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Itinerant dynamics of the brain generates transient and recurrent spatiotemporal
patterns in neuroimaging data. Characterizing metastable functional connectivity (FC) –
particularly at rest and using functional magnetic resonance imaging (fMRI) – has
shaped the field of dynamic functional connectivity (DFC). Mainstream DFC research
relies on (sliding window) correlations to identify recurrent FC patterns. Recently,
functional relevance of the instantaneous phase synchrony (IPS) of fMRI signals has
been revealed using imaging studies and computational models. In the present paper,
we identify the repertoire of whole-brain inter-network IPS states at rest. Moreover,
we uncover a hierarchy in the temporal organization of IPS modes. We hypothesize
that connectivity disorder in schizophrenia (SZ) is related to the (deep) temporal
arrangement of large-scale IPS modes. Hence, we analyze resting-state fMRI data
from 68 healthy controls (HC) and 51 SZ patients. Seven resting-state networks (and
their sub-components) are identified using spatial independent component analysis.
IPS is computed between subject-specific network time courses, using analytic signals.
The resultant phase coupling patterns, across time and subjects, are clustered into
eight IPS states. Statistical tests show that the relative expression and mean lifetime
of certain IPS states have been altered in SZ. Namely, patients spend (45%) less
time in a globally coherent state and a subcortical-centered state, and (40%) more
time in states reflecting anticoupling within the cognitive control network, compared
to the HC. Moreover, the transition profile (between states) reveals a deep temporal
structure, shaping two metastates with distinct phase synchrony profiles. A metastate
is a collection of states such that within-metastate transitions are more probable than
across. Remarkably, metastate occupation balance is altered in SZ, in favor of the less
synchronous metastate that promotes disconnection across networks. Furthermore,
the trajectory of IPS patterns is less efficient, less smooth, and more restricted in SZ
subjects, compared to the HC. Finally, a regression analysis confirms the diagnostic
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value of the defined IPS measures for SZ identification, highlighting the distinctive role
of metastate proportion. Our results suggest that the proposed IPS features may be
used for classification studies and for characterizing phase synchrony modes in other
(clinical) populations.

Keywords: resting-state fMRI, instantaneous phase synchrony, functional networks, temporal hierarchy,
metastate, trajectory, schizophrenia

INTRODUCTION

Growing evidence suggests that large-scale functional
connectivity (FC) is inherently transient. That is, functional
networks reconfigure not only in response to task demands
(Gonzalez-castillo and Bandettini, 2019) but also during resting
state (Chang and Glover, 2010; Deco et al., 2013, 2017; Hutchison
et al., 2013; Preti et al., 2017). Importantly, transient FC at rest
has neuronal underpinnings, as evidenced by concurrent imaging
and electrophysiological recordings (Tagliazucchi et al., 2012,
2015; Keilholz et al., 2013; Keilholz, 2014; Thompson et al., 2014)
and emergent dynamics from computational models (Deco
et al., 2011, 2017; Rabinovich and Varona, 2011; Cabral et al.,
2014). Moreover, recent findings show that spontaneous FC
patterns are quasi-periodically recurrent (Thompson et al., 2014),
and their temporal organization is non-random (Deco et al.,
2011; Vidaurre et al., 2017). Hence, dynamical organization of
resting-state connectivity has been conceptualized as nonstop
(and non-random) excursion through a bounded repertoire of
metastable connectivity modes, called states (Ghosh et al., 2008;
Deco et al., 2011; Cabral et al., 2017).

Neuroimaging furnishes non-invasive investigation of
metastable brain phenomena, at multiple temporal and spatial
scales. Specifically, functional magnetic resonance imaging
(fMRI) is popular for its high spatial resolution and inherent
circumvention of the inverse problem (i.e., source localization).
As such, various techniques have been developed to capture
regularities in the evolving spatiotemporal patterns of fMRI
signals (Hutchison et al., 2013; Calhoun et al., 2014; Preti
et al., 2017). Conventional dynamic FC (DFC) techniques
track the statistical dependencies between neuroimaging series
in successive epochs of data, which is known as the sliding
window approach. Notably, window size has been a controversial
parameter, posing a trade-off between the temporal resolution
and statistical significance of the observed FC fluctuations
(Hindriks et al., 2015; Leonardi and Ville, 2015; Zalesky and
Breakspear, 2015). Meanwhile, a recent addition to the set of
DFC measures is the instantaneous phase synchrony (IPS) of
fMRI series, which eschews the window complications (Glerean
et al., 2012) and has shown functional relevance in empirical and
modeling studies.

Instantaneous phase synchrony is relatively new in fMRI
(Laird et al., 2002; Deshmukh et al., 2004; Kitzbichler et al.,
2009) despite being an established measure for analyzing
electroencephalography (EEG), magnetoencephalography
(MEG), and electrophysiological recordings (Tass et al., 1998;
Lachaux et al., 1999, 2000). Once applied to fMRI signals, IPS
reflects momentary phase alignment in the slow fluctuations of

hemodynamic responses. Adopting IPS as a DFC measure can
improve the temporal resolution of connectivity variations from
the size of the window (typically 30–120 s) to the sampling time
of the imaging modality (usually TR = 0.7–3 s).

Following evidence regarding the temporal variability of fMRI
phase relationships within and between functional networks
(Laird et al., 2002; Deshmukh et al., 2004; Kitzbichler et al.,
2009; Chang and Glover, 2010; Glerean et al., 2012), verifying
and characterizing the spontaneous recurrence of these patterns
at rest and their functional relevance came into focus. The
challenge is that, the instantaneity of IPS measures (between
regions or networks) comes at the expense of noisy and irregular
functional patterns, with spatiotemporal order that is not easy
to capture. Early attempts relied on thresholding instantaneous
phase couplings, converting them to binary patterns before
further analysis (Kitzbichler et al., 2009; Ponce-Alvarez et al.,
2015). In particular, Ponce-Alvarez et al. (2015) used non-
negative matrix factorization (NNMF) to decompose a series
of thresholded IPS matrices into the weighted sum of simpler
(recurrent) components. This joint modeling and empirical study
showed that phase interactions over a structurally plausible
network give rise to recurrent synchronization patterns that
resemble empirical arrangements – namely, the resting-state
networks (Ponce-Alvarez et al., 2015). However, the threshold
level (1φ = π /6) that defines phase synchrony had been chosen
arbitrarily in this research. More recent studies (Cabral et al.,
2017; Lord et al., 2019) avoid thresholding, but represent each
bivariate IPS matrix by its first eigenvector, and apply (k-
means) clustering on these summary vectors to identify recurring
arrangements. This is also a practical approach that inevitably
discards some of the phase coupling information, and still
struggles with cluster validation (Lord et al., 2019). In short,
finding natural order in IPS data has not been straightforward,
despite certain simplifications.

