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ABSTRACT

Tn5 transposase, which can efficiently tagment the
genome, has been widely adopted as a molecular
tool in next-generation sequencing, from short-read
sequencing to more complex methods such as as-
say for transposase-accessible chromatin using se-
quencing (ATAC-seq). Here, we systematically map
Tn5 insertion characteristics across several model
organisms, finding critical parameters that affect its
insertion. On naked genomic DNA, we found that Tn5
insertion is not uniformly distributed or random. To
uncover drivers of these biases, we used a machine
learning framework, which revealed that DNA shape
cooperatively works with DNA motif to affect Tn5 in-
sertion preference. These intrinsic insertion prefer-
ences can be modeled using nucleotide dependence
information from DNA sequences, and we developed
a computational pipeline to correct for these biases
in ATAC-seq data. Using our pipeline, we show that
bias correction improves the overall performance of
ATAC-seq peak detection, recovering many poten-
tial false-negative peaks. Furthermore, we found that
these peaks are bound by transcription factors, un-
derscoring the biological relevance of capturing this
additional information. These findings highlight the

benefits of an improved understanding and precise
correction of Tn5 insertion preference.

INTRODUCTION

The rapid rise in DNA sequencing capacity, particularly
short-read sequencing, has created a growing need for af-
fordable, simple methods to prepare sequencing libraries.
To streamline library preparation, the Tn5 transposase has
been modified to create a hyperactive version that can effi-
ciently tagment the genome: a combined enzymatic activity
that achieves fragmentation and adaptor ligation in a sin-
gle step (1–4). Tn5 is now used in a number of genomic se-
quencing technologies (see Supplementary Table S1 for a
summary).

One of these additional sequencing technologies is as-
say for transposase-accessible chromatin using sequencing
(ATAC-seq) (5). ATAC-seq measures chromatin accessibil-
ity via Tn5 insertion along the chromatin either in the bulk
population or at the single-cell level (5,6). The primary ap-
plication of ATAC-seq is to identify potential cis-regulatory
elements (CREs), providing a genome-wide view of tran-
scriptional regulation (7–9). Besides chromatin accessibil-
ity, ATAC-seq has been used to infer transcription factor
(TF) occupancy by analyzing the shape and altitude of Tn5
insertion profiles, a technique termed digital footprinting
analysis (5). ATAC-seq footprinting has been successfully
applied to predict the regulatory networks during develop-
ment and in cancer (8,10–13). Although previous studies re-
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ported that Tn5 inserts into the genome in a near-random
pattern, with negligible sequence preference (4,14,15), it was
recently observed that even on naked genomic DNA, Tn5
could produce ‘pseudo-TF footprints’ (10,16), suggesting
that Tn5 has some intrinsic insertion preference.

Tn5 insertion preference was initially studied by Berg
et al. (14), whose work showed that a G/C pair frequently
occurs at the edges of a 9-bp region surrounding insertion
sites. However, several subsequent studies reported con-
flicting preferences for GC-rich (17–19) or AT-rich regions
(20,21) based on a large number of Tn5 insertion sites. In
addition to GC content, it was recently reported that DNA
shape affects Tn5 insertion in HepG2 chromatin, whereas
DNA methylation has minimal impact on Tn5 insertion
(22). These results, from studies that were done in different
species or chromatin contexts, and used different evaluation
methods, highlight the need for systematic mapping of Tn5
insertion and a more complete understanding of its inser-
tion bias(es).

Moreover, because Tn5 bias has not been comprehen-
sively evaluated, current Tn5 bias correction methods are
largely adapted from protocols developed for analyzing
DNase digital footprinting. DNase cleavage bias, however,
is distinct from that of Tn5 (23–25). It is perhaps not sur-
prising then that, when using correction methods, the foot-
printing performance for ATAC-seq has been reported as
less satisfactory compared with DNase-seq (24,26,27). Fur-
thermore, although correction for Tn5 insertion bias is a
prerequisite for digital footprinting, whether bias correction
benefits general ATAC-seq applications, such as the widely
adopted peak calling analysis framework, has not been eval-
uated.

Here, we systematically studied Tn5 insertion preference
across eight model organisms in naked genomic DNA and
chromatin contexts. We studied the influence of intrinsic pa-
rameters (DNA motif and DNA shape) and an epigenomic
parameter (DNA methylation) on Tn5 insertion preference.
Using this information, we developed a computational bias
correction pipeline. We showed that bias correction im-
proves the performance of peak calling algorithms. More-
over, we find that bias correction identifies regions enriched
for TFs that were not called as peaks using traditional peak
calling methods. Thus, another benefit of performing Tn5
insertion bias correction is the reduction of false negatives
in ATAC-seq data analysis.

MATERIALS AND METHODS

Cell culture and primary cell acquisition

Primary hematopoietic stem and progenitor cells (HSPCs)
were obtained as described in (28). Briefly, cKit magnetic
beads (Miltenyi Biotec) were used to enrich HSPCs from
mouse bone marrow and cultured in IMDM (Gibco) sup-
plemented with 15% FBS (Gibco), 10 ng/ml mIL-6, 10
ng/ml mIL-3, 50 ng/ml SCF, 20 ng/ml thrombopoietin (Pe-
proTech) and 10 ng/ml Flt3 ligand (PeproTech).

The E14 and K562 cell lines were obtained from the ex-
perimental pathology cell bank in State Key Laboratory of
Experimental Hematology. The K562 cells were cultured in
RPMI-1640 (Gibco) supplemented with 10% FBS. E14 cells
were maintained in 0.2% gelatin (Sigma)-coated plates in

2i medium, which consisted of DMEM/F12 supplemented
with Neurobasal medium, serum-free N2B27 medium sup-
plemented with 10 �M MEK inhibitor PD0325901 and 30
�M GSK3 inhibitor CHIR99021 (both from Selleckchem),
2% KnockOut™ serum replacement (Gibco), 0.002% BSA
(Gibco), 1 mM MTG (Gibco), 1000 U/ml LIF (Millipore),
0.1 mM non-essential amino acid and 2 mM GlutaMAX
Supplement (Gibco).

Tagmentation and sequencing of naked genomic DNA

DNA was purified with a QIAamp DNA Mini Kit (QIA-
GEN), and 50 ng DNA was used for the following proce-
dure. After DNA extraction, we used a Thermo Scientific
NanoDrop 2000 Spectrophotometer to measure 260/280
and 260/230 ratios to confirm DNA purity. The DNA was
added to a 50 �l transposition reaction mix (5 �l TruePrep
Tagment Enzyme, 10 �l TruePrep Tagment Buffer L and
35 �l ddH2O from Vazyme TD501-01) followed by incuba-
tion at 55◦C for 10 min. After tagmentation, VAHTS DNA
Clean Beads were used to stop the reaction, and DNA was
purified for final library construction (TruePrep™ DNA Li-
brary Prep Kit V2 for Illumina) before paired-end high-
throughput sequencing using an Illumina Next550 or No-
vaSeq 6000.

