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Patients after solid organ transplantation (SOT) carry a substantially increased risk to developmalignant lymphomas.This is in part
due to the immunosuppression required tomaintain the function of the organ graft.Depending on the transplanted organ, up to 15%
of pediatric transplant recipients acquire posttransplant lymphoproliferative disease (PTLD), and eventually 20% of those succumb
to the disease. Early diagnosis of PTLD is often hampered by the unspecific symptoms and the difficult differential diagnosis, which
includes atypical infections as well as graft rejection. Treatment of PTLD is limited by the high vulnerability towards antineoplastic
chemotherapy in transplanted children. However, new treatment strategies and especially the introduction of the monoclonal anti-
CD20 antibody rituximab have dramatically improved outcomes of PTLD. This review discusses risk factors for the development
of PTLD in children, summarizes current approaches to therapy, and gives an outlook on developing new treatment modalities like
targeted therapy with virus-specific T cells. Finally, monitoring strategies are evaluated.

1. Introduction

Progress in solid organ transplantation (SOT) dramatically
improved the prognosis for children and adolescents with
hereditary or acquired terminal organ failure. Immunosup-
pressive induction andmaintenance regimens were instituted
to prevent organ graft rejection by the recipient’s immune
system. On the downside of pharmacological immunosup-
pression, a decreased immunological surveillance of infec-
tions and malignancies is observed. Pediatric and adolescent
patients after SOT carry an increased risk of cancer develop-
ment, which is estimated to exceed the normal population’s
up to 45-fold, depending on the type of cancer [1]. The most
frequent malignant complications in children are posttrans-
plant lymphoproliferative diseases (PTLDs), often arising in
the context of prior Epstein-Barr virus (EBV) infection. The
incidence of PTLD depends on the type of organ trans-
planted, the respective intensity of immunosuppression, and

the recipient’s viral status prior to transplantation; it varies
between 1 and 2% in pediatric renal transplant recipients and
up to 20% in recipients of lung or intestinal transplants [2–4].

This review focuses on special characteristics of patho-
genesis, treatment, and prognosis of PTLD in children and
adolescents after SOT.

2. Pathophysiology

Pathophysiology of PTLD is only partially understood, and
its etiology is most probably multicausal. Despite all uncer-
tainties, EBV infections and transplant-related immuno-
suppression are unquestioned elements of posttransplant
lymphomagenesis.

2.1. EBV Infection. EBV is a human oncovirus belonging to
the group of gammaherpesviruses. Primary infection with
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EBV usually occurs during childhood or adolescence, and by
the age of 30, more than 90% of the population have become
seropositive [5].

Directly after B-cell infection, EBV establishes a nonpro-
ductive (“latent”) infection that is divided into four types
(latency type 0 to 3) characterized by distinct viral gene
expression profiles [6]. Upon specific stimulation, EBV may
switch into a productive (“lytic”) mode of infection, in which
viral progeny is produced by the infected cell.

2.2. EBV-Driven B-Cell Proliferation. In vitro EBV infection
of B cells results in the outgrowth of immortalized lym-
phoblastoid B-cell lines (LCLs), which express the latency
type 3 program. This “growth program” is characterized
by the expression of nine proteins: three latent membrane
proteins (LMPs) and six EBV-associated nuclear antigens
(EBNAs). These mimic external growth signals (LMP1
and LMP2) or directly regulate gene expression (EBNA2,
EBNA3c), thereby driving the infected cell into proliferation
[7].

In type 2 latency (“default program”), EBV gene expres-
sion is limited to the LMPs and EBNA1. Hereby, EBV supplies
the infected B-cell with signals, which are usually received
upon antigen contact in the germinal center. These signals
drive the infected cell towards the memory B-cell stage. In
type 1 latency, only EBNA1, a gene required to maintain the
viral genome during mitosis, is expressed. In latency type 0,
no EBV protein is expressed in the infected cell [8, 9].

Induction of lytic replication in some of the latently
infected cells leads to the production and release of infectious
viral progeny that can infect neighboring B cells, thereby
promoting virus spreading and EBV-associated B-cell prolif-
eration [8].

The contribution of EBV to the etiology of PTLD is
inferred by the high proportion of EBV-positive pediatric
PTLDs (70%) [3, 10], which is much higher than that
observed within the B-cell reservoir of latently infected
healthy EBV carriers, where only one in 1,000 to 100,000
peripheral B cells is EBV-positive [11].

