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A simple vector-like law for perceptual
information combination is also followed
by a class of cortical multisensory bimodal neurons

Vincent A. Billock,1,5,* Micah J. Kinney,1,2 Jan W.H. Schnupp,3 and M. Alex Meredith4

SUMMARY

An interdisciplinary approach to sensory information combination shows a corre-
spondencebetweenperceptual andneuralmeasuresof nonlinearmultisensory inte-
gration. In psychophysics, sensory information combinations are often character-
ized by the Minkowski formula, but the neural substrates of many psychophysical
multisensory interactions are unknown. We show that audiovisual interactions –
for both psychophysical detection threshold data and cortical bimodal neurons –
obey similar vector-like Minkowski models, suggesting that cortical bimodal neu-
rons could underlie multisensory perceptual sensitivity. An alternative Bayesian
model is not a goodpredictor of cortical bimodal response. In contrast to cortex, au-
diovisual data from superior colliculus resembles the ‘City-Block’ combination rule
used inperceptual similaritymetrics. Previouswork founda simplepower lawampli-
fication rule is followed for perceptual appearance measures and by cortical sub-
threshold multisensory neurons. The two most studied neural cell classes in cortical
multisensory interactions may provide neural substrates for two important percep-
tual modes: appearance-based and performance-based perception.

INTRODUCTION

Many models of sensory information combinations use the Minkowski equation (Equation 1), a modified

Pythagorean sum created by an eminent pioneer of non-Euclidean geometry and relativity theory (Minkow-

ski, 1891, 1910).

SensorySummation (A,B, . Z) = (ChannelA
m + ChannelB

m + .. . + ChannelZ
m)1/m (Equation 1)

Various sensory information combinations are associated with m values ranging from 1 (the ‘City Block’

model sometimes used in perceptual similarity studies (Attneave, 1950; Coombs et al., 1970; Garner,

1974; Landahl, 1945; Wuerger et al., 1995) to about 8 (Quick (1974) famous probability summation model).

Asm increases, summation becomes increasingly nonlinear, with more weight placed on the strongest sen-

sory input (Coombs et al., 1970). Although some studies associate various values of m with neural theory-

based interpretations (Landahl, 1945; Lehky, 1983; To et al., 2010), the most attention has been paid to the

significance of m = 2; vector-like models and their associated Euclidean-like metric properties are impor-

tant in experimental psychology (Shepard, 1964, 1987; Coombs et al., 1970; Garner, 1974; To et al., 2010).

Roger Shepard argued strongly for vector-like information combinations throughout sensory and cognitive

science (Shepard, 1987) and vector models have been of particular importance in color vision (Guth and

Lodge, 1973; Ingling and Tsou, 1977; Guth et al., 1980). Curiously, there has been little effort to understand

the neural correlates of vector-like sensory combinations. However, recent work in multisensory integration

shows promise for understanding the neural correlates of some vector-like sensory combinations. In partic-

ular, one of us has found evidence for vector-like summation inmultisensory detection thresholds (Schnupp

et al., 2005). Figure 1A shows data for one observer that has a best fit m of 1.78. When we reanalyzed

Schnupp et al. (2005) data, we found that for all three observers in three lighting conditions, the average

m was 1.67 G 0.26 (sd). This raises an interesting opportunity because there is an extensive database on

neural multisensory interactions that can be examined for correspondence to the perceptual data.

Of the known mechanisms, the most plausible neural correlates for multisensory vector-like summation are

facilitatory cortical bimodal neurons. In superior colliculus/optic tectum and in sensory cortex, there are
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bimodal neurons which nonlinearily combine sensory signals from various modalities. For example, in rat-

tlesnake optic tectum there are neurons that are driven by visual signals from the eyes and by infrared sig-

nals from the heat sensitive facial pits that give pit vipers their name (Hartline et al., 1978; Newman and

Hartline, 1981). Although these bimodal cells will fire to either visible light or heat, they fire harder when

pits and eyes are simultaneously stimulated (Newman and Hartline, 1981). Similar cells have been exten-

sively studied in rabbits, owls, guinea pigs, cats, ferrets and primates, for responses to combinations of

audio, visual and tactile information (Horn and Hill, 1966; King and Palmer, 1985; Meredith & Stein,

1983, 1985, 1986; Stein and Meredith, 1993; Zahar et al., 2009). Bimodal neurons are thought to combine

information from separate modalities nonlinearly, and the strength of the combination varies. In cat, for

example, sensory combinations in bimodal cortical neurons generally yield modest multisensory enhance-

ments (Meredith et al., 2012). In contrast, bimodal neurons in cat superior colliculus can show extraordinary

multisensory responses (Meredith and Stein, 1986; Stein and Meredith, 1993).

Figure 1. A disconnect between perceptual and neural approaches for understanding multisensory integration

(A) Representative perceptual data from Schnupp et al. (2005), showing proportion of successful detections of a change of

an audiovisual stimulus as a function of the amplitude of the change (Weber fraction). A Minkowski model fit to this data

yields a Minkowski exponent m of 1.78.

(B) A vector model (m = 2) fit to the data shown in (A).