Genome sequencing data preprocessing

The genome FASTA sequence and GTF annotation files
were downloaded from the Ensembl database (29). Genome
assembly versions for each species are as follows: mouse
(Mus musculus, mm10), human (Homo sapiens, hg38), ne-
matode (Caenorhabditis elegans, ce11), fruit fly (Drosophila
melanogaster, dm6), zebrafish (Danio rerio, danRer11),
Plasmodium (Plasmodium falciparum, pfa2), Arabidopsis
(Arabidopsis thaliana, tair10) and maize (Zea mays, zm3).

Raw fastq data were parsed using the SRA Explorer web-
site (https://github.com/ewels/sra-explorer) from the Gene
Expression Omnibus (30) and Encyclopedia of DNA Ele-
ments (ENCODE) (31) database and downloaded using As-
pera version 3.9.8.176272 (https://www.ibm.com/products/
aspera). Detailed information including accession numbers
and sample information is available in Supplementary Table
S2.

FastQC (http://www.bioinformatics.babraham.ac.uk/
-projects/fastqc/) version 0.11.5 was used to check the
sequencing quality of raw fastq data. Trimmomatic version
0.33.0 (32) was used to trim protocol-specific sequencing
adapters. Bedtools version 2.29.1 (33) and Bedtk version
0.0-r24 (34) were used in this study for bed format file
manipulation.

ATAC-seq data processing

Bowtie2 version 2.2.7 (35) was used for mapping reads
to their respective reference genomes using the ‘–end-to-
end –no-mixed -X 2000’ parameter, where ‘-X 2000’ allows
the maximum fragment length to be 2000 bp and ‘–no-
mixed’ suppresses unpaired alignments for paired reads. To
minimize PCR and sequencing optical bias, Picard (http://
broadinstitute.github.io/picard) version 2.9.0 subcommand

http://arxiv.org/abs/https://github.com/ewels/sra-explorer
http://arxiv.org/abs/https://www.ibm.com/products/aspera
http://www.bioinformatics.babraham.ac.uk/-projects/fastqc/
http://broadinstitute.github.io/picard
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MarkDuplicates was used to mark duplicates (defined as the
same start and end positions) and CollectInsertSizeMetrics
was used to estimate fragment size distribution. Samtools
version 1.7 (36) was used for SAM file manipulation. Specif-
ically, subcommand view with ‘-F 1804 -q 30 -b’ parameter
was used to remove low-quality, unmapped, unpaired and
duplicated reads, as well as convert to BAM format. Sub-
commands flagstat, sort and index with default parameters
were used to summarize, sort and index BAM files.

Because 9-bp target duplications are generated during
Tn5 transposition (14), we shifted reads on the forward
strand by +4 bp and reads on the reverse strand by −5
bp, following the instructions previously reported (5) to get
the centers of Tn5 insertion events (aliased as Tn5 inser-
tion sites). This single-base Tn5 insertion site information
was used in bed, bam and BigWig formats for downstream
analysis.

BigWig format files were generated via bamCoverage sub-
command in deeptools2 (37) with the ‘–binSize 1’ param-
eter. Where available, ENCODE blacklists (38) including
‘High Signal Region’ and ‘Low Mappability Regions’ were
excluded from downstream analysis.

The genome-wide Tn5 insertion sites in chromatin and
naked genomic DNA of mouse embryonic stem cells
(ESCs), HSPCs and human K562 cells were uploaded
into the UCSC Genome Browser, which can be accessed
through these track hubs: https://raw.githubusercontent.
com/YenLab/Tn5InsertPrefer/main/UCSC tracks/Mouse/
hub.txt and https://raw.githubusercontent.com/YenLab/
Tn5InsertPrefer/main/UCSC tracks/Human/hub.txt.

Mapping Tn5 insertions across genomic features

We measured the Tn5 insertion preference across genomic
features using the ratio between observed and expected Tn5
insertion sites. Genomic features used in this study are clas-
sified into three categories:

1. Basic genomic annotations: transcription start sites
(TSSs), transcription terminal sites, CpG island, introns,
exons, intergenic and untranslated region.

2. ENCODE3 candidate CREs (7): distal/proximal
enhancer-like signatures (d/pELS), distal/proximal
promoter-like signatures (d/pPLS), CTCF and DNase–
H3K4me3.

3. Repetitive genomic features from RepeatMasker (39):
satellites, simple repeat, low-complexity regions, retro-
transposons [long interspersed nuclear element (LINE),
short interspersed nuclear element (SINE), and long ter-
minal repeat (LTR)], rRNA and tRNA.

The ratio between observed and expected Tn5 insertion
sites was represented by the log2(O/E) value, where E (ex-
pected insertion sites) was estimated by total feature length
× (all Tn5 insertion sites/mappable genome size) and O (ob-
served insertion sites) was counted directly from features
using deeptools intersect command. After log2 transforma-
tion, features enriched for Tn5 insertion sites were indicated
by positive values and features depleted for Tn5 insertion
sites were indicated by negative values; these data were plot-
ted in the form of heatmap via ComplexHeatmap (40) (Fig-

ure 1; Supplementary Figure S2). The dendrogram of cell
types was clustered using the ‘complete’ algorithm in the
hclust() function from the base R package.

The chi-squared test for goodness of fit was used to de-
termine whether there was a statistically significant differ-
ence between the expected and the observed Tn5 insertion
in each feature of each sample. The FDR (41) was used to
adjust the P-value and FDR < 0.001 was used as a thresh-
old.

Effect of DNA motif on Tn5 insertion

Large numbers of Tn5 insertion sites in NGS data might
conceal noise, and different sources of data might introduce
batch effects in the analysis. To address this, we searched
the pool of Tn5 insertion sites unbiasedly for paired frag-
ments, defined as exactly 9 bp of two adjacent fragments
with reverse complementarity. We randomly sampled an
equal size dataset (500 000) for each sample (Figure 2A).
Based on these sites, a position weight matrix (PWM) show-
ing the most favored nucleotide composition was returned
by MEME (Multiple EM for Motif Elicitation) (42). To val-
idate the PWM, potential Tn5 motifs for each species were
predicted genome-wide using FIMO (Find Individual Mo-
tif Occurrences) (43) using the q-value <0.001 as a thresh-
old. We calculated the fraction of predicted motifs overlap-
ping Tn5 insertion sites and the fraction of Tn5 insertion
sites that fall within motifs, which resulted in four categories
(Figure 2B and C):

1. insert inside: the Tn5 insertion sites fall within predicted
motifs.