2.3. Impaired T-Cell Control of EBV-Induced B-Cell Prolif-
eration. EBV-infected B cells normally induce strong CD8+
and CD4+ T-cell responses, which control the proliferation
of infected B cells in vitro and in vivo. The T-cell response is
directed against a broad set of viral gene products expressed
either during the latent or the lytic reactivation cycle of
EBV and, in addition, against some cellular antigens that
might either mimic viral antigens or are overexpressed in the
context of EBV infection [12].

For establishing LCL from peripheral blood in vitro,
this potent T-cell response has to be inhibited, either by
using immunosuppressants like cyclosporine A (CSA) or by
removing T cells from the cell population.

Impaired T-cell responses in vivo due to primary or
secondary immunodeficiency greatly increase the risk of
uncontrolled B-cell proliferation. For example, transplant
recipients receiving medical immunosuppression as well
as patients suffering from the acquired immunodeficiency

syndrome (AIDS) carry an elevated risk of EBV-associated
lymphomas [8].

2.4. Additional Factors. Despite its undoubted role, EBV
infection alone may not be sufficient to induce PTLD [13, 14].
Some characteristic mutations (e.g., c-myc translocations in
Burkitt’s or Burkitt-like PTLD [15]) have been described.
How these genetic alterations collaborate with EBV in B-cell
transformation and lymphomagenesis remains unknown.

3. Clinical Risk Factors for Development of
PTLD

3.1. EBV. EBV seronegativity at transplantation is a very
potent risk factor for the development of PTLD. Seronegative
patients carry a 4-fold increased risk of PTLD [16–19]. The
prognostic value of EBVmonitoring after transplantationwill
be discussed separately.

3.2. CMV. Like EBV, seronegativity for the cytomegalovirus
(CMV) at the time of transplantation is a potential risk factor
for PTLD, although the effect is not as strong as for EBV and
less consistent [19, 20].

3.3. Age at Transplantation. Organ recipients younger than
18 years at transplantation are believed to have a 2- to 4-fold
higher risk to develop PTLD than adult transplant patients
(Table 1) [17, 21].Within the pediatric age group, there is some
evidence of an increased risk in younger children [16, 22],
although this is not consistent between studies [23]. EBV
has been suggested to be the link between age and PTLD
risk. Younger children are more likely to be EBV-negative
at transplantation and therefore at higher risk for PTLD
development.

3.4. Organ Graft. A large recent study on PTLD in both
pediatric and adult SOT recipients with more than 160,000
participants revealed an approximately doubled PTLD inci-
dence in liver transplant (LTx) recipients compared to renal
transplant (RTx) recipients (Table 1). The same was true for
the comparison of RTx recipients to heart transplant (HTx)
recipients (hazard ratio 1.2 for EBV-negative recipients, 𝑃 =
0.222) [17].

Among pediatric patients, overall incidences for PTLD
are smallest in RTx recipients with 2-3% at 5 years post-
transplantation [21, 22] and 6% in pediatric HTx recipients
5 years after transplantation [16]. Data on PTLD incidence
after pediatric LTx are available from small case series, usually
from single centers [24–26]. Herein, overall incidences of 5–
10% are reported, but median followup for the entire cohort
was either longer than 5 years [24, 25] or not reported [26].
PTLD is most frequent in pediatric lung transplant recipients
(overall PTLD incidences of approximately 15% [27, 28]) or
recipients of intestinal grafts (predicted incidence 20 ± 5%)
[29].

Mismatches in the HLA-DR locus between graft and
recipients seem to be important at least in kidney transplant
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Table 1: Pediatric and adult PTLD.

Pediatric PTLD Adult PTLD
Reference Reference

EBV serostatus at transplantation
Negative 78% [10] 13%∗ [125]
Positive 22% 87%∗

EBV association of PTLD 90% [10] 45% (−69%∗) [60, 125]
Histology

Polymorphic 16%

[10]

27%∗

[125]
Monomorphic 72% 65%∗

Hodgkin’s disease 9% 7%∗

B-cell origin 97% 93%∗

T-cell origin 3% 6%∗

First-line treatment (B-cell
disease)

Rituximab +/− reduced
intensity chemotherapy [63] Rituximab +/−

standard chemotherapy [60]

Prognosis 2-year overall survival
80–90% [63] 2-year overall survival

60–70% [60]

Incidence according to
transplanted organ

Kidney 2%-3% [21, 22] 1.0%–2.3%

[4]
Liver 5%–10% [24–26] 1.0%–2.3%
Heart ∼6% [16] 1.0%–6.3%
Lung ∼15% [27, 28] 2.4%–10.0%
Small bowl ∼20% [29] 20%

∗Adult data derived from a KTx population.

recipients: in a large retrospective analysis a complete HLA-
DR mismatch confers a 2-fold increased risk of PTLD
development [30].

