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Abstract: The non-targeted effects of radiation have been known to induce significant alternations in
cell survival. Although the effects might govern the progression of tumor sites following advanced
radiotherapy, the impacts on the intercellular control of the cell cycle following radiation exposure
with a modified field, remain to be determined. Recently, a fluorescent ubiquitination-based cell-cycle
indicator (FUCCI), which can visualize the cell-cycle phases with fluorescence microscopy in real
time, was developed for biological cell research. In this study, we investigated the non-targeted
effects on the regulation of the cell cycle of human cervical carcinoma (HeLa) cells with imperfect
p53 function that express the FUCCI (HeLa–FUCCI cells). The possible effects on the cell-cycle
phases via soluble factors were analyzed following exposure to different field configurations, which
were delivered using a 150 kVp X-ray irradiator. In addition, using synchrotron-generated, 5.35 keV
monochromatic X-ray microbeams, high-precision 200 µm-slit microbeam irradiation was performed
to investigate the possible impacts on the cell-cycle phases via cell–cell contacts. Collectively, we
could not detect the intercellular regulation of the cell cycle in HeLa–FUCCI cells, which suggested
that the unregulated cell growth was a malignant tumor. Our findings indicated that there was
no significant intercellular control system of the cell cycle in malignant tumors during or after
radiotherapy, highlighting the differences between normal tissue and tumor characteristics.

Keywords: cell cycle; fluorescent ubiquitination-based cell-cycle indicator; HeLa cell; non-targeted
effect; microbeam; radiotherapy

1. Introduction

Recent advances in radiotherapeutic technology have made it possible to efficiently
focus the dose to the planned target volume (PTV); however, the approach to completely
irradiate only tumor cells has not yet been established. Therefore, there is a spatially
non-uniform dose distribution in the normal tissues surrounding the PTV, and as a result,
adverse events due to radiation damage can still occur. In addition, where irradiated
areas and non-irradiated areas coexist, it is known that cells that do not directly receive
radiation doses receive signals from neighboring irradiated cells and behave as though
they have been exposed to modified radiation fields. These well-documented responses are
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collectively known as the non-targeted radiation effects, although the underlying molecular
mechanisms remain to be determined [1]. Several studies have shown significant alterations
in cell survival in vitro in spatially modified radiation fields, experimentally [2–4] and
theoretically [5–7]. This impact on cell survival is partially driven by intercellular signaling
via gap junctions or soluble factors between irradiated cells and non-irradiated cells in
living systems [8–11]. However, the non-uniform, radiation-induced impacts on the cell
cycle have not been fully determined, although the cell cycle is closely related to cell death.
From the point of view radiation biology, and also clinical oncology, it is important to
understand how the cell cycle is regulated in spatially modulated radiation fields.

A fluorescent ubiquitination-based cell-cycle indicator (FUCCI) technique has been
developed to easily and clearly visualize the cell-cycle phases using fluorescence mi-
croscopy [12,13]. While Cdt1 is a deoxyribonucleic acid (DNA) replication-licensing factor
expressed in the G1 phase, the expression of the Cdt1 inhibitor, Geminin, was observed in
the S/G2/M phases. Thus, the protein levels of Cdt1 and Geminin oscillated inversely [12].
The cells that expressed FUCCI changed from red in the G1 phase to yellow in the G1/S
interphase and then to green in the S, G2, and M phases in the fluorescence microscope
field. Geminin and Cdt1, which fused to a green fluorescent reporter and red fluorescent
reporter, respectively, were expressed at specific points in the cell cycle. Therefore, this
technique is a useful approach for tracking cell-cycle progressions in individual cells using
live-cell fluorescence imaging. In fact, previous studies have shown that cell-cycle arrest
can be visualized using a treatment of agents, such as drugs [14–18] and ultraviolet (UV)
irradiation [19].