2. insert outside: the Tn5 insertion sites fall outside pre-
dicted motifs.

3. motif used: the predicted motifs have Tn5 insertion.
4. motif unused: the predicted motifs have no Tn5 insertion.

Effect of DNA shape on Tn5 insertion

DNA shape calculation. In this study, we used the DNA
shapes defined in (44), including 14 types that can be calcu-
lated using the DNAshapeR package (45). The DNA shapes
consist of three types of DNA structural orientations:

1. Inter-base pair features: shift, slide, rise, tilt, roll, helix
twist (HelT).

2. Intra-base pair features: shear, stretch, stagger, buckle,
propeller twist (ProT), opening.

3. Electrostatic potential and minor groove width (MGW).

The R package DNAshapeR uses sliding pentamer win-
dows obtained through all-atom Monte Carlo simulations
to calculate each DNA shape separately. The superiority
and robustness of this method were systematically com-
pared (46), which closely correlated with experimental data.
The getShape() function in the R environment calculates
DNA shapes for input fasta files with default parameters
(Figure 3; Supplementary Figure S4).

Quantitative assessment of effect of DNA shape and motif.
We constructed a machine learning framework to assess the

https://raw.githubusercontent.com/YenLab/Tn5InsertPrefer/main/UCSC_tracks/Mouse/hub.txt
https://raw.githubusercontent.com/YenLab/Tn5InsertPrefer/main/UCSC_tracks/Human/hub.txt
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quantitative effect of DNA shape and DNA motif on Tn5
insertion preference. Specifically, the elastic-net logistic re-
gression implemented by R package glmnet (47) was used
to dissect the relationship between DNA shape, DNA motif
and Tn5 insertion event. Three types of vectors (Figure 3A)
were used as input:

1. motif vector: To fit the width of input sequences (width
= 51), we searched for Tn5 motifs for each species using
a 51-bp window around Tn5 insertion sites via MEME.
The PWM score at each nucleotide around Tn5 insertion
sites was calculated for each input sequence.

2. DNA shape vectors: DNA shape values were calcu-
lated using the DNA sequence around Tn5 insertion
sites by the encodeSeqShape() function in R package
DNAshapeR.

3. motif + DNA shape vectors: a combination of the motif
vector and DNA shape vectors.

The definition of accuracy is (TP + TN)/(TP + TN +
FP +FN), where TP stands for true positive, TN stands for
true negative, FP stands for false positive and FN stands
for false negative. To reduce the computational cost, we
randomly selected 20 000 Tn5 insertion sites and 20 000
random sites across the genome as controls. Because DNA
shape and DNA motif have different scales of units, to di-
rectly compare their importance, we standardized the input
vectors to the [0, 1] range before training. To minimize the
overfitting effect on a specific dataset, we used 10-fold cross-
validation methods to train the model. To validate the true
effect of DNA shape, we shuffled the original pentamer ta-
ble in ‘TableCompiler.cpp’ three times to break down the
original relationships of DNA shapes values, and then we
trained the model using shuffled 14shapes and true 14shapes
for comparison (Supplementary Figure S4B).

Effect of DNA methylation on Tn5 insertion

WGBS data processing. DNA methylation data measured
by whole-genome bisulfite sequencing (WGBS) for mouse
ESCs and germ cells were downloaded from (48,49). Af-
ter the general preprocessing procedure described earlier,
Bismark version 0.22.3 (50) was used for downstream pro-
cessing. Specifically, bismark and deduplicate bismark sub-
commands with default parameters were used to map reads
to the reference genome and remove duplicated reads,
and then bismark methylation extractor with parameters ‘–
no overlap –ignore 10 –ignore r2 10 –cytosine report’ was
used to extract the DNA methylation percentage at all cy-
tosine positions. The final bedgraph format files, where the
fourth column stands for the percentage of methylation at
each cytosine position, were used for downstream analysis.

‘Context-dependent approach’ for dissecting DNA methyla-
tion effect. The mouse genome was chopped into tiling
9-bp bins (9mers) using the bedtools makewindows com-
mand. The DNA methylation level within each bin was cal-
culated by the bedtools intersect command. For two cell
types, ESCs and germ cells, the methylation level within
each bin was compared and classified into one of the fol-
lowing four groups:

1. ESC-only: Methylation level >0 in ESC cell, while = 0
in germ cell.

2. Both: Methylation level >0 in both ESC cell and germ
cell.

3. None: Methylation level = 0 in both ESC cell and germ
cell.

4. Germ-only: Methylation level = 0 in ESC cell, while >0
in germ cell.

After classification, the Tn5 insertion sites were mapped
into corresponding bins. Because each 9mer context
will occur many times within each group, for example
‘AAAAAAAAA’ will occur N times within the ESC-only
groups, we averaged the Tn5 insertion frequency in N
‘AAAAAAAAA’ 9mers using bedtools groupby command.
Following this, we averaged Tn5 insertion frequency at each
unique 9mer in each group, for each cell type. To ensure the
DNA contexts were the same among all four groups and
enable direct comparisons of the DNA methylation effect,
we kept 9mers whose sequence occurs in all four groups for
downstream analysis. For example, if ‘AAAAAAAAA’ does
not occur in any of four groups, we removed this context.
After filtering, we got 165 185 ‘shared 9mers’ among all four
groups. Because the Tn5 insertion data of ESC and germ
cells are from different sources, to directly compare the Tn5
insertion frequency in each 9mer across cell types, we calcu-
lated the Z-score among all 9mers for each cell type (Figure
4A).

Representations of the distribution of Tn5 insertion fre-
quency using boxplot. Boxplot was used for the context-
dependent approach throughout the main text to depict
the data distribution using the geom boxplot() function in
R package ggplot2 (https://ggplot2.tidyverse.org). Before
plotting, the top 1% and bottom 1% of outliers were re-
moved to relieve severe data skewness. The line in the mid-
dle of a boxplot stands for the median value or the 50th
percentile. The lower and upper hinges in the boxplot cor-
respond to the first and third quartiles (the 25th and 75th
percentiles). The upper whisker extends from the hinge to
the largest value no further than 1.5 × IQR from the hinge
(where IQR is the interquartile range or distance between
the first and third quartiles). The lower whisker extends
from the hinge to the smallest value at most 1.5 × IQR of
the hinge. Data beyond the end of the whiskers were called
as outliers and are not shown.

MNase-seq data processing

MNase-seq data for mouse ESCs were downloaded from
(51). After the preprocessing procedure (described earlier),
raw reads were mapped to the mouse reference genome us-
ing Bowtie2, with default parameters. Duplicates were re-
moved using Picard, and bam files were converted to Big-
Wig and bedgraph signal files using deeptools bamCover-
age at 1-bp resolution. The MNase-seq signals in each 9mer
were mapped using bedtools intersect.