3.5. Time Point after Transplantation. Time from transplan-
tation to PTLD has a bimodal distribution in children with
one peak in the first year after transplantation (early PTLD)
and another in the second to third year (Figure 1) [10, 15].
Almost all early PTLDs are EBV-associated and frequently
present atypicallywith extranodal or graft organ involvement.
Late PTLDs aremore likely to present as “classical” lymphoma
and often display the diagnostic oncogenic mutations of their
counterparts in immunocompetent patients (i.e., transloca-
tions involving the c-myc locus) [10].

3.6. Type of Immunosuppression

3.6.1. Induction with Monoclonal Antibodies. T-cell depleting
antibodies like antithymocyte globulin (ATG) or muro-
monab-CD3 (OKT3) as well as interleukin-2 (IL-2) receptor
specific antibodies like basiliximab or daclizumab are widely
used to induce graft tolerance, but their impact on PTLD
development is difficult to estimate [31]. Best evidence is
available forOKT3 to increase PTLD rates [22, 32–34]. Still, in
some studies low incidences of PTLDeven in the context of T-
cell depleting antibodies have been observed [35] suggesting
that confounding factors might play an important role.
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Figure 1: Time from transplantation to diagnosis of PTLD of 127
patients in the German Ped-PTLD registry. Kaplan-Meyer curve
(continuous line) and 95% confidence intervals (dotted curve). Note
the rapid increase within the first year and another in the third year.

3.6.2. Immunosuppressive Maintenance. Although the influ-
ence of immunosuppression in the pathogenesis of PTLD
is widely accepted, there is no consensus about the impact
of a single agent. Differences between CSA and tacrolimus
have been discussed in several studies [17, 22, 36]. In some
studies a higher risk of PTLD has been associated with the
use of tacrolimus, while others were unable to find significant
differences. However, most data derive from retrospective
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Figure 2: Distribution of histological subtypes of pediatric PTLD reported to the German Ped-PTLD registry.

studies, they still need to be confirmed in prospective con-
trolled trials.

Mycophenolate mofetil (MMF) is virtually always used in
combination with other immunosuppressive drugs, hamper-
ing the possibility to analyze its influence separately. Despite
these limitations, the addition of MMF does not seem to
increase the risk of PTLD [18, 37, 38]. In contrary, some
studies suggest that the risk may be reduced in selected
patients [37, 38], but the results are too inconsistent to draw
final conclusions.

Protective effects were proposed for immunosuppressive
drugs belonging to the group of mammalian target of
rapamycin inhibitors (mTOR-I), because mTOR signaling
pathways are activated in many PTLD cases [39, 40]. Nev-
ertheless, recent studies reported slightly increased PTLD
incidences during maintenance therapy with mTOR-I-based
immunosuppression [19, 41].

4. Classification

Since symptoms of PTLD are often unspecific, diagnosis of
PTLD requires cell and/or tissue sampling for histopathologic
examination. Per definition, every lymphoid malignancy
arising after transplantation is classified as PTLD. The his-
tological characteristics are not specific, therefore knowledge
about the transplant history is essential for the pathologist to
differentiate PTLD from other types of lymphoproliferation.
The 2008 WHO classification for lymphoid malignancies
[42] divides PTLD into four major categories: early lesions,
polymorphic PTLD, monomorphic PTLD, and Hodgkin’s
disease/Hodgkin-like PTLD. These are often difficult to dif-
ferentiate, and an experienced pathologist is required tomake
the definitive diagnosis. Especially in pediatric patients, an
external review of PTLD-suspected tissue samples is highly
recommended.

4.1. Early Lesions. Early lesions show oligo- or polyclonal
proliferations of EBV-positive B cells while the underlying

tissue architecture is preserved. The B cells may either
have a predominantly immunoblastic phenotype (infectious
mononucleosis like early lesion PTLD) or a plasma-cell
phenotype (plasmacytic hyperplasia early lesion PTLD).

4.2. Polymorphic PTLD. Like early lesions, polymorphic
PTLDs demonstrate oligo- or polyclonal B-cell proliferations,
but here, the infiltrating cells destroy the original architecture
of the host tissue. While polymorphic PTLD can easily be
differentiated from early lesions in lymph nodes, this can be
very difficult in extranodal PTLD [43].