In the current study, we hypothesized that the non-targeted effect on the regulation of
the cell cycle can induce significant alterations in cell survival in modified radiation fields.
To approach the hypothesis, we employed a subline of the human cervical carcinoma HeLa
cells that expresses the FUCCI (HeLa–FUCCI cells). The non-targeted effect on the cell
cycle was analyzed after their exposure to a modulated radiation field configuration, where
half of the cell population was shielded, that delivered non-uniform dose distributions.
The non-uniform dose profiles for each configuration are shown in Figure 1a,b. Thus,
there were four sample groups, namely the uniform, in-field, out-of-field, and no (control)
exposures. The dose distributions were confirmed using Gafchromic XR-RV3 radiochromic
film (Ashland Inc., Covington, KY, USA), which showed that the scattered dose under the
shielding was approximately 2–3% of the full dose delivered to the exposed region [2].
This setting was considered to be suitable for the detection of non-targeted effects via
soluble factors. In addition, using synchrotron X-ray microbeams [20], high-precision
200 µm-slit microbeam irradiation was performed. As shown in Figure 1c,d, in this study,
we employed high-precision 200 µm-slit irradiation (using center-to-center distances of
400 µm). The microbeam size was adjusted using a four-dimensional slit system. As
previously described [21], we applied a Monte Carlo particle transport simulation code,
PHITS ver. 2.96 [22], to calculate the micro-slit dose profiles. Doses delivered by the
secondary electrons to the outside (valley) region of the microbeam area were negligible
(0.25%) due to their short range (1.1 µm maximum). This was considered suitable for the
detection of non-targeted effects via gap junctions or cell–cell contacts.

We previously demonstrated that the cell-cycle phases of irradiated HeLa cells can
be modulated following exposure to conventional 150 kVp X-rays [23] and synchrotron-
generated 5.35 keV monochromatic X-rays [24]. In addition, we reported the fates of both
irradiated cells and non-irradiated bystander cells in the HeLa–FUCCI cell population
using time-lapse imaging [25]. The result suggested that the cell-cycle distributions of the
bystander cells were not significantly affected by microbeam exposure of the selected cells
in a small colony composed of 20 cells or less, although some bystander cells showed cell
death after a few cell divisions. However, the non-targeted, radiation-induced impacts
on the cell-cycle regulation, focusing on spatially non-uniform dose distribution, remain
to be determined. Further investigations with the FUCCI method will be imperative to



Int. J. Mol. Sci. 2021, 22, 12785 3 of 10

offer new insights into the non-targeted radiation effects and their clinical applications for
cancer treatment.
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able to bypass the G1 checkpoint, whereas the G2/M checkpoint was functional. HeLa–
FUCCI cells were probably functionally p53 deficient; however, this detail remains to be 
determined. HeLa cells that expressed wild-type TP53 and had no mutations were, none-
theless, identified as P53 null when the E6 protein expressed from an endogenous papillo-
mavirus degraded TP53 and left no protein to be detected using Western blot analysis [26]. 
Thus, the G1/S checkpoint governed by p53 activated through ATM and its downstream 
factor, Chk2, did not function properly in HeLa cells [27]. The G2/M checkpoint, by con-
trast, worked via a pathway through which the cell-cycle check point factors, Chk1 and 
Cdc25, were activated by ATR [28]. The G2/M cell-cycle arrest became remarkable, which 
indicated that the release from radiation-induced, cell-cycle arrest required cellular pro-
cesses,e which presumably sustaind the Chk1′s inhibition pathway of Cdc2/Cyclin B phos-
phorylation by Cdc 25 [29]. 

Figure 1. Irradiation settings and the dose profiles. (a) Schematic representation of the half irradiation
field. Cells were irradiated at 8 Gy in a single T25 flask. (b) Dose profiles of the half irradiation
field, calculated with PHITS code. A 0.5 cm exclusion zone, where cells were not analyzed, was
established to allow for uncertainties in the setup and avoid analysis at any steep dose gradients.
(c) Schematic representation of the 200µm-wide microbeam irradiation setting. (d) Dose profiles of
the 200µm-wide microbeams, calculated with PHITS code. The beam intensity was essentially flat
within the beam width.

