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Abstract

Activities of transcription factors (TFs) are temporally modulated to regulate dynamic cellular

processes, including development, homeostasis, and disease. Recent developments of bio-

informatic tools have enabled the analysis of TF activities using transcriptome data. How-

ever, because these methods typically use exon-based target expression levels, the

estimated TF activities have limited temporal accuracy. To address this, we proposed a TF

activity measure based on intron-level information in time-series RNA-seq data, and imple-

mented it to decode the temporal control of TF activities during dynamic processes. We

showed that TF activities inferred from intronic reads can better recapitulate instantaneous

TF activities compared to the exon-based measure. By analyzing public and our own time-

series transcriptome data, we found that intron-based TF activities improve the characteri-

zation of temporal phasing of cycling TFs during circadian rhythm, and facilitate the discov-

ery of two temporally opposing TF modules during T cell activation. Collectively, we

anticipate that the proposed approach would be broadly applicable for decoding global tran-

scriptional architecture during dynamic processes.

Author summary

Many health-related cellular processes, such as immune response and disease progression,

involve dynamic changes of gene expression state, which are orchestrated by transcription

factors. Dissecting the activities of transcription factors is thus important for understand-

ing cellular processes and for interfering with dysregulated processes. Our ability to ana-

lyze transcription factor activities has been facilitated by genome-wide gene expression

data from high-throughput assays such as RNA sequencing. Existing methods typically

estimate transcription factor activities based on the expression levels of matured mRNAs

of target genes. However, because the levels of matured mRNAs are affected by
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transcriptional and post-transcriptional regulatory activities, the estimated transcription

factor activities may not faithfully recapitulate the regulatory activities of transcription fac-

tors. In this paper, we proposed and validated an alternative approach for analyzing tran-

scription factor activities using the expression levels of unmatured mRNAs of target

genes, allowing us to decode how transcription factor activities are temporally controlled

during key biological processes. Our results provide insights into the temporal phasing of

key circadian regulator activities in mouse liver, and uncover two temporally opposing

modules of transcription factors that dictate the immune responses in T cells. Therefore,

this approach can help understand the regulatory principles of dynamic cellular processes.

This is a PLOS Computational Biology Methods paper.

Introduction

Cells control the activities of transcription factors (TFs) to orchestrate temporal gene expres-

sion programs during diverse cellular processes such as stress response and cell differentiation

[1, 2]. During these processes, TF activities can be controlled at the level of protein abundance,

post-translational modification, and/or subcellular localization [3], leading to changes in tran-

scription rates of downstream target genes. Due to diverse control mechanisms, TF activity

dynamics can exhibit different timescales [4–6], ranging from minute-level nuclear transloca-

tion pulses of stress response TFs [7–9], to the daily activity rhythm of circadian TFs [10].

However, it has been challenging to decode the TF activity dynamics with high temporal

accuracy.

To potentially overcome the preceding challenge, we first discussed the existing methods

for characterizing TF activity dynamics. A key approach is to track TF activities in single cells

using time-lapse imaging by monitoring the TF’s nuclear expression level, nuclear localization,

or the expression of target reporters [11]. This approach facilitated the discovery of TFs with

complex activity dynamics such as p53 [12, 13] and NF-κB [14, 15]. On the other hand, TF

activity dynamics can also be quantified by measuring the expression levels of endogenous tar-

get genes in time-series snapshots of cells taken over a time course [16]. In this scenario, cells

are assumed to be synchronized and TF activity dynamics are measured in different cell popu-

lations along the time course. While the former approach measures the same single cells over

time and can thus provide a time-lapse measurement of the TF activity dynamics, it is techni-

cally challenging to simultaneously study many TFs using this approach.

The latter approach has been greatly facilitated by the availability of time-series genome-

wide gene expression data, including microarray and RNA-seq data. Building upon these data

and gene regulatory network (GRN), bioinformatic algorithms and tools have made it possible

to analyze TF activities globally [17–25]. Generally, these approaches assume that gene expres-

sion is the ensemble of TF activities (e.g., network component analysis [17]), or that TF activi-

ties are reflected by the ensemble of target expression within each regulon (e.g., AUCell [22]

and VIPER [23]). Global TF activity profiles of each sample or cell are then computed through

optimization or statistical methods. Importantly, the accuracy is largely affected by the choice

of GRN and could be very low when using inferred and non-curated GRN [24, 26]. Mean-

while, TF activities estimated using literature-curated GRN show a higher accuracy compared

to the estimates using GRNs inferred from ChIP-seq, transcription factor binding site, or
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inference methods [24, 26]. However, TF activities estimated by different methods have rela-

tively low overlaps [27], indicating potential shortcomings of the underlying rationales. Thus,

additional improvements are necessary in order to better analyze TF activities.

We next discussed potential ways to improve TF activity estimation using transcriptome

data. A key issue of the preceding methods relates to the use of exon-level information in the

RNA-seq data, which represents matured mRNAs. This leads to at least two shortcomings of

the resulting TF activities: a) they cannot resolve instantaneous TF activities because matured

mRNAs represent the temporal integration of the gene’s transcriptional activity; b) they cap-

ture both transcriptional and post-transcriptional effects and thus may not reflect the actual

TF activities alone. To address this, experimental approaches involving nucleotide analog

labeling have been established to measure newly synthesized mRNAs [28–30], allowing an

accurate genome-wide quantification of transcriptional activities and thus a much-improved

estimation of TF activities [31]. While such experimental approaches can address existing

shortcomings, it would be desirable to make use of existing sequencing data without the need

to acquiring data with new experimental protocols.

Here, we leveraged intron-level information in existing RNA-seq data, and tested an alter-

native approach for analyzing TF activities using public data as well as newly collected data.

The rationale for focusing on intronic sequencing reads is that introns are mostly from

unspliced mRNAs, and intronic counts can directly capture the effect of transcriptional regula-

tion [32]. Intron-level information has been utilized in previous studies to better capture tran-

scriptional activities of stress response or circadian genes [33, 34], and to facilitate the

inference of differentiation trajectories using single-cell RNA-seq data [35, 36]. We first car-

ried out computational simulations to demonstrate the advantage of using unspliced mRNA

counts for TF activity estimation. Next, by using existing RNA-seq data and literature-curated

GRN [24], we showed that intron-based TF activities display higher correlations with TF

nuclear localization levels and TF chromatin occupancies compared to exon-based TF activi-

ties. To decode how TF activities are temporally controlled during key biological processes, we

analyzed public circadian rhythm data of mouse liver and collected our own data on T cell

response. With these datasets, we provided insights into the temporal phasing of key circadian

regulator activities, and uncovered two temporally opposing modules of TFs that orchestrate T

cell activation. Together, the proposed approach improves the estimation of instantaneous TF

activities and should allow broadly decoding global TF dynamics during various cellular pro-

cesses using existing datasets and conventional RNA-seq protocols.