(C) Data from 40 facilitatory PLLS bimodal neurons in cat visual cortex (Meredith et al., 2012). Although both studies

investigate responses to bimodal (audio and visual) stimuli, the analysis of bimodal neural data almost always discards

data about the weaker unisensory response. The standard neural data representation plots the multisensory response as

a function of the best unisensory response. This is useful for illustrating multisensory facilitation (the height of a

multisensory response above the plotted line is a measure of facilitation), but it gives no insight into multisensory

combination rules (see Figure 2 for the same neural data set, but with the discarded weaker sensory responses restored in

a modeling-based framework).
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Bimodal neurons are thought to play a role in some perceptual multisensory combinations (Stein et al.,

1988), yet no one has attempted to analyze bimodal data and perceptual multisensory data in a unified in-

formation combination framework (Figure 1 shows the missing connection between perceptual and neural

studies). This is not a simple oversight – the crux of the problem is that neural studies do not directly

address multisensory combination but rather quantify multisensory enhancement (the relationship be-

tween the stronger unisensory response and the combined multisensory response). This approach disre-

gards the weaker unisensory contribution. If the missing weaker unisensory responses for the multisensory

neural data are included, then neural (Meredith et al., 2012) and perceptual (Schnupp et al., 2005) data –

derived from our combined laboratories – can be analyzed in a commonmultidisciplinary framework devel-

oped for this purpose. Here we analyze neural data from two cortical areas that have many audiovisual

bimodal neurons: Area Anterior Ectosylvian Sulcus (AES) (multisensory association cortex) and Area

Posterolateral Suprasylvian Sulcus (PLLS), an extrastriate visual cortex in Brodmann area 19 (similar to

Area MT in primates) that borders auditory cortex. We model data from cortical audiovisual bimodal neu-

rons with the Minkowski equation, and we show that these neurons behave similarly to a vector-like (m = 2)

model. More importantly, Minkowski exponents derived from the cortical audiovisual bimodal neurons

closely resemble the Minkowski exponents for audiovisual perceptual threshold detection data (Schnupp

et al., 2005), suggesting that cortical bimodal neurons could underlie audiovisual perceptual sensitivity.

Because superior colliculus neurons are known for their remarkably strong multisensory responses (Mere-

dith and Stein, 1986; Stein and Meredith, 1993), we also modeled superior colliculus bimodal data and

compared the results to the cortical bimodal neurons. Interestingly, data from bimodal neurons in superior

colliculus do not follow a vector-like model but in aggregate behave much like the City Block (m = 1) model

discussed above. Finally there has been much interest in Bayesian-like models of multisensory integration

but some reluctance to apply these models to bimodal neurons. This reluctance turns out to be well

founded – Bayesian Maximum Likelihood Estimation (MLE) modeling produces the wrong prediction for

audiovisual variance and underestimates audiovisual firing rates.

RESULTS

Audiovisual summation in cortex resembles psychophysical data and is vector-like

One of our laboratories has gathered data on many bimodal multisensory neurons, with two-variable (au-

diovisual as a function of best-of-audio-or-visual responses) descriptions of each neural data set given in

Meredith et al. (2012). Working with the full three-variable audio, visual and audiovisual database, we

modeled, in the Minkowski framework, data for 50 facilitatory audiovisual bimodal neurons in superior col-

liculus and in 74 audiovisual bimodal neurons from two different cortical areas of the cat. For example, Fig-

ure 2 shows the data from Figure 1C with the missing weaker unisensory response data restored. Data in

Figures 2, 3, and 4 are shown using a two-dimensional three-variable scheme – invented for the present

study – which makes relationships between sensory input and combination data interpretable (in a way

conducive to understanding three-variable experimental data from multiple neurons), while allowing

easy visual comparisons between predicted and actual values (avoiding some of the difficulties encoun-

tered with three-dimensional perspective and contour plots). For example, in Figure 2, neural spike rates

for audio, visual and audiovisual combinations are shown as a function of the audiovisual combinations. The

audiovisual neural combination data is therefore constrained to fall on the Line-of-Unity (the diagonal

multisensory data axis), which is a straight line in all coordinate systems. The separate audio and visual re-

sponses contributing to audiovisual responses are shown relative to the audiovisual responses. Minkowski

models for the data are computed by plugging the actual spike rates for audio and visual responses into the

Minkowski equation (Equation 2) and setting the exponent m to predict the audiovisual firing rate.

BimodalFiringRate = (VisualFiringRatem + AudioFiringRatem)1/m (Equation 2)

The model predictions are fit to lines and those lines are plotted in the same space; the plot of models is

also effectively a plot of predicted values as a function of actual data; any deviation from the actual neural

data on the Line-of-Unity is conspicuous in these plots. The relationship between data and models and the

relationship between various models are more obvious and more readily interpretable in this representa-

tion than in a 3D perspective plot or in a contour plot. The results of these calculations are shown in Figures

2 and 3, for audiovisual neurons in cat cortical areas PLLS and AES, respectively.

In Figures 2A and 2B, the best fit to the audiovisual spike rate data coincides with the diagonal for an m of

1.75. That is, if we plug m values and unisensory firing rates into Equation 2 and fit a line through the
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predicted audiovisual values as a function of the actual audiovisual responses, we get a slope of 1.0 for an

m = 1.75 for the 40 audiovisual PLLS neurons. (Area PLLS is a cat extrastriate visual cortex, located in Brod-

mann Area 19 and contains motion sensitive cells, somewhat similar to Area MT in macaque). Also plotted

for comparison is the function for anm value of 1.67 found for Schnupp’s psychophysical data, and several

Figure 2. Audiovisual summation in PLLS neurons resembles perceptual data and is vector-like

Audiovisual response data for 40 cortical bimodal audiovisual neurons in cat PLLS (data from Figure 1C with omitted

unisensory data restored). All neural spike counts in Figures 2, 3, 4, 5, and 6 are for 600 msec trials. Individual neural audio

and visual responses are shown in relation to the combined audiovisual responses. Plots are mathematically designed to

place audiovisual spike rates on the diagonal (neural data axis). The Equation 2 model for these data falls on the same

diagonal if the exponent m = 1.75. Other theoretically interesting models (vector, city block, Quick’s probability

summation model and a model based on Schnupp et al. (2005) psychophysical data (m = 1.67) pop out as deviations from

the diagonal. Each model is fit by taking the actual audio and visual responses of the PLLS cells and using Equation 2 with

the desired model exponents to generate simulated neural responses.