ChIP-seq and total RNA-seq data processing

H3K4me1(ENCSR000CGN), H3K4me3 (ENCSR000CG
O), H3K27ac (ENCSR000CGQ) and RNA polymerase

https://ggplot2.tidyverse.org
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II (ENCSR000CCC) ChIP-seq as well as total RNA-seq
(ENCSR000CWC) data for mouse ESCs were downloaded
from ENCODE (31). After the preprocessing procedure
(described earlier), raw RNA-seq reads were mapped to
the mm10 reference genome using STAR version 2.6.0
(52), with the parameter ‘–quantMode GeneCounts’ used
to quantify gene expression using a reference genome
annotation file. Afterward, we converted raw counts to
transcripts per million using a custom script (code avail-
able at https://github.com/YenLab/Tn5InsertPrefer/blob/
main/StandaloneScripts/Raw2TPM.R). Raw ChIP-seq
reads were mapped to the mm10 reference genome using
Bowtie2 with default parameters. ChIP-seq duplicates were
removed using Picard. The RNA-seq and ChIP-seq bam
files were converted to BigWig format for visualization
using deeptools bamCoverage at 10-bp resolution.

Measuring Tn5 insertion preference effect on peak calling
analysis

To correct for Tn5 sequence preference (collectively, the mo-
tif and shape preferences), we leveraged SeqOutbias version
1.3.0 (53), using a k-mer-based dependency matrix to model
the Tn5 preference. Based on our observation that a total
19-bp range can affect Tn5 insertion (Figures 2A and 4B),
we specifically set k = 19 for Tn5 preference correction.
We fed a mapped bam file into the SeqOutbias and speci-
fied the parameter ‘–no-scale’ to get uncorrected single-base
Tn5 insertion signals or the parameter ‘–kmer-mask’ to get
corrected signals. The uncorrected and corrected Tn5 inser-
tion signals were used by MACS2 version 2.2.5 (54) for peak
calling analysis, with the parameter ‘–broad –format BED
–broad-cutoff 0.01 –nomodel –max-gap 100 –shift -100 –
extsize 200’ used. The uncorrected and corrected specific
peaks were defined by nonoverlapping peaks between un-
corrected and corrected peak sets, and any peak sharing at
least 1 bp was assigned as a shared peak using the bedtools
intersect command.

To investigate the enrichment of TFs in peaks, we
downloaded all available TF ChIP-seq narrow peaks for
mouse ESCs from Cistrome Data Browser (55,56). These
856 ChIP-seq datasets contain 123 TFs (Supplementary Ta-
ble S3). We used giggle index version 0.6.3 (57) to build
a reference for these peaks. We used the giggle search
command to query the peak set against the reference
TF locations for each uncorrected-shared, uncorrected-
specific, corrected-shared and corrected-specific peak set.
The GC content and peak length-matched control peaks
were generated using a custom script (code available
at https://github.com/YenLab/Tn5InsertPrefer/blob/main/
StandaloneScripts/Negative sequence matched length).

RESULTS

Tn5 insertion is not uniformly random in naked genomic DNA

To comprehensively understand the insertion characteris-
tics of Tn5, we first determined whether there are signa-
tures that influence its insertion preference in the absence of
chromatin. To this end, we examined a number of publicly
available and newly generated Tn5 tagmentation datasets
from 20 cell types across eight model organisms (detailed

information for each sample is listed in Supplementary Ta-
ble S2). For the newly generated samples, chromatin was
treated with protease to remove chromatin-bound proteins,
followed by RNase A treatment to remove single-stranded
RNAs. This naked genomic DNA was then treated with
Tn5 for tagmentation and adapter ligation, followed by
paired-end sequencing. Sequencing reads were mapped to
the corresponding reference genome to obtain Tn5 inser-
tion sites (Figure 1, top panel; see the ‘Materials and Meth-
ods’ section). As DNA fragment size distribution is a good
index to check the genome architecture (5), we restored
the fragment size information from paired-end reads and
plotted their frequency distribution (Supplementary Fig-
ure S1A). We observed a unimodal fragment size distribu-
tion in naked genomic DNA as opposed to the periodic
nucleosome pattern seen in corresponding chromatin con-
texts, indicating these samples are indeed naked genomic
DNA.

Although the datasets used in our analysis were gen-
erated using three sources of Tn5 transposases [Nextera
from Illumina, TruePrep from Vazyme and in-house pu-
rification (1)], we do not think this will impact our re-
sults for three reasons. First, most available Tn5 trans-
posases have been modified following the same guidelines
(58). Second, independent work has demonstrated that dif-
ferent Tn5 transposases have similar motifs that are consis-
tent with the earliest description of the wild-type Tn5 motif
(10,11,15,17,59). Third, a recent study compared these three
Tn5 transposases for constructing RNA-seq libraries and
found consistent tagmentation efficiency and gene quantifi-
cation (60).

Previous evaluations of Tn5 insertion distribution gener-
ally relied on Integrative Genomics Viewer (IGV) for visu-
alization. Using IGV, we observed that the Tn5 insertion
sites in naked genomic DNA are more dispersed relative to
the sharp profile arising from Tn5 tagmentation in chro-
matin (Supplementary Figure S1B). However, these types
of visualizations lack a quantitative measurement. To as-
sess whether Tn5 insertion along naked genomic DNA is a
random process, we first focused on the mouse naked ge-
nomic DNA to measure Tn5 insertion distribution across
32 genomic features linked with multiple biological func-
tions (Figure 1; see the ‘Materials and Methods’ section).
To measure whether Tn5 prefers specific genomic features,
we calculated the expected (E) Tn5 insertion frequency in
each mappable genomic feature for each cell type by as-
suming a uniformly random distribution. We then com-
pared it with the observed (O) Tn5 insertion frequency, us-
ing the chi-square test for goodness of fit. The logarithm-
transformed O/E ratio indicates Tn5 preference in a spe-
cific genomic feature (Figure 1). Surprisingly, we observed
that Tn5 insertions were significantly biased toward/against
specific genomic features in the naked genomic DNA of
seven cell types. In general, Tn5 exhibited a preference for
genic regions (introns, exons and transcription termination
sites) as compared to intergenic regions. Strikingly, even in
naked genomic DNA, which lacks chromatin-bound pro-
teins such as nucleosomes, Tn5 prefers ELSs (defined by
the ENCODE3 project) (7). In contrast, most repetitive re-
gions (LINE, LTR and low-complexity regions) were de-
pleted of Tn5 insertion sites in naked genomic DNA, ex-