Recently, conventional DFC1 studies have disclosed
more sophisticated spatiotemporal order in resting-state
data, which remains to be verified in the phase coupling
realm. That is because, any connectomic order arising
from correlation-based DFC analyses does not necessarily
generalize to IPS dynamics, due to their inherently
different mathematical properties and timescale, moderate
association between their temporal variations and non-
linear relationship on a topological level (in terms of
time averages) (Pedersen et al., 2018). In the following, we
review some prominent DFC findings, which have not been

1Such as sliding window correlation and wavelet coherence analyses, which are not
based solely on instantaneous phase relationships.
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investigated using phase relationships and motivated the
present analysis:

• Recent studies have revealed a hierarchical organization
in the (non-random) temporal arrangement of functional
states at rest (Vidaurre et al., 2017); i.e., temporal order
beyond sample-to-sample transitions. Importantly,
this slower temporal organization is heritable and
related to personality traits (Vidaurre et al., 2017, 2019).
Currently, we do not know whether the spontaneous
recurrence of IPS patterns is similarly governed by a deep
temporal arrangement.
• It was lately shown that the trajectory of connectivity

evolution holds functionally relevant information, which
becomes obscured in the usual cluster analyses (Miller
et al., 2016). The IPS trajectory may also bear functionally
relevant information, especially given its high (single-TR)
temporal resolution.
• Functional integration is inherently multi-scale; that is, it

coordinates neurons, micro-columns, and macroscopic
regions (which form functional networks) and also
organizes large-scale network interactions. Ongoing
network interactions reflect higher-order functional
organization in the brain, which is related to one’s character
and cognitive performance (Vidaurre et al., 2019) and
is modulated in various disorders (Du et al., 2018; Díez-
cirarda et al., 2018; Gilbert et al., 2018; Rashid et al., 2018;
de Lacy and Calhoun, 2019; Espinoza et al., 2019; Fu
et al., 2019). So far, a good number of IPS studies have
relied on (anatomical) atlases (Ponce-Alvarez et al., 2015;
Cabral et al., 2017; Lord et al., 2019) or have investigated
few functional networks (Chang and Glover, 2010);
some have not been concerned with the recurrence of
IPS modes (Pedersen et al., 2018; Zhang et al., 2019) or
their recurrence characterizations have not been purely
phase-based2 (Yaesoubi et al., 2015, 2017). Hence, current
literature has not portrayed the repertoire of whole-
brain inter-network IPS states based strictly on phase
relationships – which could furnish new insights into the
large-scale dynamic functional connectome. Notably, if
large-scale phase couplings hold functional information –
as speculated – they may also be modulated in neurological
and psychiatric disorders.
• Schizophrenia3 (SZ) is a severe psychiatric disorder, which

has affected some 23.6 million people worldwide by 2013,
with a lifetime prevalence of about 1% (Murray et al., 2016).
SZ is commonly known as a connectivity disorder4. In 1998,
Friston (1998) proposed a disconnection hypothesis for SZ

2Yaesoubi et al. (2015, 2017) have accounted for IPS in identification of complex-
valued recurrent functional modes using wavelet coherence, which contains both
amplitude and phase coupling information. For more details, please refer to the
“Discussion” section.
3Schizophrenia symptoms include delusions, hallucinations, disorganized
thinking and speech, cognitive dysfunction, flat expressions, and asociality
(American Psychogeriatric Association, 2000).
4The very term coined by the Swiss psychiatrist Eugen Bleuler (1857–1939) tends
to signify a sort of “split” (schizen) in the normally integrated processes of the
“mind” (phrenia) (Van Den Heuvel and Fornito, 2014).

that stemmed from positron emission tomography (PET)
findings. Ever since, fMRI has expedited the examination
of disrupted functional organization of the brain in SZ
(Liang et al., 2006; Fornito et al., 2012; Damaraju et al.,
2014; Ma et al., 2014; Van Den Heuvel and Fornito, 2014).
Dysfunctional connections within and across brain regions
have been frequently reported in SZ studies5. Importantly,
SZ disconnection affects between-network interactions as
well, based on prior (correlation-based) DFC analyses
(Damaraju et al., 2014; Rashid et al., 2014). It remains
to be investigated whether instantaneous phase coupling
of functional networks reflects disconnection in SZ, and
whether whole-brain network-level IPS measures hold
diagnostic value in this context.

In the present work, we try to address the above questions in
an empirical study. Specifically, we analyze a publicly available SZ
dataset while extending IPS characterization to higher functional
and temporal levels. We hypothesize that disconnection in SZ
relates to the spatial and (deep) temporal organization of network
level IPS modes, and to the trajectory of large-scale phase
coupling patterns, in this disorder. The results on SZ show the
effectiveness of the proposed approach, which may be used in
other applications as well.

MATERIALS AND METHODS

Dataset and Pre-processing
We used the SZ dataset of the Center for Biomedical Research
Excellence (COBRE) (Çetin et al., 2014). The dataset comprises
of 72 SZ patients and 75 healthy subjects (18–65 years old).
The patients had been diagnosed using the Structured Clinical
Interview for DSM-IV Axis I Disorders (SCID-I) (First et al.,
2002). Any subject with history of neurological disorder, mental
retardation, severe head trauma, active substance abuse or
dependence within the past year had been excluded from the
study. Each participant was scanned at rest for 5 min on a 3-T
Siemens Tim Trio scanner, and instructed to fixate on a central
cross. A total of 150 (T2∗-weighted) functional volumes were
acquired using a gradient-echo EPI sequence (TR = 2 s, TE = 29
ms, flip angle = 75◦, 33 axial slices, ascending acquisition, matrix
size = 64 × 64, voxel size = 3.75 × 3.75 × 4.55 mm, field of
view = 240 mm). A high-resolution T1-weighted structural image
was also collected for each subject.