(A) Logarithmic depiction spreads neural data out better for inspection.

(B) Linear depiction spreads out models to better illustrate differences between models. The neural data are not far from

the well-known vector model (m = 2), but they are closer to Schnupp’s psychophysically derived model (m = 1.67) than to

any other theoretically based model.
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theoretically interesting models: m = 1 (City Block metric), m = 2 (classic vector model) and m = 8 (Quick

(1974) influential probability summation model), to situate the reader in the space for which Minkowski

models generally occur. Similarly, in Figures 3A and 3B, we show the results for 34 audiovisual neurons

in cat AES (multisensory association cortex), with the weaker unisensory response data restored. Here

the Equation 2 model coincides with the neural audiovisual diagonal for an m value of 1.57. The psycho-

physicalm of 1.67G 0.26 is similar to the estimates ofm of 1.75 for PLLS neurons and 1.57 for AES neurons,

suggesting that either or both neural populations could underlie psychophysical audiovisual detection

thresholds. Indeed, if we assume that both PLLS and AES could be contributing to audiovisual detection,

Figure 3. Audiovisual summation in AES neurons resembles perceptual data

Audiovisual firing rate data for 34 facilitatory cortical bimodal audiovisual neurons in cat AES, plotted as in Figure 2. The

Equation 2 model for this data coincides with the neural audiovisual data diagonal if the exponent m = 1.57. Other

theoretically interesting models pop out as deviations from the diagonal.

(A) Logarithmic depiction spreads neural data out better for inspection.

(B) Linear depiction spreads out models to better illustrate differences between models. The neural data are closer to

Schnupp’s psychophysically derived model (m = 1.67) than to any other theoretically based model.
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their weighted averagem would be 1.67, remarkably consistent with the psychophysical result. However, if

one were interested in a neural correlate of the more classic vector model (m = 2), then the PLLS cells, with

an m estimate of 1.75 would be a closer match than the AES cells. An alternate way to characterize the m

Figure 4. Audiovisual summation in cat superior colliculus resembles the City Block metric from experimental

psychology

Audiovisual firing rate data for 50 facilitatory bimodal audiovisual neurons in cat superior colliculus, plotted as in Figures 2

and 3. The Equation 2 model for this data falls on the multisensory neural data axis if the exponentm = 1.02, an exponent

that resembles the value of 1 used in the well-known ‘City Block’ modeling metric. Note that although the combined

neural responses in Figures 2, 3, and 4 fall on the same diagonal neural data axis (as they must), that the Figures 2, 3, and 4

neural data axes are actually associated with different m values. Minkowski (m) exponents are computed from the

relationship between unisensory and multisensory values, not from a plotting constraint.

(A) Logarithmic depiction spreads neural data out better for inspection; however the deviation of the City Block model

from the neural data axis is barely visible.

(B) Linear depiction better spreads out models; the slight difference between the combined neural data axis and the City

Block model can be seen here.
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value of the cell population would be to simply computem for each individual neuron and to find the mean

m value of the sample neurons. Given the unimodal and bimodal firing rates for each neuron, we can

compute each neuron’s m directly by root finding, e.g., by finding the zero-crossing of Equation 3.

AudioVisualFiringRate - (VisualFiringRatem + AudioFiringRatem)1/m = 0 (Equation 3)

This alternatemethod yields estimates ofm= 2.07 for the 40 PLLS neurons andm= 1.86 for the 34 AES cells,

which are similar to the m of 2 for vector models. Indeed, if both neural populations are pooled the mean

exponent m comes out as 1.97. However, since these are nonlinear systems and the average Minkowski

exponentm value of a nonlinear ensemble may not be the most representativem characteristic of the pop-

ulation as a whole, we would lean more strongly on the slightly lower estimates for m produced by the

fitting method employed in Figures 2 and 3.

Audiovisual summation in cat superior colliculus resembles the city block metric from

experimental psychology

In psychology there are Minkowski models that use a ‘City Block’ (or ‘Manhattan’) metric (Attneave, 1950;

Coombs et al., 1970; Garner, 1974; Landahl, 1945; Wuerger et al., 1995), in which m = 1 and the sensory

components add linearly (as x and y distances would add on a street map if one were confined to traveling

on north/south and east/west city streets). City Block metrics are often compared to Euclidean vector-like

metrics (m = 2), where distances are subadditive because one can travel on a diagonal. In neural terms, a

City Block metric would imply simple firing rate additivity (Landahl, 1945). In practice, all populations of

bimodal cells seem to have both superadditive (m < 1) and subadditive (m > 1) neurons (Perrault et al.,

2005; Meredith et al., 2012). As we have seen, in cortical populations subadditive neurons predominate

and the audiovisual neural population as a whole approximate an m of 2. However, in superior colliculus,

where bimodal cells were first discovered, many cells are superadditive, some strongly superadditive (Stein

and Meredith, 1993). Estimates of the proportion of superadditive cells in superior colliculus range from

about one-quarter to about one-half (Perrault et al., 2005; Meredith et al., 2012). In our sample, 66% of facil-

itatory audiovisual superior colliculus neurons were superadditive and their superadditivity ranged from

slight (m = 0.976) to strong (m = 0.287). These superadditive neurons balance the also abundant subaddi-

tive cells so that the mean m of the 50 audiovisual superior colliculus bimodal neurons, computed from

Equation 3, is actually quite close to additive (m = 1.08 G 0.81). Similarly, the Equation 2 model coincides

with the audiovisual neural data diagonal for anm value of 1.02, surprisingly close to the exponent of 1 for

additive City Block-like models. The approximation of cortical neurons to vector models and the approx-

imation of superior colliculus neurons to City Block models are functionally and theoretically intriguing

because that suggests that these neural regions process multisensory information in ways that are mathe-

matically distinct (see Discussion). Further data are needed to evaluate this interesting dichotomy.