Results

Model simulations illustrate the advantage of using unspliced target

mRNA levels for TF activity estimation

We first used p53 as a generic example for illustrating the potential advantage of using

unspliced target mRNA levels for TF activity estimation compared to using mature mRNA lev-

els. p53, a mammalian tumor suppressor, is one of the notable examples of TF with complex

temporal dynamics [12, 13]. It has been established that p53 can be activated in temporally dis-

crete pulses during the response to DNA damage stress, and external inputs can modulate the

temporal activity dynamics of p53 to control cell fate [12, 13]. Using p53 as a generic example,

we depicted two pulses of TF activity, followed by the transcription of a downstream target

gene and the splicing of pre-mRNAs (Fig 1A).

In the cartoon, unspliced pre-mRNA level follows TF activity closely because the half-life of

pre-mRNA is generally short due to the fast rate of splicing [37]. In contrast, matured mRNA

level accumulates due to the generally longer half-life of matured mRNA compared to pre-
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mRNA. Under such a depicted scenario, it is apparent that the pre-mRNA level should provide

a better estimate for TF activity compared to matured mRNA level. However, it is also appar-

ent that such a conclusion depends on the choice of half-life parameters.

To systematically analyze the advantage of using unspliced pre-mRNA level for estimating

TF activity, we performed in silico simulations of the p53 system and compared the responses

of different p53 target genes (with different mRNA stability parameters) to oscillatory p53

activity signals (Figs S1A and 1B). For each target gene, we chose the TF binding parameter

from a pre-defined range and set the mRNA half-life as in the literature (see Materials and

Methods). We found that the correlation between target gene’s matured mRNA level and the

input TF activity decreases as mRNA half-life increases (Fig 1B), consistent with previous

studies [38, 39]. In contrast, the correlation between unspliced pre-mRNA level and TF activity

remains mostly invariant with respect to mRNA half-life, and is typically much higher than the

preceding correlation. Note that the fluctuation in the correlation coefficient reflects the

Fig 1. Simulation-based comparison of using spliced and unspliced mRNA levels of target genes for TF activity estimation. (A)

Schematics of RNA transcription, splicing, and degradation (left), and the dynamics of unspliced and spliced mRNAs in the presence of

dynamically switching transcriptional activity (right). The unspliced mRNA level can generally better follow the activity dynamics compared

to the spliced mRNA level (right). (B) Pearson correlations between simulated p53 activity dynamics and simulated unspliced or spliced

mRNA levels of target genes (bottom) of different mRNA half-lives (top). Correlations were calculated using stochastically simulated single-

cell trajectories as in S1A Fig. Unspliced, but not spliced, mRNA levels show consistently high correlations with p53 activity irrespective of

mRNA half-life. Error bars indicate standard errors of 100 simulated cells and n indicates the number of p53 target genes. (C) Correlations

between input p53 activities in the simulation and p53 activities estimated using simulated spliced or unspliced mRNA levels. Estimated p53

activities were calculated by averaging the mRNA levels of target genes in the p53 regulon (as in B). TFA: Transcription factor activity. (D) A

pipeline for the estimation of instantaneous TF activity using intron-level information in the RNA-seq data and curated TF regulon

information. Normalized intron read counts of target genes in the regulon are averaged as the estimate of intron-based TF activity. As a

comparison, TF activity has been conventionally estimated using exon-level information.

https://doi.org/10.1371/journal.pcbi.1009762.g001
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difference in the TF binding affinity, which was randomly chosen for each gene from a pre-

defined range (Materials and Methods).

These results demonstrate the advantage of using unspliced pre-mRNA level compared to

matured mRNA level for analyzing TF activity under most scenarios especially when mRNA

stability is high.

Estimating TF activities using unspliced mRNA levels of targets in the

regulon

We next explored whether unspliced mRNA levels in a regulon could allow accurate estima-

tion of TF activities. For previous algorithms that use exon-level information, TF activities are

estimated by the ensemble of target genes’ matured mRNAs within each regulon [22–24].

Compared to these approaches, we reasoned that the ensemble of target genes’ pre-mRNAs

should allow a more accurate estimation of TF activities based on the preceding results.

By using the simulated responses of p53 target genes in the regulon, we compared the TF

activities estimated using the unspliced pre-mRNA levels versus the spliced mRNA levels in

the regulon (S1B Fig). We simulated 100 cells and found that the estimated TF activities from

these two inputs are distinct from each other, with the one estimated using unspliced pre-

mRNAs exhibiting a much higher correlation (i.e., much closer to 1) with the input TF activi-

ties (Fig 1C). Note that the relatively low accuracy of the estimates using matured mRNAs is

due to the presence of many highly stable p53 target mRNAs, indicating that the difference in

the accuracies between these two estimates is dictated by the overall mRNA stability of target

genes in a regulon.

We next investigated the effect of mRNA detection rate in the estimation of TF activities.

The rationale is that in single-cell RNA-seq experiments, mRNAs in single cells are often cap-

tured at a relatively low rate, e.g., 10%, contributing to sparsity in the expression data. To eval-

uate this issue, we simulated a specific p53 target gene under varying detection rates (from 5%

to 30%) for both unspliced and spliced mRNAs, and computed the correlation between gene

expression and input TF activities (S1C and S1D Fig and Materials and Methods). We found

that the low detection rate lowers the correlation for both unspliced and spliced mRNAs (S1C

Fig). While the advantage of using unspliced pre-mRNA level for TF activity estimation

decreases as detection rate reduces, unspliced pre-mRNA generally outperforms spliced

mRNA (S1D Fig).

More generally, these results indicate that TF activities estimated using unspliced pre-

mRNA levels could capture the instantaneous activities of the TF, allowing us to accurately

decode the regulatory principles of temporal biological processes.

Intron-based TF activity displays a higher correlation with TF nuclear

localization level than exon-based TF activity

Having established the general advantage of using unspliced pre-mRNA levels of target genes

in a regulon using simulated data, we speculated that unspliced pre-mRNA levels approxi-

mated by the intronic read counts in the RNA-seq data [32], together with literature curated

GRN (that provides regulon information) [24, 40], should allow an accurate estimation of TF

activity (Fig 1D). To test this, we used two public datasets that measured both transcriptome

and TF activity surrogate, allowing us to explore whether intron-based TF activity exhibits a

higher correlation with TF activity surrogate compared to exon-based TF activity.

