNA L-A helper

virus and M1 ‘killer’’ satellite viruses, provides a highly sensitive

assay for small defects in ribosome function. The L-A viral genome

contains two overlapping ORFs, gag and pol, which encoded the

structural protein and the RNA dependent RNA polymerase

respectively. The two ORFs are joined by a programmed 21

ribosomal frameshift (21 PRF) signal, and a 21 PRF event is

required for synthesis a Gag-pol fusion protein. The M1 satellite

virus dsRNA genome encodes a secreted toxin. The pre-toxin

provides the infected cell with immunity to the toxin, while

secretion of the mature toxin results in death of uninfected yeast

cells. Alterations in 21 PRF frequencies alter the ratio of structural

to enzymatic viral proteins produced for particle assembly thereby

interfering with the ability of yeast to maintain the L-A helper and

M1 satellite viruses [31]. In addition, M1 propagation is highly

sensitive to changes in levels of free large subunits in yeast, and

mutants with altered amounts of free ribosomal LSU fail to

maintain the M1 virus [32]. To assess the effects of the mutants on
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virus propoagation, the L-A and M1 viruses were introduced into

isogenic wild-type and mutant cells by cytoplasmic mixing, and

cells were assayed for their abilities to maintain the killer

phenotype (Fig. 3A). The wild-type strains and several of the

mutants (snr42D, snr 34D, and snr52D) were able to stably maintain

the killer virus (K+). However, several of the mutants displayed

defective killer phenotypes. The snr37D and snr46D mutants stably

maintained the virus, but showed reductions in zones of killer

activity phenotypes (Kw). Although the killer phenotype could be

initially established in snr10D cells, it was rapidly lost, resulting in

K2 phenotype. The killer maintenance defect was most severe in

the spb1DA and spb1DA/snr52D mutants where infection could not

be established. Previously published data indicates altered

ribosome profiles for mutants snr10D [18] and spb1DA/snr52D
[19], which could be a contributing factor to the observed virus

propagation defects. To rule out the possibility that defects in the

processing or secretion of the killer toxin [32] were responsible for

the observed killer phenotypes, double-stranded viral RNA was

extracted from wild-type and mutant cells and visualized (Fig. 3B).

The analysis revealed that M1 dsRNA abundance correlated with

the observed killer phenotypes; i.e. M1 dsRNA was observed in the

strains which showed the K+ phenotype and was absent or faint in

strains that showed K2 or Kw phenotypes respectively.

rRNA modification mutants cause allele-specific

defects in translational fidelity
Assays designed to monitor various aspects of translational fidelity

were employed to more precisely determine the role of rRNA

modifications in translational fidelity. An in vivo bicistronic dual-

luciferase reporter system was used to quantitatively monitor

changes in 21 and +1 PRF, suppression of nonsense codons, and

fidelity of aa-tRNA selection [33]. The control reporter is

a yeast expression vector containing Renilla and firefly luciferase

genes, which yields active Renilla and firefly luciferase proteins.

Programmed 21 and +1 frameshifting test reporters were con-

structed by inserting a frameshift signal, L-A or Ty1 respectively,

between the Renilla and firefly genes such that firefly luciferase can

only be produced in the event of a frameshift. Renilla luciferase

serves as an internal control, eliminating effects due to differences

in mRNA abundance, mRNA stability or translation rates

between the test and control reporters. Nonsense suppression test

reporters contained a stop codon (UAA, UAG, or UGA) six

codons into the firefly luciferase gene, so that firefly luciferase

can only be produced consequent to nonsense suppression. The

misincorporation test reporters were created by mutating the

firefly luciferase catalytic residue R218 from the wild-type AGA

codon to either the near-cognate AGC leucine codon, or the non-

cognate TCT leucine codon, so that active firefly luciferase can

only synthesized when the incorrect tRNAArg is selected. Recoding

Figure 2. Sensitivity of rRNA base modification mutants to Trans-
lational Inhibitors. Mutant and isogenic wild-type yeast strains were
spotted as ten fold dilutions from 105 to 101 CFU onto YPAD media
containing 20 mg/ml anisomycin or sparsomycin. Cells were incubated
for 3 days at 30uC, and growth was monitored as compared to growth
on plates in the absence of drug. Each strain and drug was assayed at
least twice.
doi:10.1371/journal.pone.0000174.g002