Functional images were pre-processed in SPM12 software6

as follows: the first five volumes were discarded to allow for
T1 equilibration; the remaining images were realigned (i.e.,
head motion corrected), slice-timing corrected, co-registered to
the anatomical image of the subject, warped to the standard
Montreal Neurological Institute (MNI) template (Collins et al.,
1998), resampled to 3 mm3 isotropic voxels and smoothed
with a Gaussian kernel (FWHM = 6 mm). Global signal

5The modulated connection are mostly between the prefrontal, temporal, and
parietal cortices, as well as the striatum, thalamus, amygdala, and cerebellum
(Nejad et al., 2012).
6https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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was not removed (Murphy and Fox, 2017). Based on the
motion realignment parameters, framewise displacement (FD)
was computed as the total absolute head motion between
consecutive time points, assuming 50-mm head radius for
converting rotations to translations (Power et al., 2012). Nine
subjects with maximum head translation exceeding 3 mm were
removed; 12 patients with mean framewise displacement (MFD)
above 0.7 mm were left out; and 5 normal females were
excluded to match gender proportion. Hence, 119 subjects (68
healthy controls [HC]/51 SZ) were retained, whose demographics
have been included in Table 1. Two-sample t tests on the
maximum head translation, MFD, and age, plus chi-squared test
on the gender proportion did not show significant difference
between the two groups (uncorrected p-values = 0.78, 0.20, 0.82,
and 0.16, respectively).

Spatially Constrained Spatial
Independent Component Analysis
In order to achieve a refined functional parcellation of the
brain, we used aggregate functional networks from Allen
et al. (2014) as spatial priors to run (spatially) constrained
spatial ICA (csICA) (Lin et al., 2010) on each subject. This
approach has a number of advantages: (1) csICA respects spatial
variability of the networks across subjects – unlike fixed network
templates; (2) csICA optimizes independence of the ICs (i.e.,
the networks) at the subject level and simultaneously maintains
their correspondence across the group; (3) csICA has superior
performance7 compared to a number of other established
(principal component/regression based) back-reconstruction
techniques (Calhoun et al., 2001; Beckmann et al., 2009; Erhardt
et al., 2011); (4) csICA allows for the propagation of aggregate
networks to individuals who were not included in the original
group analysis. This follows because the spatial priors of csICA
need to be only “partially correct” in this method (Lin et al., 2010).

Hence, we adopted the 50 aggregate networks (estimated from
a 100-component8 group spatial ICA analysis on 405 subjects in
Allen et al. (2014), and implemented constrained spatial ICA (Lin
et al., 2010) on the preprocessed data of every participant, using
the Group ICA of fMRI Toolbox (GIFT9). Notably, the artifactual
components (i.e., the physiological, head movement, and imaging
artifact components) had already been identified and excluded in
Allen et al. (2014), such that the remaining 50 functional parcels
comprise sub-components of reproducible large-scale resting-
state networks (Kiviniemi et al., 2009; Abou-Elseoud et al., 2010;
Allen et al., 2011; Du et al., 2019). These networks include the
subcortical (SC), auditory (AUD), somatomotor (SM), visual
(VIS), cognitive control (CC), default mode network (DMN), and

7csICA improves spatial and temporal accuracy, subject specificity, statistical
independence, and group correspondence of the recovered networks (Lin et al.,
2010; Du and Fan, 2013; Salman et al., 2019).
8Spatial ICA with high model order can achieve a detailed functional parcellation
of cortical and subcortical structures with known anatomical and functional
identity (Kiviniemi et al., 2009; Smith et al., 2009; Abou-Elseoud et al., 2010; Allen
et al., 2014). However, model orders >100 have been shown to decrease ICA
repeatability, as evaluated by ICASSO’s cluster quality index (Himberg et al., 2004;
Abou-Elseoud et al., 2010).
9http://trendscenter.org/software/gift/

TABLE 1 | Demographics and clinical information of the participants.

Number Age Female/male

Healthy controls 68 35.4± 11.8 18/50

Schizophrenia patients 51 35.9± 13.4 8/43

cerebellum (CB) (Figure 2C). For more details about the spatial
maps of the networks and their peak coordinates, please see
Supplementary Figure S2 and Supplementary Table S1 in Allen
et al. (2014). For a schematic illustration of csICA please refer to
the flowchart in Figure 1A.

Post-processing
The time courses associated with subject-specific ICs underwent
additional post-processing to remove residual motion and
artifactual sources of variation. That is, the time series were
detrended to remove low-frequency scanner drift, orthogonalized
with respect to the subject’s estimated motion parameters
and their derivatives, and despiked to replace outlier points.
Despiking was performed using AFNI’s 3dDespike algorithm
which detects outlier time points (based on the median
absolute deviation) and replaces them with interpolated values
from a third-order spline fitted to the adjacent time points
(Allen et al., 2014).

Static Functional Network Connectivity
Average connectivity among the networks over the whole session
was computed (for each subject) as the sample covariance matrix
of the network time courses. Since resting-state FC is primarily
shaped by low-frequency fluctuations of fMRI signals (Cordes
et al., 2001), the network time series were bandpass filtered
between (0.01 and 0.15) Hz (using a 5th-order Butterworth filter)
before computing the static functional network connectivity
(sFNC) matrices. Furthermore, sFNC was calculated for each
group by averaging over their respective subjects. To highlight
group differences, two-sample t tests were performed on each
entry of the (Fisher z-transformed) sFNC matrices, and p-values
were adjusted for multiple comparison using the false discovery
rate (FDR) approach (Benjamini and Hochberg, 1995). Following
convention, qFDR < 0.05 was considered statistical significance.

