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Abstract
INTRODUCTION: The coexpression of pIGF-1R and MMP-7 (double-positive phenotype, DP) correlates with poor
overall survival (OS) in KRAS wild-type (WT) (exon 2) metastatic colorectal cancer (mCRC) patients treated with
irinotecan-cetuximab in second/third line. METHODS: We analyzed two prospective biomarker design trials of
newly diagnosed RAS-WT mCRC patients treated with panitumumab-FOLFOX6 (PULSE trial; NCT01288339) or
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cetuximab plus either FOLFOX6/FOLFIRI (POSIBA trial; NCT01276379). The main exposure was DP phenotype
(DP/non-DP), as assessed by two independent pathologists. DP cases were defined by immunohistochemistry as
N70% expression of moderate or strong intensity for both MMP-7 and pIGF-1R. Primary endpoint: progression-free
survival (PFS); secondary endpoints: OS and response rate. PFS and OS were adjusted by baseline characteristics
using multivariate Cox models. RESULTS: We analyzed 67 patients (30 non-DP, 37 DP) in the PULSE trial and 181
patients in the POSIBA trial (158 non-DP, 23 DP). Response rates and PFS were similar between groups in both
studies. DP was associated with prolonged OS in PULSE (adjusted HR: 0.23; 95%CI: 0.11-0.52; P=.0004) and
with shorter OS in POSIBA (adjusted HR: 1.67; 95%CI: 0.96-2.90; P=.07). CONCLUSION: A differential effect of
anti-EGFRs on survival by DP phenotype was observed. Panitumumab might be more beneficial for RAS-WTmCRC
patients with DP phenotype, whereas cetuximab might improve OS in non-DP.

Neoplasia (2018) 20, 678–686
Introduction
The doublets of FOLFIRI or FOLFOX plus cetuximab or
panitumumab are effective as first-line therapies for patients
with RAS wild-type (WT) metastatic colorectal cancer (mCRC)
[1–3]. However, certain patients do not fully benefit from these
EGFR-targeted antibodies, requiring additional biomarkers to tailor
their use.
The type 1 insulin-like growth factor receptor (IGF-1R) is a

transmembrane glycoprotein composed of two extracellular and two
cytoplasmic subunits acting as a receptor-tyrosine kinase [4–7]. IGF-
1R is activated in colorectal cancer, mediating key processes such as
cell proliferation, apoptosis resistance, and epithelial-to-mesenchymal
transition (EMT) [8]. The signal transducer and activator of
transcription 3 (STAT3) is also constitutively activated in colorectal
cancer [9] by growth factor receptors (EGFR and IGF-1R) through
AKT/mTORC/RAC1 [10], or induced by cancer-associated fibro-
blasts (CAFs) through IL-6-JAK1/2 [11,12]. Regardless of this
intrinsic or extrinsic activation, STAT3 signaling enforces matrix
metalloproteinase-7 (MMP-7) expression [13].
Recently, IGF-II was shown to activate IGF-1R and STAT3 more

effectively than IGF-I and to induce SLUG transcriptional activity
and EMT in CRC [14]. Feedback activation has been also
demonstrated between MMP-7 and IGF-1R. MMP-7 plays a crucial
role in IGF-I and IGF-II bioavailability through the insulin-like
growth factor-binding protein 3 (IGFBP-3) degradation [15–17],
which in turn mediates IGF-1R–dependent [18] but also IGF-1R–
independent NF-kB activation [19]. The blockade of IGF-1R is also
involved in the suppression of cancer cell invasion through
downregulation of MMP-7 [20]. Therefore, IGF-1R and MMP-7
contribute by multiple pathways to activate the two more critical
transcription factors: STAT3 and NF-kB.
Our group has previously shown that coexpression of p-IGF-1R

and MMP-7 (double positivity phenotype, DP) correlates with poor
prognosis in KRASWT (exon 2) patients treated with irinotecan plus
cetuximab as second-/third-line therapy [21]. To validate these
findings, we designed two prospective, translational trials in K-RAS
(exon-2) WT mCRC patients treated with panitumumab plus
FOLFOX6 (PULSE trial) or cetuximab plus either FOLFOX6 or
FOLFIRI (POSIBA trial) as a first line of therapy, with the shared
objective of evaluating the prognostic role of DP in this patient
population.
Methods

Trials Design
Patients were eligible in both studies if they were ≥18 years old; had

histologically confirmed KRAS WT (exon 2) mCRC with ≥1
radiologically measurable lesion; an Eastern Cooperative Oncology
Group Performance Status (ECOG-PS) of 0-1; and adequate hepatic,
renal, and bone marrow functions. Patients were ineligible if they
were pregnant, had a history of treatment with anti-EGFR or
chemotherapy (with the exception of adjuvant therapy), or had
undergone surgery of metastatic disease.

The PULSE (GEMCAD 09-03, clinicaltrials.gov id:
NCT01288339) and POSIBA (GEMCAD 10-02, clinicaltrials.gov
id: NCT01276379) were both single-arm prospective biomarker
design trials. Patients were recruited into the PULSE trial from
November 2010 to April 2013 in 24 Spanish centers and treated with
FOLFOX6 plus panitumumab (6 mg/kg). Patients were recruited
into the POSIBA trial from July 2011 to May 2015 in 28
Spanish centers and treated with FOLFOX6 or FOLFIRI (at
investigator’s choice) plus biweekly cetuximab (500 mg/m2). In
both trials, cytotoxic drugs were administered for 6 months, followed
by anti-EGFR monotherapy until progressive disease or unacceptable
toxicity.