2. Results and Discussion

We confirmed the cell-cycle arrest in the G2/M phase following exposure to 8 Gy
X-rays. As shown in Figure 2a, up to approximately 24 h after irradiation, release from the
arrest was clearly observed, and then redistribution to the control state gradually occurred.
This result supported the reproducibility of previous reports [19,20]. HeLa–FUCCI cells
were able to bypass the G1 checkpoint, whereas the G2/M checkpoint was functional.
HeLa–FUCCI cells were probably functionally p53 deficient; however, this detail remains
to be determined. HeLa cells that expressed wild-type TP53 and had no mutations were,
nonetheless, identified as P53 null when the E6 protein expressed from an endogenous
papillomavirus degraded TP53 and left no protein to be detected using Western blot
analysis [26]. Thus, the G1/S checkpoint governed by p53 activated through ATM and
its downstream factor, Chk2, did not function properly in HeLa cells [27]. The G2/M
checkpoint, by contrast, worked via a pathway through which the cell-cycle check point
factors, Chk1 and Cdc25, were activated by ATR [28]. The G2/M cell-cycle arrest became
remarkable, which indicated that the release from radiation-induced, cell-cycle arrest
required cellular processes, which presumably sustaind the Chk1’s inhibition pathway of
Cdc2/Cyclin B phosphorylation by Cdc 25 [29].
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field, in-field, and uniform exposures. The color of the bars indicates the color of the cells, respectively. 
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and between the control and the out-of-field exposures, which suggested that there was no detectable, 
non-targeted effect. NS stands for Non-Significant (chi-square test). 

Figure 2. Cell-cycle distributions of HeLa–FUCCI cells following exposure to modulated radiation
fields. (a) Representative fluorescent images of HeLa–FUCCI cells 0, 12, 24, and 48 h following
exposure to the half irradiation field (refer to Figure 1). Cell nuclei are indicated by the red, yellow,
green, and colorless regions depending on their cell cycles: G1, G1/S, S/G2, and M, respectively.
Scale bar, 100 µm. (b) Summary graph of fluorescent color distributions in HeLa–FUCCI cells after
the control, out-of-field, in-field, and uniform exposures. The color of the bars indicates the color of
the cells, respectively. There was no difference in the cell-cycle distribution between the uniform and
the in-field exposures and between the control and the out-of-field exposures, which suggested that
there was no detectable, non-targeted effect. NS stands for Non-Significant (chi-square test).
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Figure 2b shows the temporal changes in the fluorescent color distributions in HeLa–
FUCCI cells after the uniform, in-field, and out-of-field exposures. The fluorescent colors
of HeLa–FUCCI cells showed their cell-cycle progressions, suggesting radiation-induced
impacts. The green HeLa–FUCCI cells accounted for more than 80% of the total cells
12 h after the uniform and in-field exposures. However, the chi-square test showed that
there was no difference in the cell-cycle distribution between the control exposure and
the out-of-field exposure, and between the in-field exposure and the uniform exposure.
According to several previous studies [8–11], the non-targeted effects can induce significant
alternations in the cell survival via soluble factors following exposure to modified radiation
fields. However, in this study, the impact on the cell cycle could not be detected.

Next, using microbeams, we further verified the above results. We employed the
staining of γ-H2AX to confirm the 50% 200 µm-slit irradiated areas. Figure 3 shows the
representative images of HeLa–FUCCI cells 0, 2, 4, 6, and 8 h after exposure to 10 Gy
200 µm-slit-modulated X-rays. The γ-H2AX foci formation confirmed DNA double-strand
breaks (DSBs) in the nucleus, and the distribution in the culture clearly depended on the
shape of the irradiated area (peak region).
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Figure 3. γ-H2AX-stained images of HeLa–FUCCI cells following exposure to 200 µm-slit X-ray
beams. Cells were irradiated using 200 µm-slit X-ray beams. Representative γ-H2AX-stained images
of FUCCI cells 0, 2, 4, 6, and 8 h after irradiation. The distribution of immune-stained γ-H2AX in
the sample was a good approximation of the shape of the 200 µm-slit irradiation patterns. Scale bar,
200 µm.