Instantaneous Phase Synchrony
The analytic representation of a real valued signal x(t) is a
complex signal xa(t), with no negative frequency components.
This complex signal can be constructed from the real signal using
the Hilbert transform as follows (Boashash, 1992):

xa (t) = x (t)+ jH {x (t)} (1)

where H{.} denotes the Hilbert transform and j is the imaginary
unit. The main property of analytic signal, xa (t), is that its
Fourier transform is the same as that of the original real-valued
signal, but only covers the positive frequencies. As a result, this
complex (analytic) signal converts the original time series into
two separate time series (which are the real and imaginary parts),
from which useful aspects of the signal can be studied – such
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FIGURE 1 | Flowchart of analysis and an illustrative example. (A) Resting-state fMRI data from each subject is decomposed using (spatially) constrained spatial
independent component analysis (csICA) into C sub-networks (C = 50), based on the aggregate network templates from Allen et al. (2014). Time series
corresponding to subject-specific networks are converted to complex analytic signals, from which instantaneous phases are extracted. Instantaneous phase
synchrony (IPS) is computed as cosine of the difference between momentary phases, for each pair of networks and per subject. Time indexed IPS matrices of all
subjects are clustered using spectral clustering. The three-dimensional plot (third row, right panel) shows an exemplar stack of IPS matrices projected on a

(Continued)
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FIGURE 1 | Continued
low-dimensional manifold, which is spanned by the first three principal components (PC). Cluster analysis assigns each data point (which is an IPS matrix) to one
cluster centroid (i.e., a state). The color of each filled circle reflects the state label assigned to that IPS pattern, where only three states where assumed in this
example. Trajectory analysis is conducted on the same IPS matrices (per subject), independently from cluster analysis. A number of measures are defined (in
Table 2) to quantify the state and trajectory characteristics. These IPS measures are quantified and statistically compared between healthy controls (HC) and
schizophrenia (SZ) patients. (B) An illustrative example highlighting the difference between cluster and trajectory analyses. Gray dots represent eight IPS matrices
projected on their first two principal components. Arrows indicate temporal progression of the patterns, for a hypothetical session. The colorful ellipses correspond
to three identified clusters. Hence, all the data points encompassed by one ellipse bear the same state label. The output of cluster analysis is a state sequence and a
corresponding transition matrix (middle and right panels). Conversely, trajectory analysis focuses on sample-to-sample variations in the IPS patterns. For instance,
the sum of the (L1) norms of all the black arrows constitutes the trajectory length. Also, the (L1) distance between the two farthest points is defined as the span of
the trajectory. For the full list of IPS measures, please refer to Table 2.

as instantaneous phase. In particular, for a narrowband signal
expressed as x (t) = a (t) cos(φ (t)), the corresponding analytical
representation is (Bedrosian, 1962):

xa (t) = a (t) exp
(
jφ (t)

)
(2)

where a(t) and φ(t) are instantaneous envelope and
instantaneous phase, respectively. Hence, for two real
narrowband signals (xp(t) and xq(t)), the difference between
their instantaneous phases reflects their phase synchrony. To
get a normalized measure between −1 and +1, the cosine
of the phase difference is considered (Glerean et al., 2012;
Cabral et al., 2017):

IPSpq (t) = cos(φp (t)− φq (t)) (3)

So, when the instantaneous phases of two signals fully align at
time t, IPS(t) reaches its maximum value of +1; conversely, for
180◦ phase difference, this measure falls to−1, reminiscent of the
familiar correlation and anti-correlation notions (herein called
coupling and anticoupling).

The post-processed network time courses in our study were
bandpass filtered in the 0.01–0.08 Hz range (Cabral et al., 2017)
using Parks-McClellan linear-phase finite impulse response filter
(Mcclellan et al., 1973; Glerean et al., 2012). The corresponding
analytic signals were used to compute instantaneous phase series
(Eqs. 1 and 2). Subsequently, IPS was calculated for each pair of
networks (p and q) at each time point (using Eq. 3) to construct
time-dependent IPS matrices (Figure 1A). These phase coupling
matrices reflect the momentary phase similarities of C = 50
resting-state (sub)networks, for each subject. The outstanding
task was to characterize the recurrence of these IPS patterns.

Identifying Recurrent IPS Patterns
In order to identify the main modes of phase coupling, across
time and subjects, we used cluster analysis. Clustering relies on
some measure of (dis)similarity between the samples, which are
symmetric IPS matrices in this context. A common measure of
similarity is cosine similarity:

cosine similarity
(−−→

IPSm (ti) ,
−−→
IPSn(tj)

)
=

−−→
IPSm (ti) ·

−−→
IPSn (tj

)∣∣∣∣∣∣−−→IPSm (ti)
∣∣∣∣∣∣ ∣∣∣∣∣∣−−→IPSn (tj

)∣∣∣∣∣∣ (4)

where
−−→
IPSm(ti) is a vector holding the unique (upper or lower

triangular) entries in the symmetric IPS matrix of the mth subject,

at time ti; the dot in the numerator stands for dot product and
|| · || is the magnitude (i.e., Euclidean norm). We work with a
related measure called angular similarity, defined as follows:

angular similarity = 1− angular distance (5)

angular distance =
cos−1 {cosine similarity

}
π

(6)

Angular similarity varies between 0 and 1, and this positivity is
useful for constructing an unsigned graph10 (to perform spectral
clustering, in what follows). Moreover, angular distance satisfies
the triangle inequality (unlike cosine distance) and qualifies as a
proper distance metric. Note that we have not performed data
reduction on the phase coupling matrices prior to (angular)
similarity computation, in order to retain maximal information
about the phase synchrony patterns.

As such, for M subject sessions, each comprising N
time samples, an MN ×MN (angular) similarity matrix was
computed. A representative portion of this matrix has been
illustrated in Figure 3A. From this similarity matrix, a (weighted
undirected unsigned) graph was constructed, which has been
schematically depicted in Figure 3B. Graph representation
furnishes the use of concepts and tools from graph theory.
In particular, spectral graph theory is the mathematical field of
studying graph properties from the eigenvectors and eigenvalues
of their associated adjacency and Laplacian11 matrices. For
instance, optimally partitioning a graph into a number of sub-
graphs is an NP-hard problem for which spectral clustering has
offered computationally tractable (approximate) solutions (Shi
and Malik, 2000; Luxburg, 2007).