Figure 1. 25S rRNA in the peptiptidyl transferase center of yeast. (A) Secondary structure of yeast 25S rRNA in the PTC. snoRNAs targeted for this
study are indicated along with the residues they modify. Y – pseudouridylated residue; Nm – 29-O-ribose methylated residue. Helices are numbered
in black. (B) Three dimensional representation of the E. coli PTC [34]. Modified residues are labeled by the colors indicated in panel A. Left: view into
the PTC from the top of the LSU, right: 90u rotation of Left. Helices and tRNAs are labeled.
doi:10.1371/journal.pone.0000174.g001
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efficiencies were measured for each mutant as described in the

Materials and Methods. These translational fidelity data are

summarized in Table 1.

The spb1DA/snr52D double mutant showed a significant in-

crease in 21 PRF efficiency (1.5 fold of wild-type, p = 2.7610215),

consistent with the inability of this strain to propagate the M1 killer

virus. None of the other mutants significantly affected 21 PRF

(1.2 fold or less than wild type). Similarly, none of the mutants had

significant effects on +1 PRF (1.2 fold or less). The most dramatic

effects of the mutants were observed in their abilities to recognize

termination codons. With the exception of snr42D, which was

hyperaccurate at UAA and UGA, but not at UAG codons, similar

trends for changes in nonsense suppression were observed for all

three stop codons in the other mutant strains. For example, the

snr37D, snr10D, and the double mutant spb1DA/snr52D strains

were hyperaccurate with respect to their ability to recognize all

three termination codons, while a significant increase in general

nonsense suppression was displayed in the snr46D mutant strain.

The mutants were also assayed with regard to their ability to

discriminate between sense and missense codons by using reporters

described in the Supporting Information Materials and Methods

S1. The snr10D mutant strain slightly enhanced misreading of both

near and non-cognate codons (1.3 fold.wild-type), and snr46D
showed a small increase in selection of non-cognate aa-tRNA (1.3

fold of wild type). The double mutant spb1DA/snr52D had a very

significant effect on near cognate aa-tRNA misreading (1.9 fold

wild-type), but did not significantly affect non-cognate aa-tRNA

selection. The spb1DA single mutant actually exhibited a slight (0.8

fold) decrease in non-cognate aa-tRNA selection when compared

to its wild-type strain with no effect on near-cognate selection

events. The snr52D single mutant showed no change in non-

cognate aa-tRNA selection events, but did display a 1.4 fold

increase in near-cognate values.

Changes in aminoacyl-tRNA binding and

peptidyltransfer rates
Defects in translational fidelity could possibly be due to changes in

tRNA binding to the ribosome or rates of peptidyltransfer. The

two mutants with the most dramatic phenotypic effects, snr46D
and spb1DA/snr52D, were selected for more detailed biochemical

characterization. Ribosomes were isolated from the isogenic

wild-type and mutant strains and their affinities for aa- and

peptidyl-tRNA as well as peptidyltransfer rates were determined as

described in the Supporting Information Materials and Methods

S1. Ribosomes from both mutants had increased affinities for

[14C]Phe-tRNA (Fig. 4A). Specifically, the Kdapp for snr46D
ribosomes was 0.3 mM 60.05, as compared to 1.8 mM 60.4 by

ribosomes isolated from the corresponding isogenic wild-type

strain. Similarly, ribosomes isolated from the spb1DA/snr52D
mutant had a Kdapp of 0.3 mM 60.1 as compared to 0.6 mM 60.2

for the corresponding isogenic wild-type SPB1 SNR52 strain. In

contrast, neither mutant affected binding of Ac-[14C]Phe-tRNA to

the ribosomal P-site (Fig 4B). Peptidyltransfer rates were measured

using the puromycin reaction as described in the methods.

Surprisingly, both mutant strains promoted increased rates of

peptidyltransfer as compared to isogenic wild-type values (Fig. 4C).

Specifically, the Kapp of snr46D ribosomes was 0.06 min21 60.003

while its isogenic wild-type showed a Kapp value of 0.04 min21

60.003. The wild-type SPB1 SNR52 was shown to have a Kapp of

0.02 min21 60.004 while the mutant strain spb1DA/snr52D
showed a Kapp of 0.04 min21 60.007.