We first used a dataset that measured transcriptome responses proceeding the measure-

ment of TF nuclear localization dynamics in response to stress [41] (Fig 2A). More specifically,

this dataset focused on a key immune-related TF, NF-κB, which is known to exhibit complex
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temporal activity dynamics by translocating between cytoplasm and nucleus [14, 15]. By com-

bining single-cell movie and single-cell RNA-seq [41], this dataset not only provides the indi-

vidual cells’ transcriptome but also the TF nuclear localization dynamics prior to sequencing,

allowing us to investigate whether intron-based TF activity could better capture TF nuclear

localization level compared to the exon-based measure.

We first compared the population-averaged nuclear localization dynamics of NF-κB (S2A

Fig) with the population-averaged intron- or exon-based TF activity dynamics. More specifi-

cally, we resorted to the time-lapse microscopy data of the nuclear localization dynamics of

NF-κB subunit p65 and the single-cell RNA-seq data collected at four different time points

during the time course of imaging, and computed averages of the nuclear localization dynam-

ics and the estimated TF activities across single cells at each time point. We found that popula-

tion-averaged intron-based estimation of NF-κB activity dynamics accurately captures the

rise-and-fall of the mean NF-κB nuclear localization dynamics (Fig 2B first and second pan-

els). In contrast, exon-based NF-κB activity displays a monotonically increasing trend (Fig 2B

third panel), and similar results were obtained when using the sum of intronic and exonic

reads for activity estimation (Fig 2B fourth panel). And as a control, the expression level of the

TF itself (i.e. p65) is largely constant (Fig 2B bottom). Thus, intron-based TF activity recapitu-

lates the instantaneous NF-κB activity better than exon-based or total read counts-based

measure.

We next computed the correlation between NF-κB nuclear localization level and the intron-

or exon-based TF activity at the single-cell level for each time point (Fig 2C). For the first set

of cells that were sequenced 75 min post lipopolysaccharide (LPS) treatment, we found that

compared to exon-based measure, intron-based TF activity exhibits a slightly higher correla-

tion with the NF-κB nuclear localization level at the time of cell collection (Fig 2C left). As the

LPS treatment time increases to 150 min, while both correlations decrease, intron-based TF

activity can still better capture the TF nuclear localization level (Fig 2C middle). The decrease

in correlation as treatment time increases suggests that the target response is more synchro-

nized during the early phase of the stress administration compared to later phases, consistent

with the picture that gene activation becomes more stochastic as the TF activity (i.e., NF-κB

localization level) approaches a stationary state (S2A Fig). At a much later time point post

stress (i.e., 300 min), TF nuclear localization no longer shows a significant correlation with tar-

get gene activation (Fig 2C right).

In these results, because intron-based measures perform only slightly better than exon-

based measures, we wondered if such differences are robust to the choice of methods for com-

puting TF activities. We thus resorted to two additional algorithms, VIPER [23] and AUCell

[22], which are widely used for computing regulon-based activity scores from gene expression

profiles. While these algorithms typically take in exon-level expression profiles, here we used

these algorithms to compute TF activities using either exon-level or intron-level expression

profiles (Materials and Methods). The computed activities were then used to calculate corre-

lations with nuclear localization levels of NF-κB. By doing so, we found that intron-based mea-

sures consistently outperform exon-based measures (Fig 2C, bottom two rows).

We next investigated whether the improvement of intron-based method over exon-based

method is dependent on mRNA stability, as our simulations demonstrated (Fig 1B). To do so,

we first examined how individual genes’ (experimental) mRNA stabilities would affect the rela-

tive performance of using intron level versus exon level to report NF-κB nuclear localization at

75 min post LPS stimulation (see Materials and Methods). Reassuringly, we found that at the

individual gene level, mRNA half-life significantly correlates with the relative performance of

intron versus exon (S2B and S2C Fig). We next generated two sub-regulons of NF-κB based

on the mRNA stability (S2D Fig), using which we could separately estimate TF activities and

PLOS COMPUTATIONAL BIOLOGY Intronic RNA-seq reads for profiling transcription factor dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009762 January 10, 2022 6 / 21

https://doi.org/10.1371/journal.pcbi.1009762


compare with nuclear localization levels (S2E and S2F Fig). We found that intron-based TF

activity greatly outperforms exon-based measure for the sub-regulon with long mRNA half-

life, but not for the other sub-regulon with short mRNA half-life (S2F Fig). Importantly, these

results provided strong support for our earlier in silico finding that high mRNA stability limits

the accuracy of exon-based TF activity estimation, whereby intron-based method can greatly

outperform exon-based method.

Together, these results demonstrate that the nuclear localization-dependent TF activity

dynamics are better captured by intron-based TF activity estimates, and that the degree of cor-

relation between the actual TF activity and the estimated TF activity reflects the target activa-

tion capacity of the TF, which appears to depend on the stage of the stress response. Moreover,

we provided both in silico and experimental evidence that mRNA stability is a key factor

affecting TF activity estimation.

Fig 2. Validation of intron-based TF activity estimation using public multimodal datasets. (A) Schematic of the experimental design of Lane et al [41]. After LPS

stimulation, the nuclear localization dynamics of NF-κB were recorded in single cells, whose transcriptomes were then sequenced at 75 min, 150 min, or 300 min post

LPS stimulation. (B) Characterizations of NF-κB activity dynamics using NF-κB nuclear localization level, intron-based NF-κB activity, exon-based NF-κB activity, total

reads-based (i.e., intron plus exon) NF-κB activity and NF-κB expression level. Error bars represent standard deviations. Data were taken or reanalyzed from Lane et al

[41]. n = 186, 145, 383, and 124 cells from left to right. (C) Correlations between single-cell NF-κB nuclear localization level and intron- or exon-based TFA at three time

points. For each time point, TFA was calculated by mean expression (as in Fig 1D), AUCell [22] or VIPER [23] (see Materials and Methods). (D) Schematic of the

experimental design of Hafner et al [39] and the steps involved in our analysis. After stimulation by irradiation, bulk p53 ChIP-seq and RNA-seq were performed in

different time points. To compute correlation, time series data were linearly interpolated. (E) Correlations between p53 DNA binding dynamics computed from ChIP-seq

data and intron-based TFA, exon-based TFA, or p53 expression level. ‘Rep1’ and ‘Rep2’ represent using data from two separate RNA-seq replicates, and ‘Average’

represents using the mean of the two replicates.

https://doi.org/10.1371/journal.pcbi.1009762.g002
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Intron-based TF activity displays a higher correlation with the TF DNA

binding activity than exon-based TF activity

We next used a second multi-modal dataset to further evaluate intron-based TF activity esti-

mation. This dataset simultaneously measured transcriptome responses as well as the chroma-

tin occupancy dynamics of p53 in response to DNA damage [39]. More specifically, in this

dataset, p53 was activated dynamically in an oscillatory pattern, which was captured by the

oscillatory ChIP-seq signals at p53 binding sites, and at the meantime, bulk RNA-seq was per-

formed [39] (Fig 2D). This dataset thus allowed us to analyze the DNA binding activity of p53

as well as target genes’ gene expression responses at the intronic or exonic level.