We used the spectral clustering algorithm of Ng et al. (2002).
In this method, a low-dimensional representation of the pairwise
similarity matrix is constructed from the k smallest eigenvectors12

of the normalized graph Laplacian matrix. These vectors
constitute the columns of a new matrix, whose (normalized)
rows serve as the feature vectors for a clustering algorithm. We
used Gaussian mixture model (GMM) at this stage. To establish
the optimal (k) number of clusters, the same procedure was

10An unsigned graph is more straightforward to manipulate and interpret
algebraically than a signed graph (Gallier, 2016).
11Laplacian matrix is defined as L = D− A, where A is the adjacency matrix and D
is a diagonal matrix bearing the node degrees (Chung and Graham, 1997).
12Shorthand for the eigenvectors corresponding to the k smallest eigenvalues.
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FIGURE 2 | Static functional network connectivity (sFNC) analysis. (A) Average sFNC pattern for the healthy control (HC, upper panel) and schizophrenic (SZ, lower
panel) group. Diagonal (unity) entries have been removed for better visualization. (B) Difference in sFNC (HC–SZ). The color bar denotes
−10log(qFDR)× sign(t− statistic), following two-sample t test on Fisher z-transformed correlation values (z = atanh(r)). The 50 sub-networks and their organization
into seven major networks have been reflected in the labels. Sub-network labels reflect the brain region with peak amplitude and refer to bilateral activations unless
specified as left (L) or right (R). See Supplementary Figure S2 and Supplementary Table S1 in Allen et al. (2014) for the peak coordinates. (C) Spatial maps of
sub-networks grouped into seven networks based on their anatomical and functional properties. Abbreviations: STG, superior temporal gyrus; PreCG, precentral
gyrus; PoCG, postcentral gyrus; SMA, supplementary motor area; ParaCL, paracentral lobule; SPL, superior parietal lobule; MTG, middle temporal gyrus; FFG,
fusiform gyrus; MOG, middle occipital gyrus; SOG, superior occipital gyrus; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; MCC, middle cingulate cortex;
pInsula, posterior insula; MiFG, middle frontal gyrus; IFG, inferior frontal gyrus; aInsula, anterior insula; PHG, parahippocampal gyrus; PCC, posterior cingulate
cortex; AG, angular gyrus; ACC, anterior cingulate cortex; SFG, superior frontal gyrus; CB, cerebellum.
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FIGURE 3 | Identifying recurrent IPS patterns through cluster analysis. (A) Top plot shows a representative portion of the (symmetric) angular similarity matrix for 40
consecutive IPS patterns. That is, each entry denotes the angular similarity between two time-indexed IPS matrices (Eq. 5). Recurrent transient patterns are
automatically placed in the same cluster, following spectral clustering. For instance, IPS patterns realized between time points 5 and 11 (enclosed by a black square
on the diagonal) are highly similar to each other and to the patterns emerging over time samples 20–26. Hence, IPS matrices from both periods identify with the
same cluster number (i.e., state 1), as illustrated in the lower panel. (B) Schematic of an (undirected weighted) graph associated with an angular similarity matrix.
Each node corresponds to a time-indexed IPS matrix, and edge thickness reflects angular similarity. Using spectral clustering, this graph can be optimally divided
into well-connected groups of nodes that are plausibly separated from each other, comprising the clusters of interest. (C) Cluster validity is established using the
Davies–Bouldin index (which is the ratio of within-cluster scatter to between-cluster distance) quantified for a range of 2–10 clusters. The lowest value of this index
reflects the most plausible clustering solution, which is eight for our data. The associated cluster centroids are illustrated in Figure 4.

repeated for k = 2–10 components and Davies–Bouldin index13

(Davies and Bouldin, 1979) was used to score cluster validity
(Figure 3C). The optimal number of components (8 in this case)
was selected and the resultant cluster centroids comprised the
dominant states of inter-network phase coupling, across time and
subjects (Figure 4A). Thereafter, each time-indexed IPS matrix
was assigned to the most plausible centroid (i.e., state) based
on its posterior probability of assignment (which is called hard
assignment in the clustering literature).

Characterization of IPS Transient
Behavior
Following hard/crisp clustering, every IPS matrix (at each time
point) bears one state label ∈ {1 : 8}. The resultant sequence
of states per subject (see Figure 3A, lower panel) was used
to characterize the transient expression of phase synchrony
modes over time. Specifically, we call the fraction of IPS

13The Davies–Bouldin criterion is based on the ratio of within-cluster scatter to
between-cluster distance. Hence, the optimal clustering solution would achieve the
lowest value of this index.

patterns assigned to each state the prevalence of that state.
Other properties of interest are the probability of transition
between states, the probability of remaining in a particular
state (called dwell), and the average period over which a state
is held continuously (called persistence). These measures are
summarized in Table 2. They were computed per subject and
compared between (HC and SZ) groups using permutation-
based two-sample t tests, followed by FDR correction for
multiple comparisons.

We also investigated the relationship between the transition
probability and the similarity of states. It has been suggested
that transition probability between states is related to their
connectomic similarity; i.e., the brain undergoes smooth
connectivity changes over time (Vidaurre et al., 2017).
Specifically, a significant positive correlation between the
connectomic similarity of (correlation-based) functional states
and the transition probability between them has been reported
(Vidaurre et al., 2017). We intended to test the same hypothesis
about phase synchrony modes and their transition profile.
We tested, additionally, for any correlation between transition
probabilities and state prevalence (and persistence) similarities.
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FIGURE 4 | Continued
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FIGURE 4 | Instantaneous phase synchrony (IPS) states, in three representations. (A) Eight cluster centroids, depicted in matrix format. Each centroid stands for an
IPS state. The relative expression of each state (across time and subjects) is printed above it. Surface colors reflect IPS values (Eq. 3). Matrix representation offers a
detailed account of the phase coupling structure of each state, within and across seven functional networks. (B) The first eigenvector of each state is presented as a
bar plot. Positive and negative entries constitute two detached communities. (C) State connectograms are concise representations of average inter-network phase
couplings, where the average is taken over sub-components of each network. For instance, the central role of the subcortical (SC) network in state 2 is readily
recognized by noting the warm colored arcs extending from SC to other networks. SC, subcortical; AUD, auditory; SM, somatomotor; VIS, visual; CC, cognitive
control; DMN, default mode network; CB, cerebellum. For the sub-network abbreviations, please refer to the caption of Figure 2.

TABLE 2 | Measures of instantaneous phase synchrony (IPS).

Measure Description

Prevalence Probability of occurrence of each state

Persistence Mean lifetime of each state (in seconds)

Transition Probability Probability of switching from one state to another

Dwell Probability of remaining in a given state

Trajectory length Total L1 distance between successive IPS patterns

Span Maximum L1 distance between IPS patterns

Capacity Average L1 distance between IPS patterns

Efficiency Ratio of Capacity to Trajectory Length

Smoothness Average L1 similarity of successive IPS patterns

The upper section contains measures based on cluster analysis. The lower section
includes measures defined for the trajectory of IPS patterns. All indices are
calculated per subject session.

The correlation values are reported alongside 95% confidence
intervals (CIs), which were derived from 1000 bootstrap
resamplings of the subjects.