The spb1DA/snr52D mutant promotes changes in

key rRNA structural elements that interact with

aa-tRNA.
It has been speculated that the post-transcriptional rRNA

modification may serve to increase the stability of the local RNA

structure or decrease risk of degradation [4,13]. With this in mind,

in vitro rRNA structure probing was performed on the wild-type

and mutant ribosomes biochemically characterized in the previous

section. Mutants snr46D and spb1DA/snr52D and isogenic wild-

type puromycin treated ribosomes were incubated with the

chemically modifying agents CMCT, kethoxal and DMS in vitro.

rRNAs were extracted and primer extension analyses performed

using primers sufficient to transverse the entire PTC i.e. helices

89-93. Figure 5A shows a representative autoradiogram for the

wild-type and mutant spb1DA/snr52D strains. Differences between

wild-type and mutant protection patterns and their nucleotide

locations are indicated. Residues C2843 and C2851 in helix 89

were deprotected from DMS, and residue U2923 in the A-loop

showed increased protection from CMCT. Weaker, but consistent

deprotection patterns of A2932 and A2933 were also observed.

These are all mapped into the context of the 2-dimensional map of

the yeast 25S rRNA (Fig. 5B), and within the atomic resolution

3-dimensional structure of the E. coli ribosome (Fig. 5C) [34]. The

increased intensity corresponding to U2845 (marked by * in

Fig. 5A) is not DMS-specific, and was not repeatable. No signifi-

cant differences in protection patterns were observed between

isogenic wild-type and mutant snr46D ribosomes (data not shown).

DISCUSSION
It is presently thought that rRNA base modification serves to fine

tune the ribosome structure so as to optimize ribosome biogenesis

and the various functions carried out by mature ribosomes. The

current study has tested this hypothesis by focusing on modified

bases in the A-site region of the large subunit. The data presented

here provide the most detailed structure/function analysis to date,

showing how minor changes in rRNA structure assure correct

positioning of critical rRNA bases involved in guiding and

placement of aa-tRNAs into the ribosomal A-site.

Figure 3. Many of the rRNA base modification mutants have M1 virus
propagation defects. Yeast rRNA modification mutants were tested for
their ability to maintain the L-A and M1 viruses. (A) Mutant and isogenic
wild-type yeast strains were spotted onto YPAD plates, and allowed to
grow at 30uC, and then replica plated to a seeded lawn of 5X47
indicator cells. Plates were incubated at room temperature for 3–5 days
until a zone of inhibition was clearly visible for wild-type cells. (B) Total
RNAs were extracted from mutant and isogenic wild-type yeast strains
and digested with RNase A under high salt conditions. The resulting
double-stranded RNA was separated on a 1% agarose gel and visualized
with ethidium bromide. L-A and M1 dsRNAs are indicated. The image
was inverted for clarity.
doi:10.1371/journal.pone.0000174.g003
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The observation of increased rates of peptidyltransfer in the

spb1DA/snr52D and snr46D ribosomes may provide the key to

understanding the function of these modified bases. Such an

observation is unusual because this reaction is normally nearly

instantaneous (.50/sec) [35]. To understand this, it is necessary

to examine the reaction in the context of the puromyucin assay,

which is approximately 3 orders of magnitude slower than

peptidyltransferase assays performed with whole aa-tRNAs. One

of the rate limiting aspects of the puromycin reaction is the

requirement for this small molecule to diffuse into the A-site of

ribosomes that are pre-loaded with peptidyl-tRNA. Thus, a simple

way to increase the rate of this reaction would be to increase rates

of puromycin diffusion into the active site. This could be accom-

plished by widening the path through which puromycin must

travel in order to access the A-site. The structure probing data

from spb1DA/snr52D ribosomes reveals that C2843 and C2851,

two critical bases lying along the path taken by the 39 end of the

aa-tRNA during accommodation [36], are deprotected (Fig. 5A–

C). This is consistent with the model of this channel being more

open in this mutant. Accommodating aa-tRNA slides along the

side of the helix 90 – 92 structure, and A2032 and A2933 play

important roles in coordinating proper folding of this structure.

Thus, the observed mild deprotection of these two bases is also

consistent with the ‘open accommodation channel’ model. In

addition, hyperprotection of U2923 may be due to this base

collapsing into the space normally occupied by the methyl groups

attached to the nearby Um2920 and Gm2921 (see Fig. 5D). This

movement would drag C2922 along with it. C2922 is one of two

bases that form the first ‘‘gate’’ through which accommodating aa-

tRNA must pass [36] (shown as orange arrows in Figs. 5C and

5D). Thus, repositioning it toward the 59 side of the A-loop would

serve to open this gate, further lessening steric hindrance to

puromycin.