Patients were classified as DP if their tumor presented moderate or
strong intensity (++/+++) and N70% expression for both MMP-7 and
pIGF-1R by immunohistochemistry staining (see below). The
primary endpoint for both studies was progression-free survival
(PFS), defined as time from enrollment to disease progression, death,
or end of follow-up, whichever came first. Secondary objectives
included response rate, toxicity profile, and overall survival (OS),
defined as time from enrollment to death or end of follow-up. Disease
status was evaluated with abdominopelvic CT scan every 2 months in
the PULSE trial and every 3 months in the POSIBA trial until
progressive disease. Patients without a second CT evaluation were not
assessable for response rate. Patients who underwent liver resection
were not censored at the time of surgical resection and were followed
until progressive disease.

The safety population comprised all patients who received
at least one dose of study treatment. Adverse events (AEs) were
recorded according to the National Cancer Institute Common
Toxicity Criteria version 2.0. The PULSE and POSIBA trials
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were approved by local institutional review boards and ethics
committees in accordance with national and international
guidelines; all patients signed a written informed consent before
study entry.
Figure 1. Patients’ disposition in the (A) PULSE and (B) POSIBA trials.*
mutations (exons 3 and 4) and NRAS mutations (exons 2, 3, and 4) (N=
NRASmutations (exons 2, 3, and 4).***The expression of p-IGF-1R and
+cetuximumab and three with FOLFIRI+cetuximab
RAS and BRAF Mutational Analysis
Mutational analysis of genomic DNA of KRAS (exon 2) was

performed by direct sequencing. In the PULSE trial, it was evaluated
centrally at the Hospital Clínic (Barcelona, Spain), although analysis
RAS mutant includes mutations in KRAS (exon 2) (N=60), and KRAS
11).**RAS mutant includes mutations in KRAS (exons 3 and 4) and
MMP-7 was not evaluable in five patients: two treated with FOLFOX

Image of Figure 1
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at the referring Center was also allowed. In the POSIBA trial, it was
evaluated at the referring center. Extended RAS mutational analysis
(including KRAS/NRAS exons 2, 3 and 4) started on 10/2013 in the
PULSE trial and on 10/2015 in the POSIBA trial after protocol
amendments. The BRAF V600E mutation (exon 15) was genotyped
by allelic discrimination in genomic DNA using TaqMan technology
(Applied Biosystems, Foster City, CA).

Immunohistochemistry
We used hematoxylin and eosin staining to evaluate the presence

and classification of the tumor specimens. Consecutive 2- to 3-μm–
thick sections were used for IHC. Removal of paraffin and heat
incubation in citrate (pH=6.0) were performed to achieve antigen
retrieval. The primary p-IGF-1R antibody (anti-pY1316, provided by
Dr. Rubini) was used at 1:100 dilution. MMP-7 (R&D System,
Minneapolis, MN) was used at 1:1500 dilution. The expression was
cytoplasmatic. Detection was performed using the Dako EnVision
K4011 (Agilent, Santa Clara, CA). In the PULSE trial, IHC
evaluation was done centrally in Hospital Clínic (Barcelona, Spain),
and results were given before patient inclusion to balance the number
Table 1. Baseline Characteristics by Trial and Double Positivity

POSIBA

Non-DP (N=158) DP (N=23)

BRAF mutated, N (%) 16 (10) 4 (17)
Female, N (%) 46 (29) 7 (30)
Age, mean (SD) 62 (11) 67 (7)
Primary tumor location, N (%)
Ascending colon 28 (18) 4 (17)
Transverse colon 13 (8) 1 (4)
Descending colon 12 (8) 2 (9)
Sigma 65 (41) 11 (48)
Rectum 40 (25) 5 (22)

Stage (at diagnosis), N (%)
I 1 (1) 0
II 12 (8) 1 (4)
III 32 (20) 3 (13)
IV 113 (72) 19 (83)

Surgery of primary tumor, N (%) 89 (56) 12 (52)
ECOG-PS, N (%)
0 110 (70) 9 (39)
1 45 (28) 14 (61)
2 3 (2) 0

Number of metastatic organs, N (%)
0 0 0
1 79 (50) 15 (65)
N2 79 (50) 8 (35)

Liver metastasis, N (%)
No liver metastasis 35 (22) 5 (22)
b=3, b=5 cm 28 (18) 5 (22)
N3 or N5 cm 95 (60) 13 (57)

Node metastasis, N (%) 50 (32) 7 (30)
Lung metastasis, N (%) 48 (30) 2 (9)
Peritoneal metastasis, N (%) 23 (15) 4 (17)
Administered therapy, N (%)
FOLFOX+cetuximab 89 (56) 9 (39)
FOLFIRI+cetuximab 69 (44) 14 (61)
FOLFOX+panitumumab NA NA

Leucocytes, mean (SD) 8.3 (3.3) 8.9 (3.7)
Hemoglobin, mean (SD) 13.8 (9.2) 11.9 (1.6)
Platelets, mean (SD) 282 (104) 298 (140)
ALP, mean (SD) 148 (122) 179 (177)
LDH, mean (SD) 465 (457) 632 (1246)
CEA, mean (SD) 267 (732) 708 (1772)

ALP, alkaline phosphatase; CEA, carcinoembryonic antigen; DP, double positivity; ECOG-PS, Easte
deviation.

Fisher’s exact test
of patients in both arms. In the POSIBA trial, IHC evaluation was
performed after patients’ inclusion. Thus, DP distribution represents
that of the source population.