Deep Temporal Organization of Phase
Synchrony Modes
Recent DFC research has revealed a hierarchy in the temporal
organization of connectivity states at rest (Vidaurre et al., 2017).
In other words, the repertoire of connectivity modes comprises
of groups of states (called metastates) such that within-metastate
transitions are more probable than across. So, once the brain
enters a metastate, it is more likely to circulate within that
community of states for a while, before switching into another
metastate. This speaks to a separation of temporal scales, i.e., a

temporal hierarchy. That is to say, the dynamics of the metastates
and states unfold on slower and faster timescales, respectively.
So far, this deep temporal organization has been endorsed for
correlation-based connectivity modes.

Similarly, to examine whether the temporal arrangement of
phase synchrony states conforms to a hierarchy, we looked
for communities within the transition matrix. By regarding
the transition probabilities as adjacency values, the transition
matrix can be treated as an adjacency matrix, with an associated
graph. Due to the small number of states (i.e., 8), we looked
into the coarsest division of the transition matrix (into two
partitions). In spectral graph theory, bi-partitioning can be
achieved using the Fiedler vector (which is the second smallest
eigenvector) of the graph Laplacian (Fiedler, 1973), using the sign
of the corresponding vector entries. In other words, positive and
negative entries of the Fiedler vector determine how the graph
nodes (here states) can be placed into two maximally disjoint
partitions. This is an approximate solution to the minimum-cut
partitioning problem on graphs (Riolo and Newman, 2014). The
result was validated using hierarchical clustering. The presence
of distinct well-connected communities in the transition matrix
would demonstrate temporal order beyond sample to sample
switching. If plausible metastates exist, the remaining task would
be investigating their phase synchrony profiles and temporal
characteristics – plus potential alterations in SZ.

Trajectory of Phase Coupling Evolution
Cluster analysis is a useful approach for capturing the overall
composition and transience of phase couplings patterns. With
the usual crisp assignment, all the IPS matrices that belong to a
particular cluster collapse onto one dimension (which is the state
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label), disregarding individual differences and proximity to the
center or boundary of the cluster. Previous DFC work (Miller
et al., 2016) has shown that this crude dimensionality reduction
overlooks information in the trajectory of connectivity and could
over/underestimate connectomic variations.

To circumvent this issue, Miller et al. (2016) have
reparameterized time-dependent connectivity patterns by
discretizing their probabilistic assignments to a few prototypical
states (derived from data decomposition). In other words, they
have projected time-dependent connectivity patterns on (five)
representative connectivity modes and discretized the resultant
coefficients; thus, summarizing each connectivity pattern with
a five-element integer vector. This method reveals valuable
trajectory information and is more indicative of time to time
connectivity differences than hard (crisp) state assignment.
However, this approach still depends on data decomposition,
followed by projection and discretization, and the FC patterns
are derived from signal correlations, over successive windows.
Instead, we intended to follow the trajectory of IPS patterns,
in a high-dimensional space and at every time point, without
resorting to decomposition and discretization. Hence, we defined
a number of intuitive measures to characterize the evolution of
phase couplings. In the following, we describe these measures.

Due to the high-dimensional nature of the IPS matrices (with
50× 49/2 = 1225 unique features), L1 norm14 is a more effective
dissimilarity measure than L2 (Euclidean) distance (Aggarwal
et al., 2001). So, we computed trajectory length as the sum15 of
L1 distances between successive IPS matrices, per subject session;

hence, trajectory length =
N−1∑
i=1

Lm
i(i+1). Plus, the maximum L1

distance (over all IPS patterns in a session) was taken as the
span of the trajectory: span = max

i,j
Lm

ij ; i, j ∈ {1 : N}. Although

informative, this maximum value does not reflect dispersion of
the realized IPS patterns over the hyperspace (see schematic
trajectory in Figure 1B). Hence, by averaging over all pairwise L1
distances (per subject) we computed the capacity of the trajectory;
i.e., capacity = < Lm

ij >. Furthermore, the trajectory efficiency
was defined as the ratio of capacity to trajectory length, for each
subject. In this sense, an efficient trajectory traverses a large
portion of the state space (i.e., realizes diverse patterns) with
relatively small steps; conversely, a very inefficient trajectory is
a long one (with large misplanned steps) that eventually remains
confined in a small hyperspace.

Another useful feature is the smoothness of the trajectory.
Smoothness was defined as the average of L1 similarities
between consecutive IPS patterns (per subject), where L1
similarity stands for the reciprocal of L1 distance; hence,

smoothness = 1
N−1

N−1∑
i=1

(
Lm

i(i+1)

)−1
. Using these measures, we

looked for potential modulations of the phase coupling evolution

14Lm
ij = IPSm (tj

)
− IPSm (ti)1, where m is the subject index; i, j ∈ {1 : N} and N is

the number of time points per subject session.
15In case of unequal session lengths (i.e., different number of time samples per
subject), this measure can be normalized to the respective number of time points,
to denote average step length.

in the patient group. For a summary of the measures defined in
this section please refer to the lower section of Table 2.

Phase Synchrony Features as SZ
Predictors
We used the phase synchrony measures, introduced in the
previous sections, to predict the SZ label using a linear regression
model. Age, gender, and MFD were considered as potential
confounds. The model was set up as follows:

ydiagnosis = β0 + βmeasureXmeasure + βageXage + βgenderXgender

+βMFDXMFD + ε (7)

where ydiagnosis is a binary vector with SZ diagnosis coded
as 1 and HC as 0. The linear relationship between each
IPS measure (Xmeasure) and the diagnosis label (ydiagnosis) was
inspected separately. Moreover, an F test was also conducted
on each regression model to assess the significance of the
linear relationship. p-values were FDR corrected and significance
corresponds to q < 0.05. Hence, for each measure, we report the
adjusted R2, βmeasure, and qFDR values.

Validation Analyses
Subject-Specificity of Networks
To investigate individual differences in the estimated ICs and
their correspondence to the aggregate networks, we followed
the validation procedure in Lin et al. (2010). Namely, subject
components were variance normalized and a voxel-wise one-
sample t test was performed on each of the 50 components,
across subjects. Each t-map was subsequently thresholded at an
FDR corrected q < 0.01. The normalized spatial correlation of
subject-specific (FDR-corrected) IC maps with the corresponding
IC templates was computed. Average correlation for each subject,
over all ICs, was in the (0.6–0.74) range. These values reflect high
correspondence of individual networks to the templates [when
compared with the (0.43–0.63) range in Lin et al. (2010)], as
well as considerable amount of inter-subject variability. Notably,
(normalized) spatial correlation to the template was always above
0.45 for any subject-specific IC, averaged around 0.69, and
reached as high as 0.88. These results have been demonstrated
in Supplementary Figure S1.