4.3. Monomorphic PTLD. All PTLDs fulfilling the histopa-
thologic criteria of “classical” non-Hodgkin’s lymphoma
(NHL) are diagnosed according to the classification of non-
transplant associated lymphomas. Within pediatric registry
studies,monomorphic PTLDs account for 35–83%of all cases
[3, 10, 15]. The high variability may be in part explained
by underreporting of early stage PTLD that resolves with
reduction of immunosuppression alone. B-cell lymphomas
(in particular diffuse large B-cell lymphoma, (DLBCL)) rep-
resent the most frequent single entity (Figure 2). T-cell NHL
or plasmacytoma is less frequently observed. Monomorphic
PTLD may be monoclonal or polyclonal by molecular IgH
or T-cell receptor analysis. Some more specific entities are
characterized by chromosomal translocations, for example,
Burkitt’s lymphoma by the rearrangement of the c-myc locus.

4.4.Hodgkin’s Disease/Hodgkin-Like PTLD. ClassicalHodgk-
in’s disease andHodgkin-like PTLDalso belong tomonomor-
phic PTLDs, but due to their special histological and clinical
features, they represent a separate group within the WHO
classification.
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5. Therapy

The two basic principles of current standard PTLD treatme-
nts are reconstitution of anti-EBV/antitumor immune respo-
nses, and, if this is not sufficient, antineoplastic immuno-/
chemotherapy (+/− radiotherapy). Both approaches are lim-
ited by the patients’ pre-existing condition: reconstitution of
immune responses carries the risk of transplant rejection,
which may be intolerable in some circumstances. On the
other hand, the patients may be unable to tolerate the side
effects of chemotherapy or radiotherapy due to their medical
history.

5.1. Reconstitution of the Immune Response. Reduction of
immunosuppressive drugs (RIS) is a key component of PTLD
therapy in every patient. It may be sufficient to induce
complete remission (CR) as a single therapeutic strategy
in some patients [44]. However, it has to be taken into
account that transplant rejections occur in about 40% of all
RIS patients [45, 46] and require re-intensification of the
immunosuppressive regimen. Balancing immune reconstitu-
tion versus the risk of graft rejection is therefore challenging
and requires expert guidance and interdisciplinary coopera-
tion of transplant physicians and oncologists.

Current guidelines recommend RIS wherever possible,
but due to heterogenous strategies, the documented effective-
ness of RIS still varies between studies.While some retrospec-
tive studies report CR in up to 50% of the patients [46], the
only available clinical trial that included systematic RIS did
not demonstrate anyCR and achieved partial remissions (PR)
in only 1/16 patients [45]. However, a selection bias may have
led to an underestimation of the effectiveness of RIS in this
trial, because histological confirmation wasmandatory for all
patients. This might have led to the inclusion of patients with
poor risk factors responding poorly to RIS. In children, the
effectiveness of RIS is even less clear. Anecdotal data report
survival rates of 30–73% with RIS alone [36, 47–49].

However, when RIS is given to PTLD patients, very close
monitoring is mandatory to recognize progressive disease
and/or rejection as early as possible [50, 51]. In adult patients,
elevated lactate dehydrogenase (LDH), organ dysfunction
at diagnosis or multiorgan involvement of PTLD [46] may
help identify patients at high risk of RIS treatment failure
who might require further therapy [51]. No parameters
are published to predict the response to RIS in pediatric
patients. Therefore, patients with advanced disease, patients
in poor clinical conditions, and patients with rapid disease
progression should be considered as high risk patients who
might need supplementary or alternative treatment.

5.2. mTOR Inhibitors. mTOR-inhibitors like rapamycin/
sirolimus and everolimus are currently evaluated in small
clinical trials for their therapeutic effect in hematologic
malignancies, and some promising data have been published
[52]. mTOR signaling pathways have been found activated in
PTLD tissue [39], and antiproliferative effects of rapamycin
on EBV-transformed B-cell lines have been observed in
vitro [53]. In vivo, encouraging response after a conversion

from calcineurin inhibitors to mTOR-I has been reported
[54]. A detailed analysis of the interplay between EBV,
PTLD, and mTOR-I is given in [55]. Therefore, a change
in immunosuppressive therapy towards an mTOR-I-based
regimen may be beneficial, although this rationale still needs
to be evaluated in prospective trials. It is an interesting notion
that these drugs seem to be beneficial for the treatment of
PTLD, while their impact in PTLD prevention/prophylaxis
may be disadvantageous (see Section 3.6.2).

5.3. Antineoplastic Drugs. Often, modification of immuno-
suppression will not be sufficient to induce long-term com-
plete remission of PTLD. Cytoreductive drugs (antibodies
and/or chemotherapy) are necessary to substantially control
PTLD activity in most patients.

5.3.1. Rituximab. After the inclusion of the anti-CD20 anti-
body rituximab into standard regimens, outcome of PTLD
treatment improved drastically [56]. A 2-year progr-
ession-free survival of >40% was achieved with rituximab
monotherapy in adults [57–59], but additional cytotoxic
chemotherapy was required to cure PTLD in the majority of
adult patients [60].