Since it is reasonable to assume that the chromatin occupancy of p53 can directly reflect

p53 activity, we asked whether intron-based or exon-based TF activity can better correlate

with p53 chromatin binding activity. By using a curated list of p53 target genes from DoR-

othEA [24] as the p53 regulon (see Materials and Methods), we computed intron-based and

exon-based TF activities along the time course of cellular response to DNA damage (S3A Fig).

We found that, as expected, intron-based p53 activities display a higher correlation with p53

chromatin occupancies compared to exon-based p53 activities (Fig 2E). Importantly, both

estimated activities are significantly higher than estimated activities using random regulons as

controls (S3B Fig).

Given the better performance of intron-based method compared to exon-based method, we

asked whether the improvement in this dataset also depends on target genes’ mRNA stabilities,

similar to the NF-κB dataset (S2F Fig). Analogous to S2D Fig, we created two sub-regulons of

p53 with target genes having either short or long mRNA half-lives. Using these two sub-regu-

lons, we reassuringly found that the improvement of intron-based method indeed depends on

the mRNA stability for both replicates (S3C Fig). This result provided an additional line of

support for our finding that mRNA stability can greatly affect TF activity estimation.

Using this dataset, we further explored how regulon choice could influence TF activity esti-

mation. Because we so far have used cell-type non-specific TF regulons (from the DoRothEA

database [24]), we asked whether refining the regulon using cell-type-specific TF binding data

(such as ChIP-seq) would improve activity estimation. We thus used MCF7 p53 ChIP-seq data

to create a refined p53 regulon (see Materials and Methods). We found that this refined regu-

lon greatly increases the fold-changes of estimated TF activities for both intron-based and

exon-based methods (compare S3D Fig with S3A Fig), and importantly, increases the correla-

tion between estimated TF activities with p53 DNA binding activities (compare S3D Fig with

Fig 2E). These results indicate that TF activity estimation can be greatly improved by using

curated cell-type-specific regulon information.

Together, results from the p53 dataset further support that intron-level information pro-

vides a better estimate of the instantaneous TF activity. More importantly, with intron-based

TF activity, we could accurately dissect the temporal activity dynamics of TFs such as p53 and

NF-κB that control key biological processes. It should be noted that the overall performance

increase for intron-based method compared to exon-based method is not as large as shown in

the simulation (e.g., Fig 1C), which could be due to the sparsity in gene expression data (espe-

cially intronic expression counts, see S1C and S1D Fig) and the choice of the regulon.

Intron-based TF activity recapitulates the temporal phasing of circadian

TFs

Thus far, we have implemented a simple model describing transcription and splicing to illus-

trate the advantage of using intron-level information for capturing TF activity, and have used

two public RNA-seq datasets to demonstrate that TF activity based on intronic read counts
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can accurately capture the instantaneous TF activity. These results highlight the potential for

using intron-based TF activity for dissecting TF activity dynamics during temporal biological

processes. To explore this, we next focused on combing this approach with time-series tran-

scriptome data to study the dynamic regulation of key biological processes.

We first focused on decoding TF activity dynamics during circadian rhythm in the mouse

liver. The rationale for using circadian rhythm as a case study is two-fold. On the one hand,

light-entrainment of the circadian clock produces rhythmic regulatory signals that are syn-

chronized among cells for an extended time [10], allowing us to use bulk-level time-series tran-

scriptome data to decode the TF activity dynamics. In contrast, without external entrainment,

other TFs such as p53 in the preceding example would quickly lose synchrony across cells, and

bulk-level time-series transcriptome data would not be able to capture long-term TF activity

dynamics. On the other hand, time-series circadian TF ChIP-seq data [33] allows us to com-

pare the estimated TF activity dynamics with the ChIP-based TF activity dynamics.

We resorted to a public time-series RNA-seq data of circadian-entrained mouse livers col-

lected with a relatively high temporal resolution (i.e., every 2 hours) [42] (Fig 3A). Using this

dataset and the curated TF regulons (Materials and Methods), we estimated TF activity

dynamics using either intronic or exonic information, and found 13 TFs whose activity

dynamics estimated from both measures are rhythmic (S4A Fig class 1). For the two classes

Fig 3. Analysis of rhythmic TFs during mouse liver circadian rhythm. (A) Schematic of the experimental design of Atger et al [42] and the

approach to identify circadian TFs by using estimated TF activity (TFA). Time-series RNA-seq data were used to calculate TFA dynamics, and

TFs with 24-h periodicity were identified as circadian TFs. To compare between intron-based and exon-based TFAs, we focused on class 1 TFs

(see also S4A Fig). (B) TFA dynamics of 13 class 1 TFs. Intron-based TFA and exon-based TFA were z-score normalized. Note that all these

regulons have confidence scores of A or B in the DoRothEA database. (C) Phase differences between exon-based TFA and intron-based TFA for

class 1 TFs. Note that positive values indicate that exon-based TFA lags behind intron-based TFA.

https://doi.org/10.1371/journal.pcbi.1009762.g003
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where only one type of TF activity dynamics was identified to be rhythmic (i.e., class 2 and 3),

the activity dynamics of example TFs (S4B Fig) indicate that the reason why one of dynamics

was not rhythmic could be at least two-fold. First, the algorithm for detecting rhythmicity

could be sensitive to the noise in the data. Second, there could be biologically meaningful dif-

ference between intron-based and exon-based activity dynamics, causing one to be rhythmic

but not the other. Nevertheless, we focused on the class 1 TFs and compared the phasing of

their periodic dynamics. Most TFs’ (11 out of 13) intron-based activity dynamics display a for-

ward-shifted circadian phasing compared to exon-based dynamics (Fig 3B and 3C), which is

as expected. For the two TFs that display a backward-shifted phasing, we found that it is likely

due to noise in the data, as the result is not robust to biological replication (S4C Fig). Thus,

intron-based TF activity allows capturing rhythmic circadian TF dynamics.

The difference in phase difference between intron-based and exon-based activity dynamics

for different TFs promoted us to investigate the potential mechanism. A possible explanation

is that target genes of different TFs have different intron lengths, leading to different process-

ing times of the target mRNAs and thus different phase differences. However, we found that

phase difference does not correlate with target intron length (S4C Fig). Thus, other mecha-

nisms involving RNA processing likely account for the difference in phase difference.