Genuineness of IPS Modes
To verify that the identified IPS patterns reflect genuine
phase arrangements, the same cluster analysis was repeated on
surrogate data. Relevant literature recommends phase shuffling
(Theiler et al., 1992; Schreiber and Schmitz, 2000; Sun et al.,
2012) and random circular shifting (Politis and Romano, 1992;
Glerean et al., 2012) for generating surrogates. The former
shuffles the phase spectra of the original time series while
keeping the amplitude spectra unchanged. The latter applies
a random circular shift to each of the original series, to
disrupt the existing synchrony between them, while temporal
dependencies within each series are preserved. We used both
approaches and generated two sets of surrogates. If the clusters
in the original dataset reflect meaningful and recurrent phase
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synchrony modes, they should be distinct from patterns identified
from surrogate data.

Motion Effect
To inspect whether head motion is related to the emergence
of any state, we investigated the correlations between state
occurrences and concomitant FDs. Moreover, we checked for
systematic differences between FDs associated with different
states. That is, we computed average FD for each state, per subject:
FDs

(i), where s is the state label and i is the subject index. Then,
we conducted a one-way repeated-measures ANOVA to test for
difference in the means of these state-dependent average-FDs.

Drowsiness Effect
A prior DFC study (Allen et al., 2014) has reported one FC state
associated with drowsiness or light sleep. This speculation was
based on the increasing occurrence rate of that state over time.
To inspect this possibility, we fitted a line to the occurrence rate
(in five-sample windows) of each state over time, for each subject.
The slopes of the fitted lines were examined for potential non-
zero trend using one-sample t test. If a state is associated with
drowsiness, its occurrence rate is likely to show a positive trend
over the length of the scan.

Smoothing Kernel Effect
To inspect sensitivity of the findings to the width of the
smoothing kernel (in pre-processing), we repeated our analysis
for data smoothed using a Gaussian kernel with FWHM = 9 mm.
Recent research suggests that kernels spanning 2–3 voxels are
optimal for fMRI preprocessing prior to ICA analysis at the
subject level (Chen and Calhoun, 2018). From this validation
analysis, we found that our key results (i.e., the nature of the
states and metastates and their temporal profiles, as well as the
IPS trajectory features and their alterations in SZ) are robustly
replicated even with this wider kernel. The results have been
provided as Supplementary Material.

RESULTS

sFNC Indicates Disconnection in SZ
Figure 2A illustrates group-specific sFNC patterns, obtained for
each subject and then averaged over each group. The average
patterns reveal well-known modular organization within sensory
systems and default mode components, as well as anticorrelation
between them (Fox et al., 2005; Chang and Glover, 2010; Shirer
et al., 2012). Group difference in sFNC (HC–SZ) is demonstrated
in Figure 2B as −10log(qFDR)× sign(t − statistic). Significant
differences have been marked in bold squares in the lower
triangular part (corresponding to qFDR < 0.05). From 1225
unique sFNC entries, 18% are significantly different between
the two groups (13% have higher mean value in the HC group
and 5% are higher in SZ). Specifically, stronger correlation
among sensory areas of normal subjects as well as pronounced
subcortical-sensory anticorrelation (compared to SZ patients) is
in accordance with previous findings (Damaraju et al., 2014).
Moreover, a two-sample t test on the ensemble of the matrix
entries showed that sFNC is globally stronger in normal subjects
(p< 1e−4).

Recurrent IPS States Comprise Distinct
and Diverse Patterns
The representative portion of the angular similarity matrix in
Figure 3A indicates that phase coupling evolution is gradual
(hence the heavy diagonal). Moreover, similar patterns emerge
over non-adjacent epochs, creating the bright off-diagonal
patches. The goal of cluster analysis on IPS patterns was to
quantify this recurrence. Using spectral clustering, eight distinct
IPS arrangements were identified, which recur over time and
across subjects. By associating each IPS matrix with one state
label, a sequence of states was formed (see Figure 3A, lower
panel). The overall prevalence of each state has been imprinted
on top of the corresponding matrix in Figure 4A.

Figure 4 shows the cluster centroids (i.e., the IPS states)
in three formats: matrices, eigenvectors, and connectograms.
Clearly, the states differ in their functional architectures. State
1 denotes high level of phase synchrony within and across most
networks, while parts of DMN, CB, and CC are decoupled from
each other. In state 2, SC and AUD show strong (anti)coupling
with respect to the rest of the networks. State 3 reflects notable
phase coupling within and across CC, DMN, and CB. In state
4, SC and AUD have strong synchrony with other components
while SM, VIS, CC, DMN, and CB are mostly anticoupled or
decoupled. State 5 shows an internally incoherent CC, which
is also anticoupled to DMN and CB, while DMN is internally
integrated. In state 6, (parts of) VIS and CC are anticoupled
within and across each other and have mixed (coupling and
anticoupling) relationship to DMN and CB. State 7 is noted for
strong SC connections, disintegrated CC, and anticoupling of
AUD to SM and CC. State 8 is a decoupled state on average,
with faintly more synchronous VIS and slightly anticoupled CC.
Note that the (unity) diagonal values have been removed from all
matrices to improve image contrast.

Figures 4B,C provide alternative useful representations of the
states. Bar plots in Figure 4B illustrate the first eigenvectors
of the states. Hence, the complex coupling and anticoupling
relations in each state make up the detached modes in the leading
eigenvectors (Bonacich and Lloyd, 2004; Bonacich, 2007; Cabral
et al., 2017). The connectograms in panel C show average across-
network phase couplings, which serve as concise representations
of large-scale IPS modes. Of note is the variety of the patterns
identified from empirical data. We will see (in the Results section)
that these functional architectures are distinct from accidental
phase synchrony arrangements obtained from surrogate data.

Figure 4 also shows that, averaged over all subjects, empirical
state 1 is the least common (with 11% prevalence) while state 2 is
visited most often (18% prevalence). In the next section, we will
inspect group-specific results and show that SZ state proportion
is profoundly different from that of the HC.