Statistical Analysis
In the PULSE trial, a recruitment of 78 patients was planned to

have an 80% power to detect a difference in median PFS of 6 months
between DP and non-DP patients (assuming a bilateral α error of
0.05 and the occurrence of 56 events). A screening of 270 patients
was planned because only 25% of patients were expected to be DP
and 40% to be KRAS mutant. Recruitment continued until both
exposure groups (DP and non-DP) were filled in a 1:1 ratio. In the
POSIBA trial, a recruitment of 170 RAS WT patients (after
ammendent of all RAS WT analysis) was planned to detect, with a
80% of power and a bilateral alpha of 5%, a 20% difference in 12-
month PFS. We assumed that the 12-month PFS of the non-DP
patiens would be of 60%, and a 25% of DP patients in the source
population.

Kaplan-Meier estimates were used to plot unadjusted survival
curves. Cox proportional hazards regression was used to perform
PULSE

P Value Non-DP (N=30) DP (N=37) P Value

.29 2 (7) 5 (14) .45

.99 12 (40) 10 (27) .30

.031 63 (8) 64 (8) .61

.98 .47
2 (7) 3 (8)
1 (3) 5 (14)
3 (10) 3 (8)
15 (50) 12 (32)
9 (30) 14 (38)

.77 .88
0 0
1 (3) 2 (5)
5 (17) 4 (11)
24 (80) 31 (84)

.82 20 (67) 24 (65) .99

.012 .61
16 (53) 22 (59)
13 (43) 15 (41)
1 (3) 0

.30 .33
0 2 (5)
13 (43) 16 (43)
17 (57) 19 (51)

.87 .93
7 (23) 10 (27)
3 (10) 4 (11)
20 (67) 23 (62)

.99 9 (30) 12 (32) .99

.043 11 (37) 14 (38) .99

.75 9 (30.0) 8 (22) .57

.18
NA NA
NA NA
30 (100) 37 (100)

.39 9.8 (7.1) 8.2 (2.5) .23

.023 12.9 (1.7) 12.4 (1.5) .15

.60 298 (144) 296 (120) .96

.44 166 (208) 219 (237) .34

.56 683 (814) 446 (415) .16

.26 502 (1212) 838 (3609) .61

rn Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; SD, standard
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Figure 2. Kaplan-Meier estimates of progression-free survival and overall survival according to DP status in the (A) PULSE and (B) POSIBA trial.
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adjusted analyses for PFS and OS. Multivariate analysis was built
deciding a priori the variables to adjust for: age, sex, p-IGF-1R/
MMP-7 expression, primary tumor location, stage at diagnosis,
surgery of primary tumor, number of involved organs, type of
involved organ, liver-only extension, ECOG-PS, BRAF mutational
status, administered therapy, and baseline levels of: leucocytes,
Table 2. Progression-Free Survival; Cox Regression Analysis

POSIBA

Univariate Multivariate

HR (95% CI) P Value HR (95% CI)

DP 1.24 (0.79-1.94) .36 1.39 (0.84-2.31)
ECOG-PS N0 2.02 (1.46-2.79) b.0001 1.77 (1.24-2.54)
Age N65 years 1.18 (0.87-1.61) .30 0.99 (0.69-1.42)
BRAF mutated 2.33 (1.44-3.79) .0006 2.09 (1.16-3.77)
Surgery of primary tumor 1.62 (1.19-2.22) .0024 1.60 (1.12-2.28)
Left-sided primary tumor 1.02 (0.74-1.39) .92 0.92 (0.63-1.32)
CEA (logarithmic term) 0.55 (0.39-0.78) .0008 0.55 (0.37-0.81)
LDH (logarithmic term) 1.03 (0.96-1.10) .40 1.03 (0.94-1.14)
Liver metastasis 1.04 (0.82-1.31) .74 1.02 (0.78-1.33)
0
b=3, b=5 cm Ref.
N3 or N5 cm 0.63 (0.38-1.03) .065 0.95 (0.54-1.69)

CEA, carcinoembryonic antigen; CI, confidence interval; DP, double positivity; ECOG-PS, Eastern Co
wild-type.
hemoglobin, platelets, lactate dehydrogenase (LDH), alkaline
phosphatase (ALP), and carcinoembryonic antigen (CEA). Addition-
ally, we performed sensitivity analyses with automated stepwise
selection of variables (P value for variable entry into the model=.2, P
value to stay in the model=.1) and by entering in the model those
variables with a Pb.1 in the univariate analysis. All the P values are
PULSE

Univariate Multivariate

P Value HR (95% CI) P Value HR (95% CI) P Value

.20 0.68 (0.40-1.14) .14 0.33 (0.17-0.66) .0017

.0017 1.19 (0.70-2.02) .52 1.33 (0.71-2.509) .37

.97 1.43 (1.85-2.41) .18 1.65 (0.79-3.43) .18

.014 1.77 (0.75-4.17) .19 1.77 (0.34-9.03) .49

.0099 0.56 (0.32-0.98) .041 0.45 (0.22-0.94) .034

.64 0.65 (0.33-1.30) .22 0.41 (0.14-1.18) .10

.0029 1.10 (0.97-1.25) .13 1.04 (0.88-1.23) .65

.49 1.14 (0.78-1.67) .49 1.65 (0.98-2.77) .058

.88
Ref.
0.99 (0.38-2.63) .99 0.83 (0.24-2.84) .76

.87 1.11 (0.59-2.09) .74 0.86 (0.35-2.01) .74

operative Oncology Group performance status; HR, hazard ratio; LDH, lactate dehydrogenase;WT,