We next compared the circadian phasing of intron-based TF dynamics with the circadian

phasing measured by ChIP-seq. We first focused on a well-known circadian TF, BAML1 or

ARNTL, and found that intron-based BAML1 activity peaks between 6–8 hour (Fig 3B),

which is close to the ChIP-seq result (i.e., 6.1 hour) [33]. In contrast, exon-based BAML1 activ-

ity peaks at ~ 8 hour (Fig 3B). To compare our results with more ChIP-seq dynamics of addi-

tional TFs, we loosened the stringency in the curated regulon (see Materials and Methods)

and computed the activity dynamics of CLOCK, another key circadian TF. We found that

intron-based CLOCK activity peaks at ~ 8 hour, close to the ChIP-seq result (i.e., 7.3 hour)

[33], whereas exon-based CLOCK activity peaks at ~12–14 hour (S4D Fig).

The above results suggest that intron-based TF activity can accurately recapitulate rhythmic

TF dynamics, which provides a useful tool for studying circadian transcriptional architecture,

as many TFs do not have existing time-series ChIP-seq data (e.g., many TFs in Fig 3B).

Global TF activity profiling revealed two temporally opposing TF modules

that dictate T cell response

We next acquired and analyzed our own data on transient T cell responses to chemical stimu-

lation. T cell activation is a complex dynamic process that depends on the phosphorylation

cascade upon T cell receptor engagement, and involves many TFs, including NFAT, AP-1, and

NF-κB [43]. Although target genes of these TFs have been identified, we still lack an overall

understanding of transcriptional events during early T cell activation.

To address this, we performed time-series bulk RNA-seq of Jurkat T cells post the stimula-

tion by PMA and ionomycin, a chemical mimic of TCR stimulation [44] (Fig 4A). As dis-

cussed above, cells would lose synchrony at later time points, and we thus collected the

samples at relatively early time points post stimulation. More specifically, we collected samples

at 8 time points within 1-hour post stimulation (Fig 4A). Using these data, we aimed to decode

the transcriptional architecture during early T cell activation by profiling TF activities globally

(see Materials and Methods).

To do so, we computed the correlation between intron-based TF activities for each pair of

TFs and performed hierarchical clustering. Intriguingly, we identified two TF modules

enriched for different functions and displaying opposing temporal profiles (Fig 4B). More spe-

cifically, the first module is enriched for TFs participating in stress responses, and displays an
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increase in TF activity post stimulation, suggesting a gradual engagement of the stress response

mechanism over a time course of ~ 1 hour. In contrast, the second module is enriched for TFs

mediating homeostatic processes such as cell proliferation, and displays a decrease in TF activ-

ity post stimulation. Importantly, the same analysis performed with exon-based TF activity

(S5A Fig) or total reads-based (i.e., intron plus exon reads) TF activity (S5B Fig) resulted in

TF modules with overlapping functions, i.e., both modules in both methods are enriched for

the GO term “response to chemical”.

These results indicate a potential temporal organization program during early T cell

response, in which the gene regulatory system globally and quickly transits from homeostasis

to stress response within an hour after stress begins. While these results suggest that intron-

based method can provide biologically important insights into dynamic T cell response, the

Fig 4. Decoding global transcriptional regulation during the early activation of Jurkat T cells by profiling intron-based TF activities. (A)

Schematic of our experimental design. Time-series RNA-seq data were acquired during early Jurkat T cell activation. Each time point has two

replicates. (B) Hierarchical clustering uncovered two functionally and dynamically distinct TF modules. Clustering was performed based on the

Pearson correlation between intron-based TFAs. Two TF modules are indicated by dashed boxes. Three most enriched GO biological process terms

for each module are shown. Intron-based TFA dynamics after z-score normalization of each TF are shown on the right. Note that only TFs with non-

zero expression values were included in the analysis (Materials and Methods), and TF symbols are ordered from top to bottom, then left to right. See

also S5 Fig for analogous analyses using exon-based and total reads-based methods.

https://doi.org/10.1371/journal.pcbi.1009762.g004
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extent and function of the observed large-scale changes in TF activities necessitate further

investigations.

We further examined individual TFs involved in T cell activation that displayed differential

activity dynamics when estimated with different methods. The two notable TFs are IRF9 and

GATA3, both are known to play key roles in immune response. With intron-based method,

the two TFs displayed a two-pulse-like activation (S6 Fig top panels). In contrast, with both

exon-based and total reads-based methods, they displayed a single pulse activation (S6 Fig

middle and bottom panels). These results indicated that the latter two methods are compara-

ble, and that the intron-based method might reveal intriguing TF dynamics that would be

worth investigating further.

Thus, by performing time-series bulk RNA-seq of Jurkat T cells at short time points post

stimulation, we demonstrated the application of using intron-based TF activity estimation for

dissecting the temporal design principle of gene regulatory network.

Discussion

Gene regulatory network is highly dynamic and TFs in the network can display complex tem-

poral activity dynamics. While single-cell time-lapse imaging has been typically used for ana-

lyzing these dynamics, a genome-wide approach for analyzing multiple TFs in a high-

throughput manner would be desirable. In this work, by combing computer simulation, analy-

ses of public datasets, and the generation of our own datasets, we showed that intron-level

information, together with literature curated regulon information, can allow decoding TF

dynamics using time-series RNA-seq data. Consistent with previous studies that leverage

intron-level information to analyze transcriptional dynamics [33, 34] and cell state transition

[35, 36], our study demonstrates the power of using intronic read counts in typical RNA-seq

datasets for understanding global transcriptional architecture. While experimental methods

have been developed to specifically measure newly transcribed RNAs [28–30], which also

allow accurate decoding of TF activity dynamics [31], our method can take advantage of the

existing public RNA-seq datasets.

Three fundamental elements are important for applying our proposed approach for broadly

analyzing TF activity dynamics. Firstly, the regulon-wide short-lived, unspliced mRNAs allow

one to accurately read out upstream TF activity, which we demonstrated by simulation and by

comparing with TF nuclear localization dynamics and TF DNA binding activity dynamics.

However, because TF nuclear localization or TF DNA binding activity may not be an accurate

surrogate of TF activity under certain scenarios, additional analyses may be necessary to fur-

ther compare intron-based TF activity with the actual TF activity.

Secondly, cells in a population often maintain a high degree of synchrony for a short period

of time after being subjected to a transient stress, allowing the analysis of TF dynamics within

this short period using time series snapshots (of different cell populations). In other words,

because of the synchrony, it is reasonable to assume that we are effectively measuring a meta-

cell (representing the average of the population) by taking multiple snapshots within this short

period. This concept could be better understood when considering the time-series tissue-level

RNA-seq data during the circadian clock. In this scenario, it is typically assumed that all cells

are synchronized throughout the circadian clock, as cells are entrained by an external light-

dark clock, and we are thus following a meta-cell undergoing the circadian rhythm. However,

cell population would lose synchrony quickly after step-wise stimulations, the timescale of

which would need to be determined for each system of interest.