Bayesian inspired modeling: MLE predictions do not match audiovisual bimodal data

An influential school of thought in multisensory integration suggests that multisensory systems behave like

ideal statistical estimators in the Bayesian sense: themultisensory responses can bemodeled as a weighted

average of the unisensory responses, with the weights determined by the inverse variances of the unisen-

sory responses (Alias and Burr, 2004; Ernst and Banks, 2002). In principle, this will result in an unbiased es-

timate of the compound response and the variance of the multisensory response will be reduced relative to

the unisensory responses. Much evidence favors this theory, some results do not support it and some theo-

retical work has gone into understanding the conditions that would result in non-ideal integration (Ernst,

2012). Because we have much data on neural variability and no data on neural Bayesian priors, the variant

of Bayesian theory which is best suited to modeling spike count data is maximum likelihood estimation

(MLE), which has widely been applied to sensory data (see Ernst, 2012 andMa and Pouget, 2008 for reviews)

and which is equivalent to a full Bayesian model for relatively flat priors. In the past, it has been suggested

that bimodal neurons – especially superadditive bimodal neurons (which make up a substantial minority of

our data) may be poor candidates for MLE (Ma and Pouget, 2008; Beck et al., 2008) but prior sensible results

with MLE for visual-vestibular bimodal neurons (Morgan et al., 2008; Gu et al., 2008; Fetsch et al., 2010; An-

gelaki et al., 2012) suggest that it might be interesting to try. MLEmakes two strong predictions about audi-

tory-visual responses and their variability. First, audiovisual spike rates should be a weighted sum of audio

and visual spike rates, with the weights determined by the variability of the audio and visual responses.

VA = kvV + kaA (Equation 4)
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Where VA is the firing rate for bimodal stimulation, V is the firing rate for visual stimulation and A is the firing

rate for auditory stimuli. If we define sv
2 as the variance in spike rate for visual stimulation and sA

2 as the

variance in spike rate for auditory stimulation, the weights kV and kA are given as

kv = (1/sV
2)/(1/sV

2 + 1/sA
2); ka = (1/sA

2)/(1/sv
2 + 1/sA

2) (Equation 5)

Thus, MLE givesmore weight to less variable responses. Note that this model yields weights that sum to 1 (a

weighted average).

Second, MLE predicts that if the noise in the audio and visual channels is independent (an unlikely assump-

tion for single neurons), then summing the audio and visual channels will result in result in lower audiovisual

variance sVA
2.

sVA
2 = sV

2sA
2/(sV

2 + sA
2) (Equation 6)

The variance prediction can immediately be disposed of. For each PLLS neuron, we have variance data

based on 23 trials for each condition; for AES and SC neurons 25 and 16 trials, respectively, were available.

MLE predicts that combined reliability should be greater than unimodal reliabilities, so variance (Equa-

tion 6) for response to audiovisual stimulation should be lower than either the variance for response to

audio and visual stimulation. This is true for only 7% of tested neurons: 5 of 40 PLLS bimodal neurons, 2

of 34 AES bimodal neurons and 2 of 49 superior colliculus bimodal neurons (variance data for one superior

colliculus neuron was missing).

The firing rate prediction is also not supported. Figure 5A shows the MLE predictions for audiovisual spike

rates plotted against the observed PLLS audiovisual spike rates, on a cell-by-cell basis for the 40 neurons in

our sample. Figure 5A also shows theMinkowski model for comparison. TheMLEmodel (Equations 4 and 5)

underestimates audiovisual bimodal spike rates. Based on a regression model, the MLE model firing rates

are about 65 G 2% (sd) of the observed neural values. Moreover, the Minkowski model outperforms the

MLE model for 37/40 cells. For the 34 neurons from AES, the MLE prediction systematically underestimates

the audiovisual combined response for each neuron (Figure 5B). Moreover, the Minkowski model outper-

forms theMLEmodel for 31/34 cells. The underestimate, obtained by linear regression, is about 63G 6% of

the observed neural values. For the 49 neurons in superior colliculus, the MLE prediction underestimates

the combined audiovisual response for each neuron (Figure 6). The underestimate, obtained by linear

regression is about 42 G 2% of the observed neural values. Moreover, the Minkowski model outperforms

the MLE model for 43/49 cells. See Discussion for a treatment of what these results may imply.

DISCUSSION

Could bimodal neurons find potential uses in Bayesian-inspired neural models?

MLE models generate predictions that are poor fits to the actual neural data, but this may not be entirely

disqualifying for some purposes. MLE models based on Equations 4, 5, and 6, are weighted averages that

are limited to weights that sum to 1 and discount the more variable response (which is often the strongest

response because variability is correlated with firing rate). Furthermore, in neural-basedMLEmodels and in

some MLE-inspired best-fit models, the weights (even if unconstrained) are frequently subadditive (Beck

et al., 2008; Morgan et al., 2008; Gu et al., 2008; Fetsch et al., 2010; Angelaki et al., 2012). Because of

this, it has been suggested that MLE models may not be well suited to enhanced response bimodal neu-

rons, especially for strongly superadditive bimodal neurons (Ma and Pouget, 2008; Beck et al., 2008). This is

a sensible argument, and the consistent underestimation of multisensory firing rate generated by the MLE

models for our bimodal cells supports this. Certainly, the ability of the Minkowski model to represent both

superadditive neurons and superadditive systems gives it versatility relative to Bayesian models. Similarly,

the MLE model wrongly predicts that the variances of the multisensory response will be lower than the var-

iances of the unisensory responses; in fact the multisensory response variance was almost always higher

than at least one (114/123) and often both of the unisensory variances. Interestingly, given Ma and Pouget