Image of Figure 2


Table 3. Sensitivity Analyses for Progression-Free Survival; Cox Regression Analysis

POSIBA PULSE

Multivariate S1 Multivariate S2 Multivariate S1 Multivariate S2

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

DP 1.13 (0.71-1.81) .61 1.13 (0.71-1.81) .61 0.59 (0.35-1.02) .058 0.35 (0.18-0.67) .0015
ECOG-PS N0 1.75 (1.25-2.45) .0011 1.75 (1.25-2.45) .0011
Age N65 years
BRAF mutated 2.04 (1.24-3.34) .0048 2.04 (1.24-3.34) .0048
Surgery of primary tumor 1.43 (1.04-1.97) .029 1.43 (1.04-1.97) .029 0.50 (0.28-0.88) .017 0.45 (0.22-0.90) .023
Left-sided primary tumor 0.35 (0.15-0.83) .0165
CEA (logarithmic term) 0.58 (0.41-0.84) .0032 0.58 (0.41-0.84) .0032
LDH (logarithmic term) 1.12 (0.99-2.33) .057
Liver metastasis
0
b=3, b=5 cm
N3 or N5 cm

CEA, carcinoembryonic antigen; CI, confidence interval; DP, double positivity; ECOG-PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; LDH, lactate dehydrogenase;WT,
wild-type.
S1: multivariate model including only the variables with a P value b.1 in the univariate analysis.
S2: multivariate model adjusted via automated stepwise selection of variables (see text for details).

Table 4. Overall Survival; Cox Regression Analysis

POSIBA PULSE

Univariate Multivariate Univariate Multivariate

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

DP 1.73 (1.06-2.85) .029 1.67 (0.96-2.90) .070 0.54 (0.29-0.99) .048 0.23 (0.11-0.52) .0004
ECOG-PS N0 2.95 (2.03-4.29) b.0001 2.48 (1.63-3.77) b.0001 2.20 (1.18-4.08) .013 2.93 (1.30-6.62) .0097
Age N65 years 1.24 (0.85-1.79) .26 1.00 (0.65-1.53) .99 1.37 (0.74-2.53) .32 1.48 (0.64-3.47) .36
BRAF mutated 3.38 (2.00-5.72) b.0001 2.32 (1.23-4.36) .0092 4.23 (1.17-10.48) .0018 10.3 (1.08-58.3) .0086
Surgery of primary tumor 1.60 (1.10-2.32) .013 1.36 (0.90-2.07) .15 0.35 (0.19-0.66) .0010 0.20 (0.08-0.48) .0003
Left-sided primary tumor 1.06 (0.73-1.53) .78 0.82 (0.51-1.31) .40 0.60 (0.28-1.31) .20 0.47 (0.15-1.48) .20
CEA (logarithmic term) 0.42 (0.28-0.62) b.0001 0.47 (0.30-0.74) .0012 1.09 (0.94-1.25) .25 0.91 (0.75-1.10) .32
LDH (logarithmic term) 0.99 (0.91-1.08) .80 1.00 (0.89-1.12) .97 1.30 (0.85-2.01) .23 1.40 (0.79-2.43) .25
Liver metastasis 0.95 (0.72-1.26) .73 0.92 (0.66-1.27) .61
0 Ref. Ref.
b=3, b=5 cm 0.68 (0.39-1.21) .19 1.08 (0.57-2.06) .81 1.72 (0.54-5.46) .35 2.49 (0.56-11.09) .23
N3 or N5 cm 0.70 (0.45-1.10) .12 0.95 (0.51-1.79) .88 1.73 (0.75-3.95) .20 1.64 (0.49-5.50) .42

CEA, carcinoembryonic antigen; CI, confidence interval; DP, double positivity; ECOG-PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; LDH, lactate dehydrogenase;WT,
wild-type.

Table 5. Sensitivity Analysis for Overall Survival; Cox Regression Analysis

POSIBA PULSE

Multivariate S1 Multivariate S2 Multivariate S1 Multivariate S2

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

DP 1.60 (0.96-2.67) .072 1.72 (1.01-2.94) .048 0.36 (0.19-0.69) .0019 0.36 (0.19-0.69) .0019
ECOG-PS N0 2.31 (1.56-3.43) b.0001 2.49 (1.65-3.76) b.0001 2.16 (1.10-4.25) .026 2.16 (1.10-4.25) .026
Age N65 years
BRAF mutated 2.40 (1.38-4.17) .0019 2.57 (1.47-4.49) .0010 3.52 (1.32-9.35) .012 3.52 (1.32-9.35) .012
Surgery of primary tumor 1.29 (0.88-1.90) .19 0.33 (0.17-0.64) .0013 0.33 (0.17-0.64) .0013
Left-sided primary tumor
CEA (logarithmic term) 0.50 (0.33-0.75) .0008 0.50 (0.32-0.76) .0014
LDH (logarithmic term)
Liver metastasis
0
b=3, b=5 cm
N3 or N5 cm

CEA, carcinoembryonic antigen; CI, confidence interval; DP, double positivity; ECOG-PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; LDH, lactate dehydrogenase;WT,
wild-type.
S1: multivariate model including only the variables with a P value b.1 in the univariate analysis.
S2: multivariate model adjusted via automated stepwise selection of variables (see text for details).
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Table 6. Response Rates by Trial and Double Positivity

POSIBA PULSE

Non-DP DP P Value Non-DP DP P Value

Complete response 13 (8.2) 4 (17.4) .17 3 (10.0) 2 (5.4) .28
Partial response 101 (63.9) 11 (47.8) 19 (63.3) 25 (67.6)
Stable disease 27 (17.1) 4 (17.4) 1 (3.3) 7 (18.9)
Progressive disease 9 (5.7) 3 (13.0) 1 (3.3) 3 (8.1)
Not evaluable 8 (5.1) 1 (4.4) 6 (20.0) 0

DP, double positivity.
Fisher’s exact test.
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two-sided. Analyses were implemented using SAS V9.3 (SAS
Institute, Cary, NC).