Thirdly, our method exploits the well-curated gene regulatory network, in which TF regu-

lons have been carefully assembled for over a hundred TFs [24, 40]. However, there are two
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related limitations. First, the curated regulon information is not cell-type specific, and different

cell types may have different network wiring, presenting a potential compounding factor for

accurate TF activity estimation. And as we have demonstrated using the p53 dataset, refining

the regulon with cell-type-specific ChIP-seq data can increase the accuracy of estimated TF

activities (S3D and S3E Fig). Second, a large fraction of TFs still does not have well-curated

regulon information [24, 40], prohibiting an accurate activity analysis of these TFs. Thus, the

ability to decode dynamic biological processes using intron-level TF activity would be further

enhanced by the continuing understanding of gene regulation and gene regulatory networks.

While our method is built upon existing methods using exon-level information of target

genes to estimate upstream TF activity [17–25], it provides some advantages compared to

exon-based methods. A key advantage is that intron-based TF activity captures the instanta-

neous activity of the TF, and in contrast, exon-based TF activity captures the integrated activity

of the TF. Thus, intron-based TF activity allows us to accurately decode the temporal regula-

tion of TFs during dynamic biological processes. It should be noted that the difference between

the two TF activity measures depends on the turnover rate of the matured mRNAs of target

genes (as we have demonstrated in both simulations and experimental datasets), and thus for

some TFs, there may not be an advantage for using the intron-based measure. Furthermore,

some target genes do not have introns or may not have intronic reads, prohibiting the applica-

tion of our method for TFs regulating these genes. Additionally, while our method has been

demonstrated using both single-cell RNA-seq and bulk RNA-seq data, we noted that the low

capturing rates of RNAs, especially unspliced pre-mRNAs, could significantly affect the perfor-

mance of the method (S1C and S1D Fig)

Compared to analyzing TF activity dynamics using time-lapse imaging [4–6], intron-based

TF activity cannot resolve dynamics of timescales shorter than splicing due to the theoretical

limitation. Furthermore, it can only capture population-averaged dynamic behaviors, which

acts as a low-pass filter to further decrease the temporal resolution of the approach. Despite

these limits, intron-based TF activity offers a temporal picture of global transcriptional architec-

ture during dynamic processes such as early T cell activation, allowing us to dissect the temporal

organization principles of gene regulatory networks. We envision that this approach would be

broadly applied to study diverse gene regulatory systems undergoing dynamic alterations.

Materials and methods

Simulation of the p53 system

Our simulations were mainly focused on the p53 system, in which p53 activity can exhibit

oscillatory dynamics with relatively stable amplitude, duration, and period after DNA damage

in single cells [12, 38, 39]. In the simulation, we assumed that p53 activity is maintained at a

basal level before DNA damage and undergoes periodic oscillation after DNA damage. p53

dynamics, transcription, and splicing of target genes were modeled by the following ordinary

differential equations:

TF tð Þ ¼ Abasal �
1þ cosð2pT tÞ

2
þ Amax �

1 � cosð2pT tÞ
2

þ noise ð1Þ

du
dt
¼ a

TFn

TFn þ Kd
n � bu ð2Þ

ds
dt
¼ bu � gs; ð3Þ
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where TF denotes p53 activity, u and s denote unspliced and spliced mRNA level of target

gene respectively, t denotes time after DNA damage stress, Abasal denotes the basal activity of

p53, Amax denotes the maximum activity of p53 during oscillation after DNA damage stress, T

denotes the period of p53 oscillation, noise denotes a Gaussian noise with mean 0 and variance

σ2, α denotes the maximum capacity of target gene activation by p53, β denotes the splicing

rate of target gene, n and Kd denote Hill coefficient and the dissociation constant in the input

function of p53 target gene respectively, and γ denotes degradation rate of the spliced mRNA

of target gene.

Some of the parameter values are based on the literature. More specifically, Abasal and Amax

are 0.06 μM and 0.5 μM respectively [45], and T is 5.5 h [38]. Since splicing typically completes

within 5–10 minutes where 90% of unspliced mRNAs are spliced [46], we assumed that splic-

ing follows exponential decay with β = log10/(splicing time), and splicing time was randomly

chosen between 5 and 10 minutes for each target gene. Similarly, since previous study experi-

mentally measured mRNA half-lives in MCF7 cell line (a widely used cell line for p53-related

experiments) [47], thus γ = log2/(mRNA half life). Values of other parameters were chosen

empirically, namely σ was set to be 0.2�Abasal, α was randomly chosen between 100 and 200 h-1,

n was set to be 2, and Kd was randomly chosen between 0.05 and 0.25 μM. The list of p53 target

genes was from DoRothEA database [24], only target genes that are activated by p53 with con-

fidence score A or B in the database were considered.

For stochastic simulations, a custom code based on “τ-leap” method [48] was used, which

simulated the dynamics of u and s based on Eqs (2 and 3) and p53 dynamics from Eq (1). Ini-

tial values of u and s were non-zero steady-state solutions of Eqs (2 and 3) with p53 maintained

at the basal level. Duration and step size of simulation are 20 h and 0.001 h, respectively.

After stimulating unspliced and spliced mRNA levels of all target genes of p53, the average

of unspliced (or spliced) mRNA levels of target genes was calculated as the estimated p53 activ-

ity, which was then compared with the actual p53 activity (namely input p53 activity in the

simulation).

In order to investigate how sparsity of data affects the results, we performed simulations of

a specific gene (with α = 100 h-1 and a 100 min half-life) by subsampling unspliced and spliced

mRNA counts with capture (i.e., detection) efficiency p. For both spliced and unspliced

mRNAs, we performed different sets of simulations with p spanning 5%, 10%, 15%, 20%, 25%

and 30% respectively.

The general pipeline for TFA estimation using RNA-seq data

The first step in TFA calculation is to map the raw RNA-seq data in cases where intronic

counts of genes are not provided. More specifically, raw RNA sequencing data was down-

loaded as fastq format using fastq-dump. After trimming and filtering with Trimmomatic ver-

sion 0.38 [49], sequencing reads were aligned with STAR version 2.5.3a [50] to genome

reference GRCh38.p13 for human or GRCm38.p6 for mouse from GENCODE [51]. Intron-

level and exon-level read counts of each gene were calculated by TPMCalculator version 0.03

[52] for each sample and were normalized as counts per million (CPM) based on the following

equations:

CPM intronð Þ of gene A ¼ 1e6 �
intron� level read count of gene A

intron� level plus exon� level read count of all genes
ð4Þ

CPM exonð Þ of gene A ¼ 1e6 �
exon� level read count of gene A

intron� level plus exon� level read count of all genes
ð5Þ
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Note that the length of intronic or exonic regions was not used for normalization, since intro-

nic reads might arise from priming at intronic-polyT regions [35] and thus the actual length of

intronic regions that contribute to intronic reads is shorter than annotated length.