(2008) reservations, all of the superadditive cells violated the MLE variance prediction, but so did most of

the subadditive cells. The MLE model assumes that noise in unisensory neural responses are independent;

independence is unlikely to be obtained when computed on a neuron-by-neuron basis. The audio and vi-

sual inputs (and their noise) should be relatively independent, but when they are being processed by the

same bimodal neuron, that neuron is using the same spike generating machinery and its associated noise
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Figure 5. Comparison of Minkowski and Bayesian MLE models to actual cortical bimodal neuron data

Data are plotted as predicted audiovisual firing rates, as a function of actual audiovisual firing rates; the observed firing

rate data (black) thus lies on a 45 deg. axis.

(A) PLLS neurons. The Minkowski model already depicted in Figure 2 (m = 1.75) is shown here with the simulated firing

rates (red icons) it was derived from. A regression fit through this model coincides with the neural data axis (estimated

response = actual response), with an r2 value of 0.980. The maximum likelihood estimation (MLE) model, shown in blue,

consistently (40/40 neurons) underestimates the actual firing rates. A regression fit through this MLE model suggests that

on average the underestimate is about 65 G 2% (sd) of the actual firing rates.

(B) AES neurons. TheMinkowski model already depicted in Figure 3 (m = 1.57) is shown here with the simulated firing rates

(red icons) produced by that model. A regression fit through this Minkowski simulation coincides with the neural data axis,

with an r2 value of 0.886. The MLE model, shown in blue, consistently (34/34) underestimates the actual data. A regression

line fit through the simulated MLE data suggests that the underestimate is about 63 G 6% of the actual firing rates.
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for both inputs. Indeed audio and visual spike rates computed on a neuron-by-neuron basis are highly

correlated – sensitive neurons are sensitive to both inputs; insensitive neurons are insensitive to both in-

puts. Building a valid MLE model with audiovisual bimodal neurons might require pooling large numbers

of neurons to obtain independence of pooled unisensory responses. However, this does not change the

fact that the Figures 5 and 6 MLE firing rate underestimates are roughly proportional to observed neural

responses and in neural theory proportionality is often sufficient. For example, in neural models, a simple

sum of spike counts is sometimes used as a neural surrogate for the neurally more complicated averaging

process (see De Valois et al., 1966 for an early example). Also, some Bayesian theorists do not believe that

the brain is keeping track of variability in channels per se. Instead they have neural models of many variable

interacting integrate-and-fire neurons. The Bayesian-like behavior of the network can be accounted for by

attractor dynamics among variable network units. If this is the case, the proportionality found here might

encourage trying realistic cortical bimodal neurons in Bayesian-inspired interacting neural network models

like that of Beck et al. (2008). Alternately it may be enough in some non-rigorous Bayesian-inspired models

to simply compensate for the underestimation.

Audiovisual summation benefits detection more than discrimination

There is another psychophysical study (To et al., 2010) that fits a Minkowski model to audiovisual discrim-

ination data and got a somewhat greater value of m (2.56) than that obtained for Schnupp et al. (2005) au-

diovisual detection thresholds (i.e., audiovisual summation benefits detection more than discrimination).

To et al. (2010) note that a vector model for discrimination would be expected if independent noisy chan-

nels combined for discrimination judgments; the combined signal-to-noise ratio would rise as the square

root of the number of combined signals (see also Campbell andGreen, 1965; Green and Swets, 1966). Since

larger values ofm imply less summation, To et al. considered factors that might result in less summation for

cue combination in discrimination than a vector model would imply. They argue that if the channels were

not quite independent, then their combined information would sum less efficiently than a vector sum,

Figure 6. Comparison of Minkowski and Bayesian MLE models for 49 bimodal superior colliculus neurons

Data are plotted as predicted audiovisual firing rates, as a function of actual audiovisual firing rates; the observed firing

rate data (black) thus lies on a 45 deg. axis. TheMinkowski model already depicted in Figure 4 (m= 1.02) is shown here with

the simulated firing rates (red icons) it was derived from. A regression model fit to the Minkowski simulation lies just

underneath the neural data axis, where it can be seen as a red stippling, with an r2 value of 0.815. The maximum likelihood

estimation (MLE) prediction (shown in blue) consistently (49/49 neurons) underestimates the actual firing rate data; a

regression line fit through the MLE simulated data suggests that the underestimate is about 42 G 2% of the actual firing

rates.
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resulting in a slightly higherm. They suggest that the inefficiency would be described by a modified vector

sum that resembles the Law-of-Cosines.

AudioVisual = (Audio2 + Visual2 – 2*p*Audio*Visual)1/2 (Equation 7)

This variation of the Mahalanobis distance is used in perceptual similarity modeling (Ashby and Perrin,

1988). A related model was considered by Lehky (1983) for binocular and binaural summation. To et al. esti-

mated a slight correlation p (between the audio and visual channels) of about 0.15 G 0.02 would be suffi-

cient to account for the deviation from a vector model for perceptual discrimination data. Neural correla-

tions in this range have been reported by several studies (see for example Gawne and Richmond, 1993).

This effect might also account for the discrepancy between the Minkowski exponents for discrimination

and detection, if audiovisual discrimination used information in correlated cortical mechanisms less effi-

ciently than did audiovisual detection.