This structural model can account for all of the other biochem-

ical and genetic phenotypes associated with the double mutant.

Opening of the aa-tRNA gates would enhance rates of diffusion of

small molecules, e.g. anisomycin and sparsomycin, into the

peptidyltransferase center, resulting in the hypersensitivity to these

drugs observed with the spb1DA/snr52D and snr46D mutants

respectively. This could also enhance rates of aa-tRNA accom-

modation, resulting in increased affinity for aa-tRNA, and

increased rates of aa-tRNA misincorporation at near-cognate

and termination codons. Increased 21 PRF, which involves

aa-tRNA slippage could be due to loss of the interaction between

C2851 and the T-stem of aa-tRNA, i.e. the aa-tRNA may not be

as well fitted into the LSU, perhaps making it more prone to slip.

In turn, the inability to propagate the killer virus is consistent with

increased 21 PRF [37], although it should be noted that pro-

pagation of the M1 satellite virus is extremely sensitive to defects in

the translational apparatus independent of changes in 21 PRF

[38]. Importantly, +1 PRF, which only involves peptidyl-tRNA

slippage [39], was not affected by these mutants, consistent with

observation that none of the mutants affected binding of Ac-

[14C]Phe to the P-site.

Figure 4. Ribosome biochemistry. Mutant strain snr46D and the isogenic wild-type are shown in the top row, and mutant strain spb1DA/snr52D and
the isogenic wild-type are show in the bottom row. Error bars represent standard error for all graphs. A. [14C]Phe-tRNA binding to the A-site of the
ribosome. One site binding curves of bound tRNA as analyzed using GraphPad Prism software. Data are reported as a percentage of the total tRNA
bound. B. Ac-[14C]Phe-tRNA binding to the P-site of the ribosome. One site binding curves of bound tRNA as analyzed using GraphPad Prism
software. Data are reported as a percentage of the total tRNA bound. C. Peptidyltransfer. Timecourse assays of peptidyltransferase activities as
measured by the puromycin reaction.
doi:10.1371/journal.pone.0000174.g004
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We speculate that the spb1DA/snr52D double mutant displayed

the most severe phenotypic defects because loss of methyl groups

on 2 adjacent bases had the greatest effects on local hydration

spheres, thus producing the most dramatic changes in rRNA

structure. This suggests that the other mutants may also alter

rRNA structure, but that these were too slight to be detected by

the methods employed. However, we suggest that the effects of

small structural changes are amplified through chains of biological

events, thus producing the observed phenotypes. In particular, the

ability of ribosomes to recognize termination codons, and the

ability of cells to maintain the killer virus appear to be exquisitely

sensitive indicators of subtle changes in the translational apparatus.

Our conclusion is that rRNA base modification serves to fine-tune

ribosome structure so as to best coordinate the structure of the

molecule with its functional requirements.