Results
A total of 67 (PULSE) and 181 (POSIBA) RAS-WT mCRC patients
were included in the analysis (Figure 1). In the PULSE trial, 30
patients were non-DP and 37 patients were DP, whereas in the
POSIBA trial, 158 patients were non-DP and 23 patients were DP.
Patients were followed for a median of 27 months in the PULSE trial
and for a median of 26 months in the POSIBA trial. DP patients in
the POSIBA trial were less likely to have PS 0 and lung metastasis and
also have lower levels of hemoglobin than non-DP patients. There
were no relevant differences in the baseline characteritics of both
groups in the PULSE trial (Table 1).

Efficacy According to DP Status
Median PFS (95% CI) was 11.2 months (9.2-18.5) for DP

patients and 8.0 months (5.5-14.7) for non-DP patients in the
PULSE trial (P=.14). Median PFS (95% CI) was 9.4 months (7.5-
16.1) for DP patients and 10.8 months (9.5-12.2) for non-DP
patients in the POSIBA trial (P=.36, Figure 2). Adjusted HR for PFS
was 0.33 (0.17-0.66) in the PULSE trial and 1.39 (0.84-2.31) in the
POSIBA trial (Table 2). Sensitivity analysis did not change results
substantially (Table 3).

Median OS (95% CI) was 39.8 months (27.0-not estimable) for
DP patients and 18.9 months (11.0-36.6) for non-DP patients in the
PULSE trial (P=.029). Median OS (95% CI) was 26.1 months (12.3-
38.6) for DP patients and 31.0 months (26.2-37.5) for non-DP
patients in the POSIBA trial (P=.027, Figure 2). DP was associated
with prolonged OS in the PULSE trial (adjusted HR: 0.23: 95% CI:
Table 7. Summary of Adverse Events in the PULSE Trial

Any Grade Grade 3 Grade 4

No. of Patients (%)

Any event 78 (100) 55 (70.5) 10 (12.8)
Skin toxicity 71 (91.0) 24 (30.8) 0 (0)
Fatigue 55 (70.5) 12 (15.4) 1 (1.3)
Mucositis 52 (66.7) 6 (7.7) 0 (0.0)
Diarrhea 48 (61.5) 11 (14.1) 1 (1.3)
Neutropenia 44 (56.4) 26 (33.3) 2 (2.6)
Nauseas/vomiting 30 (38.5) 1 (1.3) 0 (0)
Thrombocytopenia 28 (35.9) 3 (3.9) 0 (0)
Hypomagnesemia 23 (29.5) 1 (1.3) 2 (2.6)
Neurologic toxicity 16 (20.5) 1 (1.3) 0 (0)
Anaemia 10 (12.8) 1 (1.3) 0 (0)
Paronychia 8 (10.3) 1 (1.3) 0 (0)
Infusion-related reaction 7 (9.0) 0 (0) 0 (0)
Hypokalemia 6 (7.7) 2 (2.6) 1 (1.3)
Febrile neutropenia 3 (3.9) 1 (1.3) 2 (2.6)
0.11-0.52; P=.0004) and with shorter OS in the POSIBA trial
(adjusted HR: 1.67; 95% CI: 0.96-2.90; P=.07) (Table 4). Sensitivity
analysis did not change results substantially (Table 5).

Response rates were similar according to DP in both the PULSE
and POSIBA studies (Table 6). There were no major differences in
terms of secondary resection of metastases and second-line therapies
between PULSE and POSIBA trials and between DP and non-DP
groups (data not shown).

Safety
The most common AEs (any grade) in the PULSE trial were skin

toxicity (91%), fatigue (70%), and mucositis (67%) (Table 7). The
most common AE (any grade) in the POSIBA trial were skin toxicity
(76%), fatigue (55%), and diarrhea (50%) (Suppl. Table 1). Three
patients died within 30 days of receiving protocol therapy: one patient
in PULSE and two patients in POSIBA trial.

Discussion
We present data from two prospective, multicenter, translational,
first-line trials in WT RAS mCRC patients. Our findings suggests
that there is a survival benefit in the subset of DP patients treated with
upfront FOLFOX plus panitumumab schedule and in non-DP
patients treated upfront with FOLFOX/FOLFIRI plus cetuximab
therapy. This benefit was observed after adjustment for baseline
characteristics, secondary surgery of metastases, and second-line
therapies.

Recent evidence shows that RAS WT patients with right-side
primary tumors have shorter overall survival than those with left-sided
tumors and that left-sided tumors obtain greater benefit when treated
with chemotherapy and anti-EGFR combinations [22], although the
biological reasons remain obscure. Consensus molecular subtype
clasification (CMS) associates the stromal-enriched mesenchymal
phenotype (CMS4) [23] with poor prognosis [24,25] and cetuximab
resistance [26]. Despite data from Medema group suggesting that
BRAF mutant CRC patients are enriched with CDX2−/ZEB1+
CMS4 phenotype [27], BRAF mutant mCRC patients are equally
distributed between right- and left-sided, and 75% of right-sided
patients treated with anti-EGFR present double WT genotype.
Therefore, other CMS4 markers besides CDX2−/ZEB1+ and DP,
such as CCL2 or CXCL12 (for both BRAF mutant and double WT
genotypes), might be probably overrepresented in right-sided tumors.We
could not rule out that, for currently unknown reasons, CMS4phenotype
might be induced by chemotherapy and anti-EGFR treatment [28]
differently in both sides, influencing acquired resistance [29,30].