https://github.com/YenLab/Tn5InsertPrefer/blob/main/StandaloneScripts/Raw2TPM.R
https://github.com/YenLab/Tn5InsertPrefer/blob/main/StandaloneScripts/Negetive_sequence_matched_length
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Figure 1. Tn5 does not insert randomly in naked genomic DNA. Distribution of Tn5 insertion sites across genomic features in mouse naked genomic
DNA. Top panel: Schematic showing sequencing and calculation of Tn5 insertion sites. Bottom panel: Heatmap showing the distribution of Tn5 insertion
sites. Red indicates the enrichment of Tn5 insertion sites; blue indicates depletion. Nonsignificant values (N.S.) are colored gray, with false discovery rate
(FDR) < 0.001 as a threshold (chi-square test corrected by FDR). Cell types were clustered using the ‘complete’ algorithm. The Tn5 source for each sample
is indicated, and ‘In-house*’ refers to Tn5 purified following the procedure in (1). E14 and HSPC data were generated in this study; public data for EpiLC
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which were grouped based on the nucleotide content in each region, for example AT-rich and C-rich (39).

cept for simple repeats, satellites and rRNA regions, which
were enriched or depleted of Tn5 insertions depending on
the cell type. This observation indicates that the depleted
Tn5 insertions were not caused by low DNA extraction ef-
ficiency in these heterochromatin regions. Even in naked
genomic DNA, we found that Tn5 insertion patterns near
TSSs are cell type specific, a signature that could be used
to separate stem cells from terminally differentiated cells. A
similar Tn5 preference pattern was also observed in human
naked genomic DNA (Supplementary Figure S2). These
patterns were reproducible among biological replicates and
conserved across mouse and human, suggesting that Tn5
has a significant and specific insertion preference, which we
sought to investigate further.

DNA motif signature is insufficient to explain Tn5 insertion
preference

DNA-binding protein (DBP) specificity is governed by in-
teractions with either specific nucleotide content (i.e. per-
centage of AT/GC) or nucleotide composition (i.e. DNA
motif) via the DNA-binding domain (61,62). The DNA-
binding domain of Tn5 is well resolved (63,64); neverthe-
less, its nucleotide specificity remains ambiguous.

There are conflicting reports about whether Tn5 prefers
AT- or GC-rich regions (17–21); we therefore first tested
whether the basis for the insertion preference we observed in
genomic features correlates with underlying nucleotide con-
tent. To this end, we chose the well-annotated mouse and
human naked genomic DNA and compared the relation be-
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tween Tn5 insertion frequency and nucleotide content in
each genomic feature (Figure 1A; Supplementary Figure
S2). We did not observe a consistent preference toward AT-
or GC-rich nucleotide content in either the mouse or hu-
man naked genomic DNA. For example, Tn5 insertions
were depleted in both AT-rich (91% AT content) and GC-
rich (89% GC content) low-complexity regions of mouse
stem cells (Figure 1). To more closely inspect the relation
between nucleotide content and Tn5 preference, we ana-
lyzed a published hexamer-based evaluation of Tn5 inser-
tion propensity in human naked genomic DNA (24). We
ranked and grouped all hexamers based on relative Tn5 in-
sertion frequency and AT content, but we did not find a
consistent correlation between AT content and Tn5 inser-
tion frequency across all hexamers (Supplementary Figure
S3A). These two results jointly suggest that AT or GC con-
tent is not a determinant for Tn5 insertion preference, re-
gardless of species.

We next asked whether Tn5 prefers a particular nu-
cleotide composition (i.e. DNA motif). Searching for a Tn5
motif within a 19-bp window flanking 500 000 randomly se-
lected Tn5 insertion sites using MEME (42) in eight species
revealed only one statistically significant motif for each
species (Figure 2A; see the ‘Materials and Methods’ sec-
tion). These Tn5 motifs were consistent with previous re-
ports that a G/C pair occurs at the edge of the 9-bp core mo-
tif (14,15,65), except for the motif in Plasmodium, a differ-
ence that might be driven by its extremely AT-rich genome
(81%). We then evaluated the motif contribution for Tn5
insertion by comparing FIMO (43) predicted motif sites
with Tn5 insertion sites. We reasoned that if a motif is a
strong determinant for Tn5 insertion, most Tn5 insertion
sites should fall inside motif sites (which we denoted as
‘inside motif ’), and motif sites should largely be engaged
for Tn5 insertion (denoted as ‘Used’). However, we found
that only 16–29% of the Tn5 insertion sites fall inside mo-
tif sites across the eight species we examined (Figure 2B).
Because Tn5 will remain at insertion sites, it might obstruct
access of another Tn5 at a nearby site (19), in which case
saturated motif sites could lead Tn5 to insert into unpre-
ferred sites. We therefore sought to determine whether the
Tn5 insertions outside motifs were due to a lack of preferred
motifs. When we examined the motif usage along naked ge-
nomic DNA, we found that 34–94% of motif sites were used
by Tn5 (Figure 2C), depending on the genome size of the
species. On average, 39% of motif sites were used in human,
mouse, zebrafish and maize, whose average genome size is
around 2.4 billion bp, whereas an average of 80% of motif
sites were used in fruit fly, nematode, Arabidopsis and Plas-
modium, whose average genome size is around 96 million
bp. One possible explanation is that the standard amount
of Tn5 used in most tagmentation protocols may be over-
saturated for species with smaller genome sizes, and in these
cases, Tn5 will insert at weaker motifs.

Using the same motif search strategy for Tn5 insertion
sites in chromatin, we identified similar but more GC-
rich motifs (Supplementary Figure S3B), which indicates
that the DNA motif still contributes to Tn5 insertion pref-
erence in a complex chromatin environment. As many Tn5
insertions occur within accessible promoters that overlap
with many CpG islands (51), the GC-rich motif might be

driven by these GC-rich CpG islands. Nevertheless, these
data show that the motif preference is insufficient to fully
explain Tn5 insertion specificity.

DNA shapes contribute cooperatively with DNA motif to af-
fect Tn5 insertion

DNA shapes describe the spatial orientation of inter- or
intra-base pairs and have been extensively reported to af-
fect the binding affinity of DBPs through indirect interac-
tions (23,66–68). We first qualitatively measured the effect
of the most studied DNA shapes: MGW, HelT, ProT and
roll (46) on Tn5 insertion. Because DNA shape might im-
pact a larger window of sequence, we computed DNA shape
values within a 51-bp window flanking Tn5 insertion sites
or motif sites classified in Figure 2 using DNAshapeR (45)
(Supplementary Figure S4A). We found that among these
four shapes, motifs that have no Tn5 insertion (motif un-
used) behave significantly different from sites where Tn5 can
insert (motif used, insert outside, insert inside), regardless
of the existence of a Tn5 motif, which suggests that DNA
shape has an independent role in regulating Tn5 insertion.
Generally, Tn5 prefers wider MGW, larger ProT, bigger
roll, and smaller HelT, which collectively indicate that Tn5
prefers flexible DNA structures. This may explain why Tn5
shows a preference in naked genomic DNA for ELS regions,
as enhancers tend to have larger ProT (69) and their propen-
sity to form chromatin loops suggests their flexibility.