Differences between cortical and superior colliculus bimodal neurons

When bimodal cells were first studied in superior colliculus, their most interesting characteristic was that

some of these cells were very superadditive, with enormous response facilitations for multisensory combi-

nations, compared with their strongest unisensory response (Meredith and Stein, 1986; Stein andMeredith,

1993). As discussed above, the average facilitatory bimodal neuron in PLLS or AES cortex is less facilitatory

than the average superior colliculus neuron, and this is reflected by the percentage of superadditive cells

(m < 1) found in each population. 66% of our audiovisual facilitatory superior colliculus bimodal neurons

were superadditive by this criteria, compared to just 10% of PLLS bimodal neurons and 18% of AES bimodal

neurons. A good review of differences between cortical and superior colliculus cells is Meredith et al.

(2012). There is also a range of integrative behaviors seen within the superior colliculus (Perrault et al.,

2005); it is likely that cortical cells vary similarly (Meredith et al., 2012). The extra enhancement found in su-

perior colliculus neurons may be caused by cortical modulation of superior colliculus. Jiang et al. (2001)

used cryogenic techniques to deactivate cortical feedback onto superior colliculus and found that much

of the enhancement found in superior colliculus neurons goes away during cortical deactivation, while their

separate unisensory responses are unaffected. Meredith et al. (2012) argue that there could be advantages

to differences between facilitatory cortical and superior colliculus bimodal neurons. In superior colliculus,

strong superadditivity could aid rapid sensory orienting responses to fleeting threats or opportunities. In

cortex, where sensory representations could be distorted by strong superadditivity, weaker facilitation

should be less problematic.

Multisensory interactions resemble color vision interactions

The similarity of the Minkowski models for audiovisual thresholds and bimodal spike rates indicate that the

responses of cortical bimodal neurons are a likely neural correlate of multisensory perceptual sensitivity.

Conversely, if we accept that cortical bimodal cells might underlie vector-like sensory information combi-

nations, then the ubiquity of Minkowski models, and especially of vector models in sensory psychophysics,

suggests that it might be useful to search for cortical neurons that could underlie Minkowski-like within-

sense combinations, like those that have been neurally modeled for binocular or binaural summation

(Lehky, 1983), but have never been rigorously compared to actual neurons that combine binaural or binoc-

ular signals. Another useful place to start might be in color vision interactions, especially interactions be-

tween the achromatic and hue signals. Color vision interactions have long been studied using nonlinear

combination rules, including vector and other Minkowski models (Kruskal, 1964; Guth and Lodge, 1973; In-

gling and Tsou, 1977; Guth et al., 1980; Billock, 1995; Eskew et al., 1999; Billock and Tsou, 2005; Zhou and

Mel, 2008; Gheiratmand and Mullen, 2014; Gheiratmand et al., 2016).

Although it seems odd to start with cats integrating audio and visual signals and to end with the possibility

that color vision interactions could work similarly, this is not as big a leap as it seems. Before audiovisual

bimodal cells were most intensively studied for cat (e.g., Meredith and Stein, 1983; 1985; 1986; Wallace

et al., 1992; Stein and Meredith, 1993), similar visual-infrared neurons had been found in rattlesnake optic

tectum (Hartline et al., 1978; Newman and Hartline, 1981). In the literature, the rattlesnake’s visual-infrared

integration is considered a form of multisensory integration because the signals are transduced in two adja-

cent but separate sensory organs (eyes and facial pits) and are transmitted separately by two nerves (optic

and trigeminal), before they are projected onto optic tectum bimodal neurons. But to think about visual-

infrared integration functionally rather than anatomically, the act of transducing different parts of the
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electromagnetic spectrum and combining that spectral information might reasonably be considered as a

form of color vision.

Bimodal neurons are not the only relevant neurons to be considered in the contexts of color vision and

multisensory interaction. Newman and Hartline (1981), in the same rattlesnake optic tectum layers where

they found bimodal visual-infrared neurons, also found neurons that respond, say to visual, not to infrared,

but fire harder when an infrared signal accompanies visual stimulation. In the literature, such neurons are

now generally called subthreshold multisensory neurons because in contrast to the bimodal cells, the

weaker input is modulatory but not by itself strong enough to evoke a spiking response. Recently the prop-

erties of these neurons have been studied extensively (Allman and Meredith, 2007; Allman et al., 2008,

2009; Billock and Tsou, 2014). Billock and Havig (2018) found that audiovisual subthreshold multisensory

cells in cat visual cortex implement gated amplifications of visual responses. Billock and Havig also

modeled several supra-threshold perceptual interactions that look like they are gated amplifications of

the underlying perceptual strengths. Both the neural and perceptual interactions obey a simple power

law with similar exponents (n z 0.85)

AmplifiedResponse = a*UnamplifiedResponsen (Equation 8)

Billock and Havig (2018) argue that these gated amplifier neurons could be the neural correlates of supra-

threshold perceptual amplification and that their slightly compressive power law amplifications are consis-

tent with the Principle of Inverse Effectiveness. The data modeled in the present paper complement this

finding by providing an analogous (but vector-like) potential neural substrate for a threshold perceptual

behavior (detection). It seems likely that multisensory perceptual sensitivity could be mediated by cortical

bimodal neurons and that multisensory perceptual appearance could be mediated by subthreshold multi-

sensory cortical neurons that do gated amplifications. The two most studied neural cell classes in cortical

multisensory interactions (bimodal neuron and gated amplifier neurons) correspond to two important

perceptual modes: threshold performance and suprathreshold appearance.