Next, TFAs were calculated using intron-level or exon-level CPM values of all genes in each

sample. More specifically, for each TF in the sample, intron-level CPM values of its target

genes were averaged as the intron-based TFA. Note that only genes with introns were included

in the calculation. Meanwhile, exon-level CPM values of the target genes were averaged as the

exon-based TFA. Lists of target genes (i.e., regulon information) of all TFs are from the DoR-

othEA database [24], and only target genes activated by the corresponding TF with confidence

score A or B are included in the calculation unless otherwise specified.

Analysis of public bulk RNA-seq data of mouse liver undergoing circadian

rhythm

Time series mouse liver RNA-seq data during circadian clock were obtained from the study by

Atger et al. [42]. The data for livers from C57BL/6J mice under ad libitum feeding were used

for our analysis. In this public dataset, sequencing was performed every 2 h from ZT0 (Zeitge-

ber Time 0) to ZT22 with four biological repeats. Note that the calculation of intronic and

exonic expression levels was performed in the original study, and intron-level and exon-level

RPKM (Reads Per Kilobase per Million mapped reads) values of all genes were provided by

the original study. We then averaged expression levels from four biological replicates in each

time point and computed intron-based and exon-based TFAs along the circadian clock.

To search for TFs displaying circadian rhythm, MetaCycle version 1.2.0 [53] was used to

determine whether intron-based or exon-based TFA exhibits 24-hour periodicity. More specif-

ically, the period was fixed at 24 h and TFAs whose p values are lower than 0.05 (i.e.,

meta2d_pvalue<0.05) were defined as exhibiting circadian rhythm. The phases of TFAs of cir-

cadian TFs were computed by MetaCycle (i.e., meta2d_phase).

Analysis of public NF-κB data

Multimodal data containing single-cell RNA-seq data and time-lapse microscopy data of p65

nuclear localization in the same single cell were obtained from the study of Lane et al. [41]. In

their study, RAW 264.7 cells were stimulated with LPS, and time-lapse microscopy of p65-Clo-

ver was conducted in each cell, and after imaging the same cell was sequenced to obtain the

transcriptome.

Intron-based and exon-based TFA of NF-κB in each cell were computed from single-cell

RNA-seq data. Nuclear localization level of NF-κB was directly obtained from the original

study and the data of the last frame was utilized. Cell numbers were 145, 365, and 124 for 75

min, 150 min, and 300 min after stimulation respectively.

We compared our method based on averaging with other methods for computing TF activi-

ties, namely AUCell [22] and VIPER [23]. AUCell is an algorithm to score the activity of each

regulon in each cell. AUCell calculates the enrichment of the regulon as an area under the

recovery curve (AUC) across the ranking of all genes in a particular cell, whereby genes are

ranked by their expression value [22]. VIPER (virtual inference of protein activity by enriched

regulon analysis) is an algorithm to estimate protein activity from gene expression data. From

expression profile data, gene expression signatures (GES) are computed. Incorporating the

regulon information, GES is then transformed into protein activity profile by aREA algorithm

[23].

In order to investigate the effect of mRNA half-life on TF activity dynamics, we divided the

NF-κB target genes into two sub-regulons according to their mRNA half-lives [47], calculated
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the TFA for the two sub-regulons, and compared them with nuclear localization level of NF-

κB. We analyzed the effect of mRNA half-life for both intron-based TFA and exon-based TFA.

We also analyzed the effect of mRNA half-life on individual genes. For each gene, we calcu-

lated the mean expression (intron level or exon level) for all single cells at 4 time points. Then

we calculated the correlation of mean expression with nuclear localization level of NF-κB.

Using this correlation as a metric, we compared intron level with exon level, and plotted the

intron correlation versus exon correlation ratio with mRNA half-life for each gene.

Analysis of public p53 data

p53-related RNA-seq and ChIP-seq data were obtained from the study of Hafner et al. [39]. In

their study, MCF7 cells were treated with γ-irradiation to activate oscillatory dynamics of p53

and p53 ChIP-seq was conducted at 0, 1, 2.5, 4, 5, and 7.5 h after stimulation without biological

repeats, while RNA-seq was conducted every hour from 0 to 12 h after stimulation as well as

24 h after stimulation with two biological replicates.

We then computed cumulative p53 ChIP-seq signals in the whole genome as the genome-

wide DNA binding activity, which was used as the surrogate of p53 activity. Meanwhile, RNA-

seq data was analyzed to obtain intron-based and exon-based TFAs of p53. Since the sampling

time was different between ChIP-seq and RNA-seq experiments, linear interpolation was per-

formed before computing the correlation between the dynamics of the DNA binding activity

from ChIP-seq and the estimated TFA of p53. The time points after interpolation were spaced

by 0.5 h from 0 to 7.5 h.

We also analyzed the effect of mRNA half-life on estimated TFA. Using mRNA half-life

data [47], we divided the genes into two sub-regulons, and compared the results of intron-

based TFA and exon-based TFA.

To investigate how the choice of regulon affects our results, we used random regulons as

negative control. We extracted all targets from DoRothEA database, excluded the targets of

p53, and then subsampled this gene set 1000 times to obtain random regulons and calculate

control TF activities for both intron-based and exon-based methods.

We also investigated how the cell-type-specific regulon affects the results. Using MCF7

ChIP-seq signals [39], we extracted p53 target genes whose TSS is within +/- 2kb of ChIP-seq

peaks (195 targets). We used those p53 targets to refine the p53 targets from the DoRothEA

database (i.e., overlapping subset), and calculated TFA with this refined regulon (42 target

genes).

RNA-seq experiment during Jurkat T cell activation

Jurkat T cells (ATCC, Clone E6-1) were cultivated in RPMI-1640 Medium (Gibco, catalog

number C11875500BT), supplemented with 10% fetal bovine serum (Gemcell, catalog number

100–500) and 1% penicillin-streptomycin (Gibco, catalog number 15140–122). Cells were cul-

tured at a concentration between 5x105 and 5x106 cells/mL and incubated under 37˚C and 5%

CO2.

For time series RNA-seq experiments, cells were plated at a density of 5x106 cells/mL in 1

mL media and rested for 30 min before stimulation. Cells were then stimulated with 50 ng/mL

PMA (Sigma-Aldrich, catalog number P1585) and 1 uM Ionomycin (Sigma-Aldrich, catalog

number 407950) for different durations, namely 3, 6, 9, 12, 15, 30, 45, and 60 min. Note that

cells without stimulation were also collected at 0 min. At each time point of sample collection,

cells were centrifuged at 300 g for 1 min, and the supernatant was replaced by 1 mL Trizol

(Invitrogen, catalog number 15596026). Gently mixed cell lysate was then flash-frozen in liq-

uid nitrogen and preserved under -80˚C. MagZol Reagent Kit (Magen, catalog number R4801)
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and VAHTS mRNA-seq V3 Library Prep Kit for Illumina (Vazyme, catalog number NR611)

were used for RNA extraction and library construction. Sequencing was performed on an Illu-

mina NovaSeq 6000 instrument in PE150 mode. Both library construction and sequencing

were performed by GeneWiz.