To quantitatively assess the role of DNA shape and DNA
motif in Tn5 insertion, we conducted an elastic-net logis-
tic regression framework (47) to hierarchically measure the
contribution of DNA motif and 14 types of DNA shapes
(70) (Figure 3A; see the ‘Materials and Methods’ section).
Briefly, for each naked genomic DNA sample, we randomly
chose 20 000 Tn5 insertion sites and 20 000 genomic sites;
for each site, the motif and DNA shape values within a 51-
bp window were combined into three types of vectors: mo-
tif, 4shapes and motif+14shapes. The information encoded
in each vector was used to classify Tn5 insertion sites from
random genomic sites, and we used the accuracy metric to
evaluate the model performance (Figure 3B). We found that
the model accuracy ranged from 0.58 to 0.72 among all
tested 31 samples across eight species when only the mo-
tif vector was fed into the model (motif model). However,
the accuracy diminished when trained on shuffled DNA
sequence, suggesting that the DNA motif indeed helps
Tn5 recognize target sites (Figure 3B). In addition, when
trained using shape-containing vectors, the model accuracy
increased, further suggesting that DNA shape impacts the
Tn5 insertion process. Interestingly, the DNA shape effect
can be independent of (4shapes model) or work cooper-
atively with DNA motif (motif+14shapes model) (Figure
3C). A common issue in machine learning is that additional
vectors might increase the model performance simply be-
cause more data were involved, even if they contain mean-
ingless information. To rule out this possibility, we shuffled
the DNA shape values to break down the original relations
for training. We found that the shuffled DNA shapes lost
model accuracy compared to true DNA shapes (Supple-
mentary Figure S4B), which confirmed that DNA shapes
indeed encode information relevant for Tn5 insertion.
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Although Tn5 insertion landscape in a chromatin context
was mainly determined by local chromatin architecture, like
nucleosomes, we sought to investigate whether DNA shapes
affect Tn5 insertion in the chromatin environment. For sim-
plicity, we trained two types of vectors using Tn5 inser-
tion sites in chromatin and found that the motif+14shapes
model outperformed the motif-only model in all 23 sam-
ples across eight species (Supplementary Figure S4C). Thus,
even though nucleosomes serve as a major barrier for Tn5
insertion in chromatin, this result suggests that DNA shapes
still contribute to Tn5 preference in this context.

The intrinsic DNA motif and shape preference originates
from nucleotide dependence

The cooperative role of DNA motif and shape led us to
ask whether this represents a conserved preference for Tn5
insertion across species. To test this, we randomly divided
the data in each of 31 naked DNA samples into a training
dataset (70%) and a test dataset (30%). For each sample,
we trained a motif+14shapes model (similar to that illus-

trated in Figure 3A) using its training dataset and tested
this model on the other 30 samples using their correspond-
ing test datasets for cross-validation. We observed an over-
all high cross-validation accuracy; for example, the model
trained using human samples can accurately perform in
mouse. This suggests that the DNA motif and shape are
conserved parameters affecting Tn5 insertion across species
(Supplementary Figure S4D). In addition, this indicates
that our model did not suffer from overfitting during train-
ing.

We next sought to trace the origin of their cooperativity,
as DNA motif and DNA shape were both calculated based
on DNA sequence. The DNA motif, generally represented
by PWM, assumes that the nucleotide at each position con-
tributes independently to the overall affinity (61). However,
DNA shapes arise from DNA sequence dependence; for ex-
ample, base-stacking interactions including HelT and roll
were stored as dinucleotide dependences (68,71–73). To test
whether the effect of DNA shape and motif on Tn5 in-
sertion can be mimicked through nucleotide dependence
information from the DNA sequence, we again used 31
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samples from Figure 3B. For sites in each sample, we en-
coded three types of vectors: mononucleotide, dinucleotide
and trinucleotide information, surrounding a 51-bp window
for each site for training. In addition, the motif+14shapes
model (Figure 3B) was used for comparison. As expected,
the motif+14shapes achieved overall higher accuracy for
all samples than the mononucleotide model, which did not
consider nucleotide dependence (Figure 3C). When dinu-
cleotide information, which encodes dependences between
adjacent nucleotide positions, was used as the input vector,
the model achieved similar accuracy compared with the mo-
tif+14shapes model (Spearman’s correlation = 0.995) (Fig-
ure 3C). The accuracy further increased slightly with the
trinucleotide model (Figure 3C). These results collectively
suggest that even dinucleotide dependence can essentially
mimic the information encoded in DNA motif and DNA
shapes. This finding may explain the superior performance
of Tn5 bias correction methods that consider nucleotide de-
pendence information (10,11,53), as they internally correct
for DNA shape effects in practice.

Taken together, our data reveal that DNA motif and
DNA shape, the latter of which encodes complementary in-
formation about DNA sequence dependence, cooperatively
affect Tn5 insertion. However, the cell type-specific Tn5 in-
sertion patterns observed in mouse naked genomic DNA
(all of which have the same sequence) (Figure 1) suggest
that other transcription-associated features beyond DNA
sequence could affect Tn5 insertion.

DNA methylation makes minimal contributions to Tn5 inser-
tion preference

DNA methylation, which can affect the binding affinity of
DBPs (23,74,75), was reported not to affect Tn5 insertion
in chromatin (22). Given the complexity of chromatin, how-
ever, we sought to investigate the impact of DNA methyla-
tion on Tn5 insertion in naked genomic DNA where DNA
methylation still exists. To eliminate the influence of DNA
sequence, either directly or indirectly, on Tn5 insertion, we
focused on available DNA methylation datasets from mouse
ESCs (49) and germ cells (48).

We adapted a hexamer-based method that was developed
to investigate the effect of DNA methylation on DNase I
cleavage (23). Briefly, we classified all 9mers along the naked
genomic DNA of mouse ESCs and germ cells into one of
four groups according to the DNA methylation level in
these cell types: ESC-only, Both, None, and Germ-only. We
then looked at the distribution of Tn5 insertion sites across
these four groups (see the ‘Materials and Methods’ sec-
tion; Figure 4A). Using this context-dependent approach,
we found that in the same region of the genome, if a cell type
has higher methylation, there is a corresponding increase in
Tn5 insertion relative to the less methylated cell type. When
both cell types have methylation (Both) or have no methy-
lation (None), Tn5 insertion frequency is similarly high or
low, respectively. These results suggest that DNA methyla-
tion promotes Tn5 insertion in naked genomic DNA and
might help explain the cell type-specific pattern in Figure 1.