After documentation of favorable responses to rituximab
also in pediatric PTLD [61, 62], rituximab has become
standard element of the treatment for CD20 positive pediatric
PTLD [63, 64]. The German Pediatric PTLD study group
developed a phase II clinical trial protocol (“Ped-PTLD
2005-Pilot”) to test a sequential stratified treatment strategy
of rituximab monotherapy and moderate chemotherapy in
children with PTLD after SOT. After three weekly doses of
rituximab at 375mg/m2, children were stratified according
to their responses: patients with PR or CR continued with
rituximab monotherapy for another three doses every three
weeks, while nonresponders received chemotherapy.Thedata
analysis is currently ongoing.

5.3.2. Cytotoxic Drugs. Anthracycline-based chemotherapy
(e.g., cyclophosphamide, hydroxydaunorubicin, oncovin/
vincristine, prednisone (CHOP)) in combination with ritux-
imab is the standard of care for adult patients with PTLD that
are able to tolerate the toxicity associated with this regimen
[51, 65, 66]. Other anthracycline-based regimens have also
been used successfully in PTLDpatients [67]. Very promising
results have recently been reported after sequential treatment
of four weekly courses of rituximab followed by four courses
of CHOP-21 [60].

In children, a recent prospective phase II clinical trial
on treatment of PTLD combined rituximab (375mg/m2
weekly for six consecutive weeks) with simultaneous low-
dose chemotherapy (six three-weekly courses of cyclophos-
phamide 600mg/m2 at day 1 together with prednisone
1mg/kg/d day 1–5) [63]. Hereby, 69% of all patients achieved
CR. The estimated 2-year overall survival (OS) was 83%.

Patients who do not respond to low-dose chemotherapy
or relapse require second-line chemotherapy. Data on safety
and efficacy related to the suggested regimens are scarce. The
German pediatric PTLD study group recommends intensive
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chemotherapy according to de novoNHL protocols in case of
primary treatment failure (e.g., NHL-BFM protocols [68]).

Allogeneic hematopoietic stem cell transplantation has
been reported as a salvage therapy for PTLD in few case
reports [69], but the available results were disappointing.

5.4. Radiation Therapy. There is very limited data on the
significance of radiation therapy in the treatment of pedi-
atric PTLD. In first-line treatment, involved field radiation
in Hodgkin’s/Hodgkin-like PTLD and cranial irradiation
for CNS-PTLD may represent curative treatment elements.
However, radiotherapy in pediatric PTLD patients is usually
considered only in second-line treatment, both as part of
salvage concepts and in palliative care situations.

5.5. Treatment for Rare PTLD Types

5.5.1. Burkitt’s or Burkitt-Like PTLD. Burkitt’s or Burkitt-like
PTLD is more aggressive compared to “classical” DLBCL-
type PTLD [15, 70, 71]. Adult patients seem to respond well
to standard treatment in some reports [71], while in others
more aggressive therapy is recommended [51]. In pediatric
patients, rituximabmonotherapy is probably insufficient [70].
However, the intensity of chemotherapy regimens is still
under discussion and has to be determined in ongoing and
future prospective studies.

5.5.2. T-Cell PTLD. T-cell PTLD is a rare entity [72], espe-
cially in the pediatric population. Approximately 20 pediatric
T-cell PTLDs have been reported to date [72, 73]. T-cell PTLD
requires polychemotherapy to induce remission [73], but the
prognosis still remains poor.

5.5.3. Hodgkin orHodgkin-Like PTLD. Hodgkin orHodkgin-
like PTLD accounts for approximately 3–9% of pediatric
PTLDs [10, 15] and 9% of adult PTLD [74]. Therapy rec-
ommendations are based on individual case reports. Most
authors recommend treatment according to the therapy
guidelines of de novoHodgkin’s lymphoma.

5.5.4. PTLD with CNS Involvement. Treatment for PTLD
affecting the central nervous system (CNS) is difficult,
because most drugs used in standard therapy (especially
rituximab) do not sufficiently cross the blood-brain barrier.
Therapeutic attempts with both high-dose intravenous ritux-
imab [75] and intrathecal rituximab administration [76, 77]
have beenmade to deliver rituximab into the CNS.Moreover,
both CNS irradiation [78] and high-dose methotrexate have
been administered [79], but the most efficient approach
remains to be determined.