To investigate the non-targeted effects on the regulation of the cell-cycle, we applied
time-lapse imaging to investigate the cell-cycle arrest and release of HeLa–FUCCI cells
following exposure to 8 Gy 50% 200 µm-slit-modulated X-ray beams (Figure 4). The time
variation in the cell-cycle arrest was inconsistent with the kinetics of γ-H2AX foci formation,
as DSB rejoining was a faster process than the passage of the cell cycle checkpoint that
progressed within several hours [30]. The chi-square test showed no difference in the
cell-cycle distribution between the control (non-irradiated) and the valley regions.
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Figure 4. Time-lapse imaging of HeLa–FUCCI cells following exposure to 200 µm-slit X-ray beams.
(a) Representative fluorescent images of HeLa–FUCCI cells 0, 12, 24, and 48 h following exposure to
the 200µm-wide microbeams (refer to Figure 1). Cell nuclei are indicated by the red, yellow, green,
and colorless regions depending on their cell cycles: G1, G1/S, S/G2, and M, respectively. Scale bar,
200 µm. (b) Summary graph of fluorescent color distributions in HeLa–FUCCI cells in the control,
valley, and peak regions. The color of the bars indicates the color of the cells, respectively. There was
no difference in the cell-cycle distribution between the control and the valley regions, which suggests
that there was no detectable non-targeted effect. NS stands for Non-Significant (chi-square test).

In this study, using intensity-modulated radiation fields and the FUCCI technique,
we investigated the non-targeted effects of radiation on the cell cycle in HeLa cells. It
is known that spatial constraints (i.e., limitations on available space due to the presence
of neighboring cells) impose constraints on cell functions, including cell cycles and pro-
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liferation, although it remains unclear whether mechanical constraints control cell-cycle
progression in cell populations and at what stage of the cell cycle this regulation may
occur [31,32]. However, in the current study, the intercellular control of the cell cycle in
HeLa cells, via soluble factors and cell–cell contacts, following exposure to modulated and
micro-slit X-ray fields was not detected, which suggested that the unregulated cell growth
was a malignant tumor. Cancer cells that undergo uncontrolled cell-cycle progression
and cell-cycle checkpoints need to be defective for a cell to become cancerous. There is a
possibility that a signaling pathway in the regulation of the cell cycle, if it exists at all, does
not properly work in p53 and its downstream p21 pathway-deficient cells. In addition,
as suggested by the results of this study, the intercellular regulatory mechanisms for the
cell cycle may not function in malignant tumors. Thus, it may be that there is no synergy
between chemotherapy with cell-cycle inhibitors and non-targeted effects associated with
radiation therapy.

Modern radiotherapy techniques, such as intensity-modulated radiotherapy, image-
guided radiotherapy, and tomotherapy, can conform precious dose distributions to target
tumors, thereby reducing the adverse effects in normal surrounding tissues. However,
such heterogeneous dose distributions have been shown to cause non-targeted effects that
are mediated by intercellular signaling from irradiated cells in high-dose regions to those
in low-dose regions. From the point of view of radiation biology, and also clinical oncology,
further investigations on the loss of intercellular control following exposure to modulated
radiation fields will offer genuine promise for further understanding the characteristics of
cancer cells, as well as novel radiotherapeutic approaches. As a next step, we would prefer
to use flow cytometry to examine the criminal changes in the cell cycle of irradiated and
non-irradiated cells, for example, in cells without FUCCI or other cancer cells.

3. Materials and Methods
3.1. Cell Culture

A subline of the HeLa–FUCCI cells, RCB2812 HeLa.S–FUCCI, which is a cell-cycle
marker [12], was provided by the RIKEN BioResource Center in Japan. The cells were
cultured in Dulbecco’s Modified Eagle’s medium (Wako Pure Chemicals, Osaka, Japan),
which contained 10% fetal bovine serum (Biological Industries, Kibbutz Beit-Haemek, Is-
rael) and 1% antibiotic-antimycotic (Life Technologies, Carlsbad, CA, USA), in a humidified
incubator maintained at 37 ◦C in an atmosphere with 95% air and 5% CO2. The HeLa–
FUCCI cell doubling time was approximately 18 h under the conditions. Pre-cultured HeLa
cells were seeded into a T25 flask (Nunclon surface NUNC) or a 35 mm diameter dish
(Falcon 35 mm Easy-Grip dish) in order to reach 90–100% confluency the following day.
The rate was set at a relatively high level, considering the possibility of signal transduction
by cell–cell contacts.