As DNA methylation stoichiometry has been linked
with quantitative biological processes (75), we next tested
whether such a scenario existed for Tn5 insertion. We first

stratified all genome-wide 9mers into 11 levels based on
DNA methylation level in mouse ESCs. Then, we mapped
Tn5 insertion frequency in naked DNA (Supplementary
Figure S5A) and chromatin (Supplementary Figure S5B) in
corresponding 9mers. We observed that compared with the
unmethylated 9mers, methylated 9mers have higher Tn5 in-
sertion frequency, consistent with our previous results (Sup-
plementary Figure S5A). However, for methylated 9mers
(1–10 level), no apparent quantitative correlation between
DNA methylation level and Tn5 insertion frequency was
observed in naked genomic DNA (Supplementary Figure
S5A). In contrast, in the chromatin context, a clear nega-
tive trend was observed (Supplementary Figure S5B). DNA
methylation has been positively associated with nucleosome
occupancy (76), suggesting that this negative trend might
reflect obstruction of Tn5 from the DNA by nucleosomes.
However, analysis within accessible chromatin regions [de-
fined by MACS2 peak caller (54)] showed a similar neg-
ative trend for both naked genomic DNA and chromatin
(Supplementary Figure S5C and D), suggesting that other
transcription-associated confounding factors still exist in
naked genomic DNA that affect Tn5 insertion, such as
other types of DNA modification.

Given that epigenomic features (e.g. DNA methylation)
can affect Tn5 insertion, we sought to determine the im-
portance of these features compared with intrinsic param-
eters (DNA motif and shape). To this end, we again lever-
aged the logistical regression framework in the naked DNA
of mouse ESCs, using a combination of DNA methylation,
DNA motif and DNA shape as input vectors for training.
As these parameters were standardized to the same range
before feeding into the model, we could directly compare
each parameter’s coefficient as a proxy for their relative im-
portance on Tn5 insertion (Figure 4B). We calculated to-
tal parameter importance and position importance by sum-
ming absolute coefficients in each row and column. Strik-
ingly, we found that MGW ranked first, even exceeding the
total importance of DNA motif, further highlighting the
predominant role of DNA shape in biasing Tn5 insertion
(Figure 4B). The importance of this feature may explain
the 10-bp periodicity in Tn5 tagmented fragment size dis-
tribution that we (Supplementary Figure S1A) and others
(5,8) have observed. Consistent with previous reports (22),
we found that DNA methylation has negligible overall im-
portance compared with DNA motif and shape, suggesting
that it plays only a minor role in affecting Tn5 insertion.

Correcting for Tn5 insertion preference in ATAC-seq data re-
covers biologically relevant regulatory information

Based on our finding that nucleotide dependence informa-
tion can faithfully model DNA motif and shape prefer-
ence, we sought to investigate whether using this strategy
for bias correction could benefit general ATAC-seq applica-
tions. It is widely thought that bias correction is more criti-
cal for single-base resolution footprinting analysis, and sev-
eral methods have been developed specifically for this pur-
pose (10,11,24,53). As TFs mainly function in CREs (62),
their footprint often depends on the accessible regions de-
fined by peak callers. Peak calling has been widely adopted
to find enriched Tn5 insertion sites by comparing the sig-
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nal in candidate peaks with background signals, the results
of which are heavily dependent on the local signal inten-
sity (54). Our results suggest that the local signal can be
affected by Tn5 preference, and we therefore sought to de-
termine whether correcting for Tn5 preference can improve
peak calling.

To correct for the intrinsic DNA sequence preference of
Tn5, we leveraged the seqOutBias algorithm (53), which
uses a k-mer-based method to consider higher order nu-
cleotide dependence for correction. We corrected the mouse
ESC ATAC-seq dataset (used in Supplementary Figure
S5B) and fed both the uncorrected and corrected signals
into the MACS2 peak caller (54) for peak identification.

Under the peak calling threshold q < 0.01, we detected
75 017 and 80 041 peaks for uncorrected and corrected
ATAC-seq signals, respectively (Figure 5A). Among these
peaks, 74 607 were shared between uncorrected and cor-
rected signals; 473 and 5657 peaks were specific to uncor-
rected and corrected signals, respectively.

Although most peaks were shared, we sought to inspect
whether bias correction can still benefit these shared peaks
in terms of increased peak detection significance. Given the
similar coordinates of these shared peaks along the genome,
we checked the peak occupancy and significance using the
metric ‘fold enrichment at peak submit’ and ‘−log10(q-
value)’ returned by MACS2 (Figure 5B). Interestingly, we
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Figure 5. Correcting for Tn5 insertion preference recovers transcriptional regulatory information. (A) Venn diagram showing the overlap between uncor-
rected and corrected peak numbers. (B) Comparison of peak calling performance for shared peaks. Left panel: Density plot representation of the ‘fold
enrichment at peak submit’ for pairwise shared peaks. Right panel: The ‘−log10(q-value)’ for pairwise shared peaks. PCC, Pearson correlation coefficient.
(C) IGV visualization of the uncorrected and corrected peaks and associated epigenomic landscape. The left panel shows an uncorrected-specific peak,
and the right panel shows a corrected-specific peak. The bottom shows the ENCODE CREs and RefSeq gene annotation. (D) TF enrichment analysis.
Each dot indicates one of the 856 TF ChIP-seq datasets. Significance was assigned with P < 0.001 as a threshold (Wilcoxon–Mann test).
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found that peak occupancy increased slightly while peak
significance improved substantially, suggesting that correc-
tion can help improve the overall confidence of peak call-
ing detection by more clearly distinguishing the peak signals
from background signals.

To understand the biological significance of these
uncorrected- and corrected-specific peaks, we downloaded
publicly available epigenome data for mouse ESCs from
ENCODE (31), including the H3K4me1, H3K4me3,
H3K27ac, RNA polymerase II (Pol II), WGBS and MNase-
seq, which collectively can be used to comprehensively eval-
uate transcriptional status. RNA-seq data were also used to
measure the transcription output (Figure 5C; see the ‘Ma-
terials and Methods’ section). By visualizing these signals
in IGV, we observed an uncorrected-specific peak upstream
of the Gm31447 gene, which has low H3K4me1, H3K4me3,
H3K27ac and Pol II signals, but high WGBS and MNase-
seq signals (Figure 5C, left panel). This peak did not overlap
with any ENCODE CREs, suggesting that it does not have
a regulatory function. In contrast, we observed a corrected-
specific peak upstream of the Crb2 TSS, which was asso-
ciated with low H3K4me1, H3K27ac, WGBS and MNase-
seq signals. However, high H3K4me3 and Pol II signals were
observed, which jointly indicate that it might be a promoter
element (Figure 5C, right panel). Indeed, this peak overlaps
with a PLS defined by ENCODE (7); furthermore, the Crb2
gene has a strong RNA-seq signal, suggesting that this peak
is an active promoter.