5.6. Nonstandard/Experimental Therapy Elements

5.6.1. Antiviral Drugs. Assuming that active EBV replication
contributes to the pathogenesis of EBV-positive PTLD, ganci-
clovir [80] or cidofovir [81] have been used for the treatment
of PTLD. However, effectiveness has not been shown, and a
direct effect on latently EBV infected tumor cells is unlikely,

because these cells do not express the viral protein kinase
that is essential for the drug’s activity [82].Thus, there is little
rationale for antiviral treatment of overt PTLD.

To sensitize EBV-positive PTLD to antiviral drugs, exper-
imental approaches aim at inducing lytic replication of EBV
in latently infected cells. Within the course of the lytic cycle,
the viral kinase is expressed, which can induce ganciclovir’s
cytotoxic activity. A clinical phase I/II trial using ganciclovir
together with arginine butyrate as inductor of lytic replication
activity resulted in CR in a reasonable number of patients
with refractory EBV-positive lymphoma [83].

Anecdotal responses to antiviral treatment with foscar-
net, a drug that does not require activation by viral kinases,
have been reported in adult patients [84]. The significance of
foscarnet and other antivirals (e.g., cidofovir) in the treatment
of pediatric PTLD remains mainly elusive.

5.6.2. EBV-Specific T Cells. EBV proteins expressed in a high
proportion of pediatric PTLD tumors are potential targets for
tumor-specific immunotherapy via adoptive transfer of virus-
specific cytotoxic T-lymphocytes (EBV-CTLs). An overview
of published clinical trials is given in Table 2. Promising
results in SOT patients have been obtained with either
autologous, ex vivo expanded EBV-CTLs [85–88] or EBV-
CTLs derived from healthy, partially HLA-matched third-
party donors [89, 90]. With third-party EBV-CTLs, response
rates were approximately 50% in patients with PTLD after
SOT,whohad failed to respond to at least one prior treatment.
Although third-party EBV-CTLs in SOT patients were only
partially HLA-matched, there was no evidence of EBV-
CTL-related graft-versus-host disease (GvHD), and no other
significant toxicities were reported.

Unfortunately, the production of ex vivo expanded EBV-
CTLs for clinical use by repetitive antigenic stimulation is
very laborious and expensive and therefore performed in only
few institutions [91]. The process requires several weeks of in
vitro cell culture. To offer EBV-CTLs when clinical need is
urgent, banking of EBV-CTLs was suggested [92].

Availability of EBV-CTL is not only limited by labour
intensity and costs but also by the fact that the production
has to follow the standards of good manufacturing practice
(GMP) for open cell culture processes. Therefore, more rapid
and easier strategies for the generation of EBV-CTLs are
currently being developed. They aim at direct isolation of
EBV-CTLs from donor-derived peripheral blood mononu-
clear cells (PBMC) by labeling with magnetic beads and sub-
sequent purification via magnetic columns. Specific labeling
of EBV-CTL is either achieved by the use of EBV-epitope
major histocompatibility complex (MHC) class I multimeres
[93] or by cytokine secretion and capture after stimulation
with EBV-derived antigen [94, 95]. As recently reviewed by
Pagliara and Savoldo [96], both strategies may allow for a
fast and relatively easy generation of T-cell products and
thereby increasing the products’ availability. However, they
have important limitations. First, the spectrum of known
EBV epitopes is still limited, and selected epitopes might
not sufficiently cover the whole EBV antigenic repertoire
expressed by the individual PTLD tumor cells. To overcome
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these limitations, the inclusion of virus-like particles into
future stimulation protocols was suggested [97]. Second,
until recently, EBV epitope-specific MHC class I multimers
allowed for the isolation of EBV-specific CD8+ but not MHC
class II-restrictedCD4+T cells.Thus important cytotoxic and
helper T-cell subpopulations may have been missed. With
the recent introduction of EBV epitope-specific MHC class
II multimers, EBV-specific T-cell preparations may contain a
more comprehensive set of specificities and cell populations
in the future [98]. For a more detailed review of EBV-CTL
therapy, see Bollard et al. [99].

5.7. Prognosis. The prognosis of PTLD in pediatric patients
with PTLD is better than in adult patients. In two prospective
studies the 2-year overall survival was 73% in the preritux-
imab era [100] and 83% in the rituximab-complemented
trial [63]. In retrospective series, 2-year overall survival
of unselected PTLD patients was around 70–80% [3, 10,
15]. No significant prognostic factors were identified in the
prospective trials by Gross and colleagues. In retrospective
analyses bone marrow or CNS involvement, EBV-negative
tumors, lack of CD20 expression and very early or late PTLD
development were adverse prognostic factors in terms of
survival ([15, 23, 101, 102] and BMK, unpublished results).
However, historical data need to be confirmed in prospective
clinical trials, especially regarding the impact of rituximab
introduction in the early new millennium.