There are interesting analogs to this appearance/performance dichotomy in color vision. Guth and Lodge

(1973) created a vector model of color vision in large part to account for detection thresholds for combina-

tions of individually weak (subthreshold) color stimuli. Ingling and Tsou (1977) and Guth et al. (1980)

extended this vector model to account for suprathreshold interactions in general, including the shape of

the suprathreshold chromatic brightness function. This may have been unnecessary – Billock and Havig

(2018) found that they could account for the shape of the chromatic brightness function as a hue-gated

amplification of the achromatic luminance system (e.g., it followed Equation 8 with an r2 of 0.993). Their

model for chromatic brightness is very similar to their models for multisensory appearance and multisen-

sory gated amplifier neurons (Billock and Havig, 2018), suggesting that there could exist hue-gated ampli-

fier neurons that amplify suprathreshold achromatic responses into chromatic brightness percepts, much

like the audio-gated-amplifier neurons in the cat visual system. But this begs the question about how to

account for Guth and Lodge (1973) vector-like combinations of subthreshold color stimuli. An obvious pos-

sibility would be a class of bimodal-like neurons (or a simple neuronal network implementing Equation 1),

which combines hue and luminance signals instead of audio and visual signals.

CONCLUSIONS

We created a coherent framework for comparing neural and perceptual information combination in multi-

sensory integration. Mathematically, audiovisual integration in two populations of cortical bimodal neu-

rons is strikingly similar to audiovisual integration in human perception, as assessed by psychophysical

methods. Both electrophysiological and psychophysical data are in turn compatible with vector-like sum-

mation, a widely used model in cognitive science. The results suggest that cortical bimodal neurons likely

underlie human audiovisual sensitivity and provide a neural mechanism for implementing vector-like sum-

mations – a neural mechanism that may generalize to other sensory systems like color vision. However, au-

diovisual bimodal neurons in cat superior colliculus, in aggregate, follow another theoretically interesting

(‘City Block’) combination rule sometimes found in experimental psychology. And a previous study found a

still different rule (a simple power law gated amplification; Equation 8) is followed for psychophysical

appearance measures and by a different class of cortical neurons – subthreshold multisensory cells –

with nearly identical parameterizations for electrophysiology and psychophysics (Billock and Havig,

2018). Taken together, the results suggest that the two most studied neural cell classes in cortical
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multisensory interactions – gated amplifier neurons and facilitatory bimodal neurons – may provide neural

substrates for two important perceptual modes: appearance-based and performance-based perception.

Limitations of the study

This study examined audiovisual data from 74 bimodal neurons in two areas of cat cortex and 50 bimodal

neurons from cat superior colliculus. It would be useful to have additional datasets from the same neural

areas to establish repeatability and generality. Also it would be useful to have similar data from nonhuman

primates for comparison to human psychophysics, and to deliberately align the experimental designs so

that equivalence can be drawn between human behavioral and animal neural data. The visual and auditory

stimuli for the cat (Meredith et al., 2012) and human (Schnupp et al., 2005) experiments are comparable in

spatiotemporal content and effect. Schnupp et al. (2005) used flashing spots of light. Meredith et al. (2012)

used flashing spots of light (as well as moving spots and moving lines when they were effective stimuli for

individual neurons); all of these stimuli provide abrupt spatial discontinuities and temporal modulation well

suited to neurons found in both cat and primate cortex. Similarly, both Schnupp et al. and Meredith et al.

used controlled bursts of broadband auditory noise as stimuli. Proposed primate experiments should be

similarly well aligned with human psychophysical experiments. We would expect similar results from

such primate experiments. The cat visual and auditory cortices are similar to macaque visual and auditory

cortices with multiple functional subdivisions/hierarchies with similar cell types, similar binocular and

binaural integration and similar cortical plasticity. Cat spatial vision is similar to macaque but is shifted to-

ward lower spatial frequencies (De Valois and De Valois, 1991). Studies of cat auditory behaviors generally

resemble human auditory behaviors (Populin and Lin, 1988), and cats are sensitive to all but the lowest fre-

quencies that humans hear (Heffner and Heffner, 1985). Thus we would not expect great differences be-

tween cat and primate audio and visual responses to the stimuli used in these experiments. Finally, there

do not seem to be significant reported differences between cat and human/primate multisensory combi-

nation. Until recently, the cat has been the chief experimental animal in sensory integration, especially at

the neuronal level, and it has been shown that neurons and orienting behaviors follow the same general

rules in behavioral multisensory interactions (including the principles of spatiotemporal coincidence and

inverse effectiveness; Stein et al., 1988; Stein and Meredith, 1993). Cats (Stein et al., 1989) and humans

(Lovelace et al., 2003; Noesselt et al., 2010; Rach et al., 2011) exhibit similar multisensory effects on detec-

tion and orienting behaviors, and these responses are influenced by cortical function (Wilkinson et al.,

1996). Furthermore, humans demonstrate cross-modal suppression during attention tasks (Teder-Sälejärvi

et al., 1999) and a category of multisensory neurons that exclusively exhibit cross-modal suppression have

been identified in cat cortices (Dehner et al., 2004). Given that cats and humans/primates have similar sets

of sensory receptors, demonstrate similar neural circuitry to evaluate these inputs, and exhibit similar basic

behaviors based on those inputs, these similarities make it reasonable to compare human multisensory

psychophysics and cat electrophysiology.
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METHODS DETAILS