3.2. Conventional X-ray Settings and Modulated Fields

As previously reported [23], the cells were exposed to X-rays via the lid of a culture
dish using an X-ray generator with a W-target that was operated at a tube voltage of
150 kVp (Softex, Kanagawa, Japan), which was operated at a tube voltage of 150 kV, and a
tube current of 4.1 mA. The characteristic X-rays from the tungsten anode were applied to
expose the samples, and the most intense energy was approximately 60 keV. The 0.2 mm
aluminum filter was applied to filter the X-rays that were lower than 7 keV. The dose
rate was 1 Gy/min, and the total doses of the X-rays absorbed by the cells were set to be
8 Gy because preliminary tests showed that it was difficult to detect the G2/M arrest in
HeLa–FUCCI cells at doses lower than 8 Gy. We also utilized an XRAD225 X-ray cabinet
(Precision X-ray Inc., Bradford, PA, USA) to confirm the reproducibility of the results
(13.3 mA, 225 kVp, 2 mm Cu filtered, 0.59 Gy/min, and 8 Gy).

To achieve non-uniform dose distributions, in which half of the cell population was
shielded, we applied a Pb shielding material downstream of the X-ray source. Cells were
irradiated in a T25 flask, with the exclusion region omitted from the analysis. A 0.5 cm
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“exclusion region” was set where cells were not analyzed, which allowed for uncertainties
in the setup and avoided analysis at any steep dose gradients. Doses given by strayed
secondary electrons from the exposed area were also not considered.

3.3. Synchrotron X-ray Microbeam Settings and Micro-Slit Fields

The 5.35 keV monochromatic X-ray microbeam irradiation was performed using the
synchrotron beamline BL-27 at the Photon Factory of the High Energy Accelerator Research
Organization (KEK) in Japan [33].

Synchrotron-generated X-rays from the Photon Factory comprised a source of quasi-
parallel X-ray microbeams that could be employed as a powerful probe to target specific
sites in a living system, including tissues [34]. The ability to select individual cells or
regions of tissues for localized irradiation was the key to determining the role of intra- and
inter-cellular signals.

3.4. FUCCI Imaging

To visualize red (570 nm) fluorescence emissions and green (505 nm) fluorescence emis-
sions from the cell nuclei, a fluorescence microscope BZ-X700 (KEYENCE, Osaka, Japan)
equipped with an automatic filter wheel was employed. The cycling of fluorescent colors
in HeLa–FUCCI cells was expressed as expected—red→yellow→green→colorless→red—
which reflected progression via different cell-cycle stages (G1→G1/S→S/G2→M→G1).

3.5. Immunochemical Staining

Immunochemical staining for serine-139 phosphorylated histone H2AX (γ-H2AX) was
performed to confirm the irradiated regions following exposure to 200 µm-slit-modulated
X-ray beams. For immunofluorescence staining, cells were fixed with 2% paraformaldehyde
in phosphate-buffered saline (PBS) and treated with 0.5% Triton X-100 (Sigma, St. Louis,
MO, USA). To block and dilute primary or secondary antibodies, 5% goat serum (Ther-
moFisher scientific, Waltham, MA, USA) in PBS was employed. Primary mouse monoclonal
anti-γ-H2AX antibody (Merck Millipore, Billerica, MA, USA) and secondary goat anti-
mouse Alexa Fluor 647 (ThermoFisher scientific, Waltham, MA, USA) were employed.

3.6. Data Analysis

We observed more than 100 cells in each group, namely the uniform, in-field (peak),
and out-of-field (valley) exposures, as well as the non-irradiated (control) from more than
three independent experiments on different days. The statistical significance in the cell-
cycle distributions was determined using the chi-square test. Statistical significance was
defined as p ≤ 0.05.

4. Conclusions

To our knowledge, using synchrotron X-ray microbeams, high-precision 200 µm-slit
irradiation was first performed to investigate non-targeted radiation effects on the inter-
cellular regulation of the cell cycle in cancer cells. In this study, with intensity-modulated
radiation fields and the FUCCI technique, we investigated the non-targeted radiation
effects on the cell cycle in HeLa cells. We found that intercellular regulation of the cell
cycle via soluble factors and cell–cell contacts following irradiation was hardly detected,
indicating the uncontrolled cell-cycle progression.
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