There are other functionally important regions of the ribosome

that contain high densities of rRNA modifications. For example,

the loop of helix 69 has at least three modified residues, makes

intersubunit contacts, and interacts with both A- and P-site tRNAs

[2]. Functional studies in E. coli revealed defects in translational

fidelity associated with helix 69 mutants [40]. Extensive genetic,

biochemical and structural analysis of this helix would likely

provide a wealth of information concerning translational fidelity

and subunit association. Another interesting facet of rRNA

modification is its possible role in human disease. X-linked

dyskeratosis congenital (X-linked DC), marked by skin and bone

marrow failure in humans, is caused by point mutations in the

gene encoding the nucleolar protein dyskerin. Dyskerin is present

in both the telomerase complex and in ribonucleoparticles that

pseudouridylate rRNA residues. Mutations in dyskerin are

Figure 5. 25S rRNA structure probing analysis in spb1DA/snr52D mutant ribosomes. (A) Puromycin treated ribosomes isolated from isogenic wild-
type and spb1DA/snr52D mutant strains were used for in vitro chemical probing of the structure around the peptidyltransferase center of the
ribosome, specifically helices 89-93. Reactions were performed in triplicate, representative autoradiographs are shown. U - untreated; C - CMCT; D –
DMS; K – Kethoxal. Residues with changes in banding pattern labeled. Strongly modified bases at positions U2923, C2843, and C2851 are indicated, as
are the more weakly deprotected A2932 and A2933. The increased intensity corresponding to U2845 (marked by *) is not DMS-specific. (B–D).
Locations of residues demonstrating strong changes in protection patterns mapped to LSU rRNA structures. Um2920 and Gm2921 are indicated and
color coded. Bases with altered protection patterns are circled in orange. aa-tRNA accommodation ‘gate’ bases [36] are indicated with purple (gate 1)
and green (gate 2). The ‘‘catalytic’’ A base (equivalent to E. coli 23S rRNA A2451) is incicated with red. Individual LSU helices are numbered and color
coded. (B) Secondary structure of yeast 25S rRNA around the PTC. (C) Three dimensional representation of rRNA bases of interest mapped onto the E.
coli PTC [34]. Arrow represents the path the 39 end of the aa-tRNA travels when entering the A-site. (D) Rotation and zoom in of Panel C. Shows the
path into the A-site from the aa-tRNA perspective. Residues demonstrating changes in protection patterns are labeled in orange. Locations of
modified bases and A-site ‘gate’ residues are labeled.
doi:10.1371/journal.pone.0000174.g005
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associated with severe telomere dysfunction and defects in pre-

rRNA processing [41]. Interestingly, cells with mutant dyskerin

activity also demonstrate a defect in translation of messenger

RNAs containing IRES elements [42]. It will be interesting to

explore the possible relationship between rRNA modification and

regulation of IRES dependent translation.

MATERIALS AND METHODS
Detailed descriptions of materials and methods are available in the

Supporting Information Materials and Methods S1.

Strains, media, and genetic methods
The S. cerevisiae strains used in this study are presented in Table S1.

Escherichia coli strain DH5a was used to amplify plasmids (listed in

Table S2), and E. coli transformations were performed using the

high-efficiency transformation method [43]. Yeast cells were

transformed using the alkali cation method [44]. YPAD and

synthetic complete medium (H-), as well as YPG, SD, and 4.7 MB

plates used for testing the killer phenotype were prepared and used

as described previously [37]. Oligonucleotide primers were

purchased from IDT (Coralville, IA) and are listed in Table S3.

Yeast deletion strains snr10D, 34D, 37D, 42D, 46D and isogenic

wild-type were provided by M.J. Fournier. Yeast strains snr52D,

spb1DA, the double mutant and an isogenic wild-type were

provided by G. Lutfalla. Cytoduction of the L-A and M1 killer

virus into snoRNA knockout strains and subsequent killer virus

assays were carried out as previously described [31]. Total RNAs

extracted from cytoduced wild-type and snoRNA knockout strains

were analyzed for the presence of the L-A and M1 dsRNAs, and

dual luciferase assays to quantitatively monitor translational

recoding in yeast were performed as previously described [33].

The latter involved use of a 0-frame control reporter in com-

bination with 21, or +1 ribosomal frameshift, nonsense suppres-

sion, or misincorporation test reporter constructs. Recoding

efficiencies and statistical analyses were performed as previously

described [45]. Ten-fold dilution spot assays to monitor sensitivity

to anisomycin or sparsomycin (20 mg/mL) were performed as

previously described [46].

Ribosome biochemistry
S. cerevisiae ribosomes were isolated, yeast aminoacyl-tRNA

synthetases were purified, yeast phenylalanyl-tRNAs were ami-

noacylated with [14C]Phe, and Ac-[14C]tRNA was synthesized as

previously described [47]. [14C]Phe-tRNA and Ac-[14C]tRNA

were purified by HPLC. Peptidyltransfer assays using Ac-

[14C]Phe-tRNA and puromycin, and equilibrium binding studies

of [14C]Phe-tRNA binding to the ribosomal A-site, and of Ac-

[14C]Phe-tRNA to the ribosomal P-site were carried out as

previously described [47]. The data were fitted to a one site

binding model using Prism Graph Pad software. Chemical

protections studies of 25S rRNA employed puromycin treated

ribosomes incubated with DMS (dimethyl sulfate), kethoxal or

CMCT (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-

p-toluene), and the rRNA modifications were visualized by primer

extension reactions using AMV reverse transcriptase (Roche,

Mannheim, Germany) and the 32P-end-labeled primers shown in

Table S3 were performed as previously described [48,49].
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