6. Monitoring/Prevention of PTLD

6.1. Monitoring. Several efforts have been taken to define
parameters estimating the risk of PTLD development and
warranting preemptive measures.

6.1.1. EBV DNA Load. Serial monitoring of EBV DNA load
in the peripheral blood by polymerase chain reaction (PCR)
has been proposed as a diagnostic tool to identify patients
at high risk of PTLD development. Both the magnitude and
the duration of EBV detection in peripheral blood were
suggested as critical parameters in PTLD risk estimation.
Data from several retrospective analyses point towards a
heterogenic picture: pediatricHTx patients with chronic high
load (CHL) seemed to be at an increased risk for PTLD
development [103, 104], while most LTx patients with CHL
did not develop PTLD [105]. The role of CHL in intestinal
transplant recipients is inconclusive [106]. A recent large
prospective study did not reveal any predictive value of very
high or sustained EBV DNA in the peripheral blood of 106
pediatric RTx patients; remarkably, all three PTLD patients
in this study had documented EBV infection or reactivation
prior to PTLD development [13].

Different methods of EBV load monitoring are currently
used in different laboratories, and the lack of standardization
makes it difficult to compare results between centers and
draw specific conclusions from individual cut-off values.
There seems to be a difference between EBV DNA load

in serum and whole blood samples. Stevens et al. demon-
strated that early PTLD detection can be achieved in Lung-
Tx patients by measuring EBV DNA in the cellular blood
compartment, while parallel serum samples were all below
the cut-off value [107], most likely due to latent EBV infection
of circulating B cells without significant virus production and
release into body fluids. However, questions remain about
the optimal amplified region of the EBV genome and the
best-suited specimen for EBV DNA detection depending on
the EBV-associated disease of interest. For a more detailed
review on current best practice and future requirements for
determining EBV load, see Ruf and Wagner [108].

6.1.2. EBV-Specific T-Cell Response. Monitoring of cellular
immune responses to EBV in addition to EBV DNA load in
peripheral blood was suggested to identify patients at risk for
PTLD early after transplantation [109]. In our own analysis,
EBV-specific T cells appeared to be reduced in early but not
late PTLD patients [110]. Earlier studies had suggested that
EBV-specificCD4+T cells have significant diagnostic impact.
The absolute CD4+ T-cell count was lower in PTLD patients
[111], and higher numbers of CD4+ T cells in infused CTL
lines were associated with better responses of PTLD to T-
cell therapy [89]. However, due to the very low levels of
EBV-specific CD4+ T cells in peripheral blood, their rapid
detection in transplant patients remains challenging.

6.1.3. Serological Parameters. Several serological markers
have been evaluated as surrogate markers to predict PTLD
development. EBV induces the expression of CD30 on target
cells, and soluble CD30 (sCD30) secreted into the serum has
been found elevated in patients with PTLD [112]; however,
high levels were also detected in patients with primary EBV
infection and thus were not specific for PTLD. Whether
plasma markers of B-cell dysfunction might help identify
recipients at high risk of PTLD is still under investigation
[113]. Increased levels of inflammatory proteins like IL-6 or
IL-10 were documented in PTLD patients [114], but they were
either unspecific (IL-6) or did not correlate with the course
of the disease (IL-10). Our group has recently identified
CXCL13, a homeostatic B-cell chemokine, to be elevated
in serum of patients with PTLD [115]. In anecdotal cases
elevation of CXCL13 preceded the development of PTLD
by several months; however, the sensitivity and specificity
of serum CXCL13 as high PTLD risk marker needs to be
confirmed in a prospective patient cohort.

6.1.4. Monitoring of Patients during and after Treatment for
PTLD. For monitoring of response to PTLD treatment, clin-
ical and radiologic examinations (MRI, ultrasound) still rep-
resent the gold standard. Techniques quantifying metabolic
activity of morphologic lesions (e.g., 18FDG-PET scan) may
prove useful to individually tailor treatment in patients
with residual lesions [116] similar to developing strategies
in nonimmunocompromised individuals. While EBV load
monitoring did not correlate with treatment response in
a small adult series, longitudinal monitoring of serological
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markers like IL-6 [114] or CXCL13 [115] may allow for early
identification of treatment failures.

In patients after successful treatment of PTLDmonitoring
should be performed as suggested by guidelines for lym-
phomas in nonimmunocompromised persons. The followup
is based on regular clinical and radiologic evaluation of
remission status. Redetection of EBV in peripheral blood
of patients treated with rituximab does not seem to predict
disease relapse but may rather be a surrogate of normal B-cell
recovery [110, 117]. Whether serological and/or immunologi-
cal markers may prove useful to detect disease recurrence is
subject of ongoing clinical trials.