We next sought to examine the functional landscape
of these peaks on a genome-wide scale. To this end, we
downloaded all available 856 TF ChIP-seq datasets from
the Cistrome Data Browser (55,56), which contains 123
types of TFs (see Supplementary Table S3). We built ref-
erence TF binding sites (TFBSs) for these datasets us-
ing the GIGGLE algorithm (57), and then we searched
the four peak sets (uncorrected-shared, corrected-shared,
uncorrected-specific and corrected-specific) against the ref-
erence TFBSs for enrichment analysis (Figure 5D). For
each peak set, the GIGGLE score was calculated for each
TF dataset to represent a composite of TF enrichment and
significance. We observed that the uncorrected-shared and
corrected-shared peaks have similar high TF enrichment,
indicating high transcription regulatory potential. Interest-
ingly, we found that the uncorrected-specific peaks have
low TF enrichment (median GIGGLE score: 8.3), implying
these peaks might be false positives that were called due to
the Tn5 insertion preference. Strikingly, we found that the
corrected-specific peaks have considerable TF enrichment
(median GIGGLE score: 120.2), suggesting that correcting
for Tn5 preference can recover relevant regulatory informa-
tion.

Although the GIGGLE score is independent of the size
of the peak sets compared (57), we sought to test whether
the TF enrichment result was affected by an unequal num-
ber of peaks input in our case. When we sampled an equal
number of peaks (n = 400), we observed consistent results
(Supplementary Figure S6A) compared with all peaks used
(Figure 5D), suggesting that the TF enrichment analysis is
robust. We also searched the genome for a GC content- and
peak length-matched region for each peak in our sampled
peak sets above (n = 400), and then conducted a similar TF

enrichment analysis. Again, we did not observe TF enrich-
ment in these negative control regions (Supplementary Fig-
ure S6B), suggesting that the observed TF enrichment in
our peak sets (Figure 5D) is biologically meaningful.

Collectively, we showed that correcting for the intrinsic
Tn5 preference not only improves the overall significance
for peak detection but also reduces potential false posi-
tives and rescues false-negative peaks. The enriched TFs in
these putative false-negative peaks (n = 5657) should in-
crease the sensitivity for footprinting analysis, providing a
richer view of the regulatory landscape. Our results fur-
ther suggest a broader opportunity to correct for Tn5 inser-
tion preference in ATAC-seq applications beyond footprint-
ing analysis. To facilitate this, we generated a streamlined
pipeline from sequenced raw fastq data to Tn5 preference
corrected signals and peaks, which is freely available to the
community at https://github.com/YenLab/Tn5InsertPrefer/
blob/main/BiasFreeATAC.

DISCUSSION

In this work, we systematically dissected the Tn5 insertion
preference in naked genomic DNA and chromatin across
several model organisms and found that Tn5 has a con-
served insertion preference. This preference is mainly dic-
tated by intrinsic parameters, including DNA motif and
DNA shape, which encode complementary information
from nucleotide dependence. We further found that correct-
ing these intrinsic Tn5 insertion preferences improves the
performance of peak calling algorithms and recovers more
transcriptional regulation information.

Tn5 has been divergently reported to exhibit a preference
for GC-rich or AT-rich regions (17,18,20,21). We revisited
this issue in the context of naked genomic DNA and found
no specific relationship between regional AT/GC content
and Tn5 insertion preference (Figure 1; Supplementary Fig-
ure S2). Based on our analysis, we propose these inconsis-
tencies may arise from studying different species or chro-
matin contexts. Leveraging a machine learning framework,
we found that DNA motif and DNA shape cooperatively
affect Tn5 insertion, while DNA methylation plays a mi-
nor role (Figure 4B). This quantitative result suggests that
it is likely unnecessary to correct for the effect of DNA
methylation in ATAC-seq data analysis pipelines. Never-
theless, we cannot exclude the possibility that the DNA
methylation effect on Tn5 insertion could be amplified dur-
ing DNA methylation-associated sequencing protocols, like
BS-tagging (77) and methyl-ATAC-seq (78). The quanti-
tative measurement also revealed that wider MGW is the
most influential intrinsic parameter. DNase I was reported
to prefer narrower MGW (23), suggesting that different en-
zymes have unique DNA structure preferences that are not
captured with a single DNA motif metric (79). This helps
to explain why the DNase bias correction strategy cannot
be directly applied for Tn5 and motivated us to specifically
model Tn5 preference using the nucleotide dependence in-
formation for computational correction.

To date, Tn5 preference correction has been seen as more
relevant for analyzing footprinting data and has not been
considered for peak calling algorithms because it was gener-
ally thought that this type of global analysis would not suf-

https://github.com/YenLab/Tn5InsertPrefer/blob/main/BiasFreeATAC
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fer from Tn5 preference. Nevertheless, it was recently pro-
posed by the MACS2 team that bias correction before peak
calling might improve performance (80). Indeed, we found
that bias correction recovers many potential false-negative
peaks with considerable TF enrichment (Figure 5C and D).
We propose correcting peaks prior to later analysis could
also improve the overall performance of footprinting algo-
rithms. Specifically, the addition of putative false-negative
peaks could increase the sensitivity of footprinting. Another
potential benefit is that including these peaks might improve
the accuracy of footprinting, as distinguishing bound or un-
bound TF depends on the total number of peaks as back-
ground (10,11). Given these potential advantages, we sug-
gest that analysis pipelines be modified to change the order
of actions such that bias correction precedes peak calling
and footprinting. Such a change requires no extra compu-
tational cost but could broaden the value of the results. We
anticipate the pipeline developed here will mitigate the im-
pact of Tn5 insertion bias on a number of applications.

Tn5 has boosted the development of high-throughput
sequencing methods for studying biological processes, es-
pecially at the single-cell level (Supplementary Table S1).
However, current single-cell data are sparse and noisy along
the genome, frequently requiring imputation or amplifica-
tion of signals (81–83). Our systematic exploration of Tn5
insertion preference may help to relieve the skewness of am-
plified signals stemming from Tn5 insertion preference. Ad-
ditionally, Tn5 tagmentation patterns reflect the biophysical
and biochemical DNA properties along the genome, which
can be deduced from information datasets generated with
Tn5. We envisage more detailed and comprehensive future
explorations of datasets derived from protocols involving
Tn5 will lead to a deeper understanding of the genome and
transcriptional regulation.
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