We designed the PULSE trial based on retrospective data [21]
hypothesizing that DP patients treated with panitumumab-based
therapy could have also poor prognosis. It’s important to emphasize
that the PULSE was designed in a different population (naïve) and
with a different anti-EGFR exposure (panitumumab instead of
cetuximab). Despite confirming our previous findings with FOL-
FIRI/FOLFOX plus cetuximab in the POSIBA trial, we could not
confirm these results in the PULSE trial with panitumumab. In
addition to inhibition of EGFR mitogenic pathways (MAPK, PI3K/
AKT, and JAK/STAT), monoclonal antibodies (cetuximab and
panitumumab) possess the potential advantage of recruiting immune
effector mechanisms such as antibody-dependent cell mediated-
cytotoxicity (ADCC) [31], although cetuximab was shown to be
more effective in this mechanism than panitumumab. Although
potentially cetuximab can activate ADCC also through NK cells,



these cells are almost absent in colorectal cancer, and cetuximab in
M2 macrophages activates anti-inflammatory IL-10 cytokines and
proangiogenic factors (IL-8 and VEGF) [24]. Taking into account
that: a) DP status could increase over time after chemotherapy
treatment [29] and b) IGF-1R and STAT3 activation induces T-cell
tolerance through TGF-B, IL-10 and VEGF [32] and also increases
chemokines and cytokines such as IL-6 and CCL2 towards
macrophage M2 polarization [33], we speculate that cetuximab but
not panitumumab could be influenced by DP-CMS4 acquired
resistance through immune evasion.
Our study has several limitations. Firstly, PFS was evaluated

differentialy (every 2 months in the PULSE trial and every 3 months
in the POSIBA trial). Secondly, the percentage of DP positivity
widely differs in both studies (33% in PULSE and 13% in POSIBA).
Thirdly, the explanation on a potential biological reason for the
contradictory results of our biomarker should be clarified.
We believe that our findings would have potential clinical

importance and definitively justify a prospectively enriched-
biomarker design in RAS WT patients with an experimental arm
based on the biomarker (DP-treated with panitumumab and non–
DP-treated with cetuximab) and a control arm (without this
information) treated at investigator criteria (cetuximab or
panitumumab).

Conclusions
Our study suggest that panitumumab is more benefitial for those RAS
WT mCRC patients with a DP phenotype and cetuximab for those
without it in terms of overall survival after adjusting for all clinical and
biological confounder variables in the multivariate analysis.
Supplementary data to this article can be found online at https://

doi.org/10.1016/j.neo.2018.05.004.

Declaration of Interest
The authors declare no conflict of interest.

Authorship
J. M. and X. G.-A. concieved and designed the study; J. M., X. G.-A.,
and V. A. analyzed and interpreted the data, and drafted the
manuscript; X. G.-A. performed the statistical analysis. All authors
adquired the study data, revised the manuscript, and approved its
final version.

Acknowledgements
Study collaborators:
PULSE trial: Carlos Pericay, Jorge Aparicio, Alberto Carmona-

Bayonas, Enrique Casado, Maria Jose Safont, Ruth Vera, Monica
Jorge, Pedro Salinas, Antonio Arrivi, Javier Rodriguez
POSIBA trial: Uriel Bohn, Veronica Calderero, Ana Isabel Ferrer,

Joaquin Perez de Oleguer, Rosa Dueñas, Ana Leon, Pilar Vicente,
Angeles Rodriguez-Jaraiz, Isabel Antón, Olvia Serra, Isabel Busquier,
Adelaida Lacasta, Carlos Garcia-Girón
The authors would like to thank Juan Martin (TFS Develop) for

providing editing support (funded by Amgen S.A. [Spain]).

Funding / Role of the Funding Source
Amgen supported the PULSE trial and Merck supported the

POSIBA trial. Neither Amgen nor Merck had any role in the present
analysis design, analysis and interpretation of data, writing the report,
and the decision to submit the report for publication.
References

[1] Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, Humblet Y,
Bodoky G, Cunningham D, and Jassem J, et al (2013). Panitumumab-
FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med
369, 1023–1034.

[2] Van Cutsem E, Lenz HJ, Köhne CH, Heinemann V, Tejpar S, Melezínek I,
Beier F, Stroh C, Rougier P, and van Krieken JH, et al (2015). Fluorouracil,
leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in
colorectal cancer. J Clin Oncol 33, 692–700.

[3] Venook AP, Niedzwiecki D, Lenz HJ, Innocenti F, Fruth B, Meyerhardt JA,
Schrag D, Greene C, O'Neil BH, and Atkins JN, et al (2017). Effect of first-line
chemotherapy combined with cetuximab or bevacizumab on overall survival in
patients with KRAS wild-type advanced or metastatic colorectal cancer: a
randomized clinical trial. JAMA 317, 2392–2401.

[4] Baserga R (2009). Customizing the targeting of IGF-1 receptor. Future Oncol 5,
43–50.

[5] Pollak M (2008). Insulin and insulin-like growth factor signalling in neoplasia.
Nat Rev Cancer 8, 915–928.