For the analysis of Jurkat RNA-seq data, intron-based and exon-based TFAs of each sample

were calculated and results of two biological replicates were averaged. One replicate for the 15

min sample showed abnormal TFA profile and was thus excluded from further analyses. Only

TFs with non-zero expression values (namely, intron-level CPM plus exon-level CPM was

greater than 0) were considered. GO analysis of TF modules was performed with R package

clusterProfiler [54]. Only GO terms of biological process were considered and background

genes for GO analysis were all TFs in human cells based on RcisTarget package [22]. Adjusted

p-values based on Benjamini-Hochberg method were shown.

Supporting information

S1 Fig. Simulated results of the p53 system and the method for TFA calculation. (A) Repre-

sentative simulated traces of p53 dynamics, unspliced mRNA dynamics and spliced mRNA

dynamics of three example genes. The spliced mRNA dynamics of the three genes are different

due to their different mRNA half-lives. (B) The pipeline for calculating TFA using target

expression levels from the simulation. The average expression level of target genes in the regu-

lon of a TF is used as the estimate of the TF’s activity. Either unspliced or spliced mRNA

expression level can be used in the calculation. (C-D) The effect of detection rate (i.e., mRNA

capture rate) on the correlation of gene expression level with input TFA. A p53 target gene was

simulated at varying detection rates (such as 10% in C, see Materials and Methods), and the

correlation between unspliced or spliced mRNA and input TFA was shown (C). The ratio

between the two correlations were calculated for all simulated pairs of detection rates (D).

(TIF)

S2 Fig. Additional characterizations of the NF-κB dataset. (A) Population-averaged NF-κB

nuclear localization dynamics of the data from Lane et al. n = 637 cells for t = 0–75 min,

n = 492 cells for t = 80–150 min, and n = 124 cells for t = 155–300 min. Error bar represents

the standard deviation. (B) Analysis of individual NF-κB target genes. We focused on high-

expressing genes (exonCPM >1 & intronCPM >1). In 39 high-expressing target genes, 26

genes showed positive correlation for both intronCPM and exonCPM. See Materials and

Methods for details. (C) The effect of mRNA half-life on the relative performance of intron-

based method versus exon-based method. For the 26 genes with double-positive correlation in

(B), 15 of them have mRNA half-life data. The ratio between the intron-based correlation and

exon-based correlation was plotted against mRNA half-life. Pearson correlation (R) and the

associated p-value were indicated. (D) Schematic showing the division of NF-κB regulon into

two sub-regulons. (E-F) Comparison of using the two sub-regulons for TFA estimations. Scat-

ter plots showing TFAs estimated using the two sub-regulations versus NF-κB (p65) nuclear

localization level in individual cells at 75 min post LPS stimulation (E). The correlations

between estimated TFAs and TF nuclear localization were shown for both sub-regulons (F).

(TIF)

S3 Fig. Additional characterizations of the p53 dataset. (A) Dynamics of p53 DNA binding

activity, intron-based TFA, exon-based TFA and p53 expression (averages of two replicates).

These dynamics were analyzed from the data of Hafner et al. (B) The comparison between esti-

mated TFAs and control TFAs. The distribution of the control TFAs (dotted lines) were calcu-

lated from 1000 random regulons sampled from non-p53 target genes (see Materials and

PLOS COMPUTATIONAL BIOLOGY Intronic RNA-seq reads for profiling transcription factor dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009762 January 10, 2022 17 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009762.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009762.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009762.s003
https://doi.org/10.1371/journal.pcbi.1009762


Methods). The vertical lines indicate the estimated TFAs using the actual p53 regulon. (C)

Comparison of using the two sub-regulons containing p53 target genes with either long or

short mRNA half-lives for TFA estimations. The sub-regulons were generated as in S2D Fig.

See Materials and Methods for details. (D-E) p53 activity estimations using the refined p53

regulon. The cell-type-refined p53 regulon was obtained as described in the Materials and

Methods. This refined regulon was then used to generate plots analogous to panel A (D) and

Fig 2E (E)

(TIF)

S4 Fig. Additional analyses of circadian TFs. (A) Classification of TFs based on the periodic-

ity of TFA. P-values of the periodicity were calculated using intron-based and exon-based

TFAs. Black points represent non-circadian TFs by both TFAs. Red points represent circadian

TFs identified by intron-based TFA. Blue points represent circadian TFs identified by exon-

based TFA. Purple points represent circadian TFs identified by both methods, which were

used for the analysis in Fig 3. (B) Example TFA dynamics of TFs from class 2 and class 3. Class

2 TFs were taken from the red points in panel A, while class 3 TFs were taken from the blue

points. (C) Robustness of circadian TFs to experimental replication. By down-sampling of 4

replicates, the robustness of each circadian TF was defined as the fraction of attempts that the

TF was identified as circadian TF. (D) Target intron lengths of TFs with different phase differ-

ences. (E) Intron-based versus exon-based TFA dynamics of CLOCK protein. Note that the

regulon of CLOCK is only available when loosening the confidence threshold of the regulatory

links to the third grade (i.e., score C) in the DoRothEA database.

(TIF)

S5 Fig. Hierarchical clustering analyses for exon-based TFA (A) and total reads-based

TFA (B). These analyses are analogous to Fig 4B. Two TF modules in each panel are indicated

by dashed boxes. Three most enriched GO biological process terms for each module are

shown. The GO highlighted in purple indicates a shared GO between two modules in each

panel. Exon-based TFA dynamics and total reads-based (exon plus intron) TFA dynamics

after z-score normalization of each TF are shown on the right. Note that TF symbols are

ordered from top to bottom, then left to right.

(TIF)

S6 Fig. Estimated activity dynamics of two example immune-related TFs during the

response of Jurkat T cells to chemical stimulation. For each TF, the activity dynamics esti-

mated by three different methods were calculated using the time-series transcriptome data

(Fig 4). These two TFs were chosen as examples that the intron-based method can yield drasti-

cally different activity dynamics as compared to the other two methods. Note that the exon-

based and total reads-based methods generally produce very similar activity dynamics.

(TIF)

S1 Table. Detailed information of public datasets used in this study.

(XLSX)

S2 Table. Source data for figures.

(XLSX)
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