This paper introduces a new method for plotting multisensory data. It is standard practice in the multi-

sensory literature to plot bimodal firing rates as a function of the strongest unimodal response. This prac-

tice was adopted to illustrate the enhanced responses of bimodal cells to bimodal inputs (multisensory

facilitation) but is not helpful for understanding how inputs combine. For our purposes, we created the

plotting method used in Figures 2, 3, and 4 to emphasize how information combines. Alternatives like

contour plots were rejected as being difficult to interpret and three-dimensional prospective plots

were rejected because it is difficult to show differences between models in that format. Because audio,

visual and audiovisual responses are plotted as a function of audiovisual responses, the audiovisual re-

sponses plot on the diagonal (even if logarithmically transformed) and the separate audio and visual re-

sponses plot below the diagonal that they combine to yield. An alternative method would have been to

plot audio, visual and audiovisual responses as functions of a fourth variable. In this case, no convenient

fourth variable presented itself and the alternative of creating a dummy variable (like say cell number) was

rejected as unnecessarily convoluted and less elegant than the method we employed. To plot Minkowski

models in this space we used the actual measured firing rates of each cell for separate audio and visual

stimulation in Equation 2 and simulated the combined audiovisual firing rates that would arise for various

values of the Minkowski exponent m. Lines were then fit to the resulting simulated (Equation 2)
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audiovisual firing rates for various theoretically and experimentally interesting values of the Minkowski

exponent (m = 1, 1.67, 2, 8) and for the best fit Minkowski model to the bimodal neuron data. See Quan-

tification and Statistical Analysis, below for more details.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neural data used in calculations

All three variable (audio, visual and audiovisual) neural response data were taken from our earlier

study (Meredith et al., 2012), which had considered and published a reduced two-variable description

and analysis. In brief, the relevant methodological details of Meredith et al. (2012) are as follows: Cats

were surgically fitted with recording wells and were anesthetized during this procedure; recording ses-

sions took place 7-10 days later. Animals were anesthetized for recordings with a mixture of ketamine

and acepromazine. Spontaneous movements were controlled with a muscle relaxant. Animals were in-

tubated by mouth and maintained on a ventilator. Animals were fixed in place by attachment to the

recording well implant. Each cat neuron was tested for effectiveness of stimulation with a variety of

auditory stimuli and an effective response-eliciting stimulus for that neuron (either white noise or a

digital waveform) was employed in data collection. Visual stimuli were moving bars of light projected

on a translucent hemisphere in front of the animal. A combination of movement velocity/direction and

bar size/orientation/luminosity that produced an effective response for that neuron was used for data

collection. Data was collected using a glass insulated tungsten electrode, which was advanced with a

hydraulic micro-drive. Depth of electrode was recorded for each studied neuron. Recording tracts

were reconstructed histologically from fixed tissue sections taken from euthanized animals. Large

numbers of audiovisual multisensory cells were found in three areas of cat brain: superior colliculus,

cortical area PLLS (posterolateral suprasylvian cortex), and cortical area AES (anterior ectsylvian sulcus).

Each stimulus was repeated 16 times for each superior colliculus neuron, 23 times for each PLLS

neuron and 25 times for each AES neuron. An inter-stimulus interval of 7-15 seconds was used to

avoid habituation. There were 49 audiovisual neurons found in cat cortical area PLLS, a visual area

in Brodmann Area 19 that may correspond roughly to area MT in primates. Of these, eight were sup-

pressive and one behaved like a MAX cell (Mavrides, 1970; Gawne and Martin, 2002; Mysore et al.,

2011; Oleksiak et al., 2011; MAX neurons are theoretically interesting, and will be modeled in a sepa-

rate study). The remaining 40 enhancing bimodal cells were analyzed here. There were 40 audiovisual

neurons found in cat cortical area AES, a multisensory area found in association cortex. Of these, four

were suppressive neurons and two behaved like MAX operators. The remaining 34 enhancing bimodal

cells were analyzed here. Finally, there were 58 audiovisual neurons found in cat superior colliculus. Of

these, two were suppressive neurons and six behaved more like subthreshold multisensory neurons

(see Allman and Meredith (2007), Allman et al. (2008), Billock and Tsou (2014), and Billock and Havig

(2018) for background on these multisensory but not bimodal neurons). The remaining 50 cells’

bimodal responses were analyzed here.

Minkowski modeling and maximum likelihood estimation modeling

To find the Minkowski exponent m that best corresponds to a population of bimodal neurons’ audio-

visual responses, we used the actual measured firing rates of each cell for separate audio and visual

stimulation in Equation 2 and simulated the combined audiovisual firing rates that would arise for

various values of the Minkowski exponent m. Lines were then fit to the resulting simulated (Equation 2)

audiovisual firing rates (as a function of actual audiovisual firing rate) for various values of the Minkow-

ski exponent until we obtained a fitted line with the same slope (1.0) as the diagonal. This model was

adopted as the characteristic Minkowski model for the group of neurons under study. Other plotted

models were fitted similarly. For example, for a vector model, an m of 2 would be used in Equation 2

in conjunction with the actual audio and visual firing rates to simulate the audiovisual combined firing

rate for a vector–like system. The simulated combined firing rates (as a function of the actual neural

firing rates) are fit to a straight line and only the straight lines are plotted in Figures 2, 3, and 4 (to

avoid cluttering the graphs with many simulated neural firing rates). However, the best fit Minkowski

and Maximum Likelihood Estimation models – with their simulated audiovisual values – are shown in

Figures 5 and 6. We also computed Minkowski exponents for individual neurons, to quantify the

superadditivity and subadditivity of cells in each area of the brain. For each neuron a Minkowski expo-

nent was computed by finding the root of Equation 3. A hybrid root finding algorithm was used that

combined bisection, secant and inverse quadratic interpolating methods (Forsythe et al., 1977).

Maximum Likelihood Estimation calculations (Equations 4, 5, and 6) were computed using mean firing
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rates and associated variances described above with one exception: one Superior Colliculus neuron

was excluded from the calculation shown in Figure 6 because missing auditory variance data pre-

cluded the MLE calculation for this neuron.
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