[6] Girnita L, Girnita A, Brodin B, Xie Y, Nilsson G, Dricu A, Lundeberg J, Wejde J,
Bartolazzi A, and Wiman KG, et al (2000). Increased expression of insulin-like
growth factor I receptor in malignant cells expressing aberrant p53: functional
impact. Cancer Res 60, 5278–5283.

[7] Werner H and LeRoith D (1996). The role of the insulin-like growth factor
system in human cancer. Adv Cancer Res 68, 183–223.

[8] Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren G II, Samuel S, Kim MP,
Lim SJ, and Ellis LM (2009). Chemoresistant colorectal cancer cells, the cancer
stem cell phenotype, and increased sensitivity to insulin-like growth factor-I
receptor inhibition. Cancer Res 69, 1951–1957.

[9] Lin L, Liu A, Peng Z, Lin HJ, Li PK, Li C, and Lin J (2011). STAT3 is necessary
for proliferation and survival in colon cancer-initiating cells. Cancer Res 71,
7226–7237.

[10] Simon AR, Vikis HG, Stewart S, Fanburg BL, Cochran BH, and Guan KL
(2000). Regulation of STAT3 by direct binding to the Rac1 GTPase. Science
290, 144–147.

[11] Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst
D, Ziegler PK, and Schwitalla S, et al (2014). IL-6R/STAT3/miR-34a feedback
loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin
Invest 124, 1853–1867.

[12] Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Klöppel G,
Yoshimura A, Reindl W, Sipos B, and Akira S, et al (2011). Stat3/Socs3
activation by IL-6 transsignaling promotes progression of pancreatic intraepithe-
lial neoplasia and development of pancreatic cancer. Cancer Cell 19, 456–469.

[13] Fukuda A, Wang SC, Morris JP IV, Folias AE, Liou A, Kim GE, Akira S,
Boucher KM, Firpo MA, and Mulvihill SJ, et al (2011). Stat3 and MMP7
contribute to pancreatic ductal adenocarcinoma initiation and progression.
Cancer Cell 19, 441–455.

[14] Yao C, Su L, Shan J, Zhu C, Liu L, Liu C, Xu Y, Yang Z, Bian X, and Shao J, et al
(2016). IGF/STAT3/NANOG/Slug signaling axis simultaneously controls epithelial-
mesenchymal transition and stemness maintenance in colorectal cancer. Stem Cells 34,
820–831.

[15] Miyamoto S, Yano K, Sugimoto S, Ishii G, Hasebe T, Endoh Y, Kodama K,
Goya M, Chiba T, and Ochiai A (2004). Matrix metalloproteinase-7 facilitates
insulin-like growth factor bioavailability through its proteinase activity on
insulin-like growth factor binding protein 3. Cancer Res 64, 665–671.

[16] Nakamura M, Miyamoto S, Maeda H, Ishii G, Hasebe T, Chiba T, Asaka M,
and Ochiai A (2005). Matrix metalloproteinase-7 degrades all insulin-like growth
factor binding proteins and facilitates insulin-like growth factor bioavailability.
Biochem Biophys Res Commun 333, 1011–1016.

[17] Hemers E, Duval C, McCaig C, Handley M, Dockray GJ, and Varro A (2005).
Insulin-like growth factor binding protein-5 is a target of matrix
metalloproteinase-7: implications for epithelial-mesenchymal signaling. Cancer
Res 65, 7363–7369.

[18] Miyamoto S, Nakamura M, Yano K, Ishii G, Hasebe T, Endoh Y, Sangai T,
Maeda H, Shi-Chuang Z, and Chiba T, et al (2007). Matrix metalloproteinase-7
triggers the matricrine action of insulin-like growth factor-II via proteinase
activity on insulin-like growth factor binding protein 2 in the extracellular matrix.
Cancer Sci 98, 685–691.

[19] Williams AC, Smartt H, H-Zadeh AM, Macfarlane M, Paraskeva C, and Collard
TJ (2007). Insulin-like growth factor binding protein 3 (IGFBP-3) potentiates

https://doi.org/10.1016/j.neo.2018.05.004
https://doi.org/10.1016/j.neo.2018.05.004
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0005
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0005
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0005
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0005
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0010
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0010
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0010
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0010
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0015
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0015
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0015
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0015
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0015
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0020
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0020
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0025
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0025
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0030
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0030
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0030
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0030
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0035
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0035
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0040
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0040
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0040
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0040
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0045
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0045
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0045
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0050
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0050
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0050
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0055
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0055
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0055
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0055
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0060
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0060
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0060
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0060
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0065
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0065
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0065
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0065
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0070
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0070
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0070
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0070
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0075
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0075
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0075
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0075
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0080
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0080
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0080
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0080
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0085
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0085
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0085
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0085
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0090
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0090
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0090
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0090
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0090
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0095
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0095


686 Coexpression of p-IGF-1R and MMP-7 in CRC Alonso et al. Neoplasia Vol. 20, No. xx, 2018
TRAIL-induced apoptosis of human colorectal carcinoma cells through
inhibition of NF-kappaB. Cell Death Differ 14, 137–145.

[20] Adachi Y, Li R, Yamamoto H, Min Y, Piao W, Wang Y, Imsumran A, Li H,
Arimura Y, and Lee CT, et al (2009). Insulin-like growth factor-I receptor
blockade reduces the invasiveness of gastrointestinal cancers via blocking
production of matrilysin. Carcinogenesis 30, 1305–1313.