6.2. Prevention of PTLD. The ultimate goal will be to com-
pletely abrogate PTLD development by effective preventive
measures. Some measures have been suggested in high-risk
patients, but all require further confirmation until they can
be considered standard of care in SOT recipients.

6.2.1. CMV Immunoglobulin. Opelz and colleagues analyzed
the effect of CMV immunoglobulin and antiviral drugs in
more than 42,000 renal transplant recipients [118]. None of
the patients who received CMV immunoglobulin for CMV
prophylaxis developed PTLD during the first posttransplant
year arguing for a possible early preventive effect in high-risk
patients. The prophylaxis had no impact on the development
of late PTLD. However, chemoprophylaxis with ganciclovir,
valganciclovir, or acyclovir was associated with a reduction in
the risk of early PTLD [18] and a significantly lower incidence
of EBV primary infection in pediatric RTx patients [13].
Antiviral drugs are therefore used for PTLD prophylaxis by
many SOT centers early after Tx in high risk patients.

6.2.2. EBV-Specific T Cells. Adoptively transferred EBV-
specific T cells were not only shown to have therapeutic
effects in manifest PTLD but also to prevent PTLD when
given to high risk patients prophylactically after stem cell
transplantation [91] or SOT [119]. However, the limitations
of adoptive T-cell transfer for PTLD prophylaxis are the same
as for PTLD therapy. For a more detailed review of clinical
results on therapeutic and preemptive strategies using EBV-
specific T cells, see [120].

6.2.3. Immunization against EBV. Strategies of active immu-
nization against EBV prior to SOT have been advocated to
avoid subsequent EBV primary infection, latent infection,
and putative cancer development. In a phase II clinical
trial a recombinant DNA vaccine targeting the EBV lytic
cycle glycoprotein gp350 reduced the incidence of infec-
tious mononucleosis by 78% in healthy young adults [121].
However, asymptomatic infection with EBV was not reduced
in the vaccinated group, and the effect on prevention of
cancer development remains to be determined. A small
phase I clinical trial evaluated the immunogenicity of a
dose-reduced gp350 vaccine in children on dialysis awaiting
renal transplantation. The results were disappointing with
respect to the induction of neutralizing antibodies [122].
As reviewed in [123], current strategies for EBV vaccine

development are focusing on the induction of protective T-
cell responses rather than neutralizing antibodies to prevent
EBV-associated diseases including EBV-associated cancer.

7. Perspectives

Since the first description of PTLD in 1969 [124], considerable
improvement in diagnosis, treatment, and understanding in
both adult and pediatric SOT patients has been achieved.
However, PTLD still represents a major threat to SOT recip-
ients accounting for significant posttransplant morbidity
and mortality. Moreover, prognosis is still poor, and future
research is urgently needed. Hereby, two important points
may be considered.

At first, many previous diagnostic and therapeutic
attempts have been hampered by the pronounced hetero-
geneity and relative rarity of the disease. We increasingly
understand that there are actually several separate disease
entities summarized under the diagnosis of “PTLD.” A
better definition of these entities and tailoring of specific
treatment schemes are warranted. This can only be achieved
by multicentre and international transplant and/or PTLD
registries and research collaborations. Ongoing or recently
published prospective trials such as Ped-PTLDor the study by
Children’s Oncology Group [63] are important steps in that
direction.

Secondly, new insights into cellular and molecular mech-
anism need to be better incorporated into clinical research
projects. So far, primary diagnostics, risk assessment, and
response evaluation mainly rely on clinical parameters. New
approaches such as sequencing studies and gene expression
profiles [132] should help define distinct disease entities and
may provide rationales for new therapeutic targets. For EBV-
positive PTLD, the inclusion of EBV specific T cells into stan-
dard therapy regimens most certainly provides a promising
step towards a more specific antineoplastic therapy. Efforts
are needed to optimize the production of CTL for adoptive
transfer and make this treatment available for more patients.
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of pretransplant ebv and cmv serostatus in relation to posttrans-
plant non-hodgkin lymphoma,” Transplantation, vol. 88, no. 8,
pp. 962–967, 2009.

[21] V. R. Dharnidharka, A. H. Tejani, P. Ho, and W. E. Harmon,
“Post-transplant lymphoproliferative disorder in the United
States: young Caucasian males are at highest risk,” American
Journal of Transplantation, vol. 2, no. 10, pp. 993–998, 2002.
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