[21] Hörndler C, Gallego R, García-Albeniz X, Alonso-Espinaco V, Alonso V,
Escudero P, Jimeno M, Ortego J, Codony-Servat J, and Fernández-Martos C,
et al (2011). Co-expression of matrix metalloproteinase-7 (MMP-7) and
phosphorylated insulin growth factor receptor I (pIGF-1R) correlates with
poor prognosis in patients with wild-type KRAS treated with cetuximab or
panitumumab: a GEMCAD study. Cancer Biol Ther 11, 177–183.

[22] Arnold D, Lueza B, Douillard JY, Peeters M, Lenz HJ, Venook A, Heinemann
V, Van Cutsem E, Pignon JP, and Tabernero J, et al (2017). Prognostic and
predictive value of primary tumour side in patients with RAS wild-type metastatic
colorectal cancer treated with chemotherapy and EGFR directed antibodies in six
randomized trials. Ann Oncol 28, 1713–1729. https://doi.org/10.1093/annonc/
mdx175.

[23] Becht E, de Reyniès A, Giraldo NA, Pilati C, Buttard B, Lacroix L, Selves J,
Sautès-Fridman C, Laurent-Puig P, and Fridman WH (2016). Immune and
stromal classification of colorectal cancer is associated with molecular subtypes
and relevant for precision immunotherapy. Clin Cancer Res 22, 4057–4066.

[24] Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C,
Marisa L, Roepman P, Nyamundanda G, and Angelino P, et al (2015). The
consensus molecular subtypes of colorectal cancer. Nat Med 21, 1350–1356.

[25] De Sousa E Melo F, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong
JH, de Boer OJ, van Leersum R, and Bijlsma MF, et al (2013). Poor-prognosis
colon cancer is defined by a molecularly distinct subtype and develops from
serrated precursor lesions. Nat Med 19, 614–618.

[26] Trinh A, Trumpi K, De Sousa E Melo F, Wang X, de Jong JH, Fessler E,
Kuppen PJ, Reimers MS, Swets M, and Koopman M, et al (2017). Practical and
robust identification of molecular subtypes in colorectal cancer by immunohis-
tochemistry. Clin Cancer Res 23, 387–398.

[27] Fessler E, Drost J, van Hooff SR, Linnekamp JF, Wang X, Jansen M, De Sousa E
Melo F, Prasetyanti PR, IJspeert JE, and Franitza M, et al (2016). TGFβ
signaling directs serrated adenomas to the mesenchymal colorectal cancer
subtype. EMBO Mol Med 8, 745–760.

[28] Trumpi K, Ubink I, Trinh A, Djafarihamedani M, Jongen JM, Govaert KM,
Elias SG, van Hooff SR, Medema JP, and Lacle MM, et al (2017). Neoadjuvant
chemotherapy affects molecular classification of colorectal tumors. Oncogenesis
6e357.

[29] Gallego R, Codony-Servat J, García-Albéniz X, Carcereny E, Longarón R,
Oliveras A, Tosca M, Augé JM, Gascón P, and Maurel J (2009). Serum IGF-I,
IGFBP-3, and matrix metalloproteinase-7 levels and acquired chemo-resistance
in advanced colorectal cancer. Endocr Relat Cancer 16, 311–317.

[30] Nadal C,Maurel J, Gallego R, Castells A, Longarón R,MarmolM, Sanz S,Molina R,
Martin-Richard M, and Gascón P (2005). FAS/FAS ligand ratio: a marker of
oxaliplatin-based intrinsic and acquired resistance in advanced colorectal cancer. Clin
Cancer Res 11, 4770–4774.

[31] Schneider-Merck T, Lammerts van Bueren JJ, Berger S, Rossen K, van Berkel PH,
Derer S, Beyer T, Lohse S, Bleeker WK, and Peipp M, et al (2010). Human IgG2
antibodies against epidermal growth factor receptor effectively trigger antibody-
dependent cellular cytotoxicity but, in contrast to IgG1, only by cells of myeloid
lineage. J Immunol 184, 512–520.

[32] Trivedi S, Concha-Benavente F, Srivastava RM, Jie HB, Gibson SP, Schmitt
NC, and Ferris RL (2015). Immune biomarkers of anti-EGFR monoclonal
antibody therapy. Ann Oncol 26, 40–47.

[33] Sanchez-Lopez E, Flashner-Abramson E, Shalapour S, Zhong Z, Taniguchi K,
Levitzki A, and Karin M (2016). Targeting colorectal cancer via its
microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and
STAT3 signaling. Oncogene 35, 2634–2644.

http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0095
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0095
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0100
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0100
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0100
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0100
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0105
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0105
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0105
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0105
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0105
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0105
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0115
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0115
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0115
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0115
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0120
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0120
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0120
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0125
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0125
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0125
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0125
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0130
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0130
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0130
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0130
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0135
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0135
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0135
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0135
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0140
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0140
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0140
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0140
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0145
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0145
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0145
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0145
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0150
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0150
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0150
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0150
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0155
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0155
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0155
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0155
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0155
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0160
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0160
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0160
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0165
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0165
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0165
http://refhub.elsevier.com/S1476-5586(18)30213-6/rf0165

	Coexpression of p-IGF-1R and MMP-7 Modulates Panitumumab and Cetuximab Efficacy in RAS Wild-Type Metastatic Colorectal Canc...
	Introduction
	Methods
	Trials Design
	RAS and BRAF Mutational Analysis
	Immunohistochemistry
	Statistical Analysis

	Results
	Efficacy According to DP Status
	Safety

	Discussion
	Conclusions
	Declaration of Interest
	Authorship
	section14
	Acknowledgements
	Funding / Role of the Funding Source
	References