IPS State Proportion Has Been Altered in
SZ
By inspecting state prevalence values in both groups (Figure 5A),
we note that patients express the first two states almost half as
much as normal subjects (6% vs. 11% for state 1, and 12% vs. 22%
for state 2). Instead, patients would rather spend more time in
state 5 or 7 (15% vs. 10% for state 5, and 12% vs. 9% for state 7).
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Importantly, the first two states are more globally connected than
others (see Figure 4B, the leading eigenvectors), while state 5 is
most notable for anticoupling within CC and negative coupling of
CC to DMN and CB. State 7 also reflects de/anti-coupling among
CC components. Corroborating these results, the persistence plot
(in Figure 5B) shows that patients tend to remain in state 5
about 1.2 s longer than healthy subjects, on average; conversely,
SZ patients cannot hold state 2 as long as the HC (persistence
of state 2 = 7.5 s and 10 s, for SZ and HC, respectively). These
differences were significant after FDR correction and show that
the proportion and average duration of IPS states have been
altered in SZ. Notably, this alteration favors less synchronous
states that lack a cohesive cognitive control network.

In addition to these state occupation features, the switching
pattern between states is another informative aspect of IPS
transience, which we will examine in the next section.

IPS State Transitions Show Minimal
Change in SZ
In Figure 5C, we have shown group-specific transition matrices
and their difference (HC–SZ). Although permutation tests on
the transition probabilities returned a few significant uncorrected
p-values (for transitions from/into states 2 and 5), none of them
survived FDR correction, except the probability of dwell in state 2
(qFDR < 0.05. This probability is on average 0.7 for the HC group
and 0.6 for SZ patients. This result is in line with our previous
finding that state 2 is almost twice as prevalent in healthy subjects
(compared to the patients) and persists longer (Figures 5A,B).

Although the transition probabilities are not very informative
for distinguishing patients from controls (in the present study),
they still reveal important information about the spontaneous
spatiotemporal reorganization of the brain, in general. We will
demonstrate this in the following.

State Transition Probability Correlates
With State Similarity
Previous research has suggested that the transition probability
between connectivity modes correlates with the similarity of
the corresponding connectivity patterns; that is, connectivity
changes occur rather gradually over time (Vidaurre et al., 2017).
However, the recurrent functional states in Vidaurre et al. (2017)
reflect correlations. We tested the same hypothesis about fMRI
instantaneous phase coupling variations. That is, we correlated
the transition probabilities with the IPS state similarities. Notably,
we assessed similarity of the states from both functional and
temporal aspects.

To quantify functional similarity of the states, pairwise
correlations were computed between the eight IPS states, over all
subjects, resulting in an 8× 8 symmetric state similarity matrix.
Correspondence of this similarity matrix to the average transition
matrix was quantified using correlation analysis. The same
procedure was repeated using prevalence similarity, persistence
similarity, and activity similarity of the states.

The results (in Figure 5D) show that, indeed, similar
states are more likely to follow each other in time. Phase
synchrony resemblance of the states significantly correlates with

the transition probabilities [r = 0.45, p-value = 0.017, 95%
CI = [0.31, 0.57]). The temporal similarity of the states, namely,
their prevalence and persistence associations, are also linearly
related to their transitional behavior. Specifically, for prevalence
similarity vs. transition probability: r = 0.56, p = 0.0018, 95%
CI = [0.47, 0.71]; and for persistence similarity against transition
probability: r = 0.50, p = 0.0065, 95% CI = [0.45, 0.72]. However,
activity pattern resemblance is not correlated with transition
probability (r = 0.073, p = 0.71, 95% CI = [−0.25, 0.46]),
corroborating the results in Vidaurre et al. (2017). In other words,
it is the connectivity (be it amplitude dependencies or phase
coupling) structure that evolves with more self-consistence over
time – rather than the activity profile.

As noted, the transition matrix holds abundant information
about the spatiotemporal organization of the brain at rest. In
the next section, we will go through the results of our metastate
analysis – again based on the transition pattern – which speaks to
higher-order temporal structure in the phase coupling variations.

Metastates Induce Two Distinct Phase
Synchrony Modes
To identify metastates (MS), we treated the average transition
pattern as an adjacency matrix and bi-partitioned the associated
graph using the Fiedler vector (as elaborated in the “Methods”
section). Figure 6A (right panel) shows the Fiedler vector
alongside the hierarchical clustering dendrogram. Both
approaches show that states 1–4 and 5–8 constitute two
plausible partitions, i.e., metastates. The blocks on the main
diagonal of the transition matrix (Figure 6A, left panel) show
that within-metastate transitions are more probable, than across.
For the sake of presentation, each entry of this matrix denotes
0.6th quantile of the corresponding transition probabilities,
across subjects.

The average MS profiles are illustrated in Figure 6B. MS1
is clearly more coherent, and both SC and AUD networks
have central roles in its functional architecture. Conversely,
MS2 has lower overall phase synchrony level (Figure 6C, bar
plot) and shows a notable breakup and anticoupling among
CC components. We tested for connectomic differences between
these MSs using permutation-based paired t tests. The results in
Figure 6C show that out of ( 7×6

2 + 7 =) 28 unique connections
within and across the main (seven) networks, 21 couplings are
on average stronger in MS1, only 2 connection means are higher
in MS2, while 5 connections are not significantly different (after
FDR correction). The connectograms in Figure 6C show the
mean values for the statistically different connections in the
two MSs. Moreover, the bar plot (right panel) demonstrates
that global phase coupling of MS1 is significantly higher than
MS2 (p-value < 1e−4). Having characterized the metastates, the
outstanding task is to verify whether the temporal organization
of these MSs has been altered in SZ.

The Less-Synchronous Metastate
Dominates in SZ
We quantified the temporal profile of the metastates by
computing their transition probabilities, as well as their
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FIGURE 5 | Characterization of transience in IPS states. (A) State prevalence (i.e., probability of occurrence) for each state, in the healthy control (HC) and
schizophrenic (SZ) group. Error bars denote standard errors of mean (SEM). Group differences were assessed using permutation-based t tests. States 1 and 2 are
more frequently visited by the HC, whereas states 5 and 7 are more prevalent in the patient group. (B) Persistence (i.e., mean lifetime) of each state, per group. The
HC remain longer (continuously) in state 2, whereas SZ subjects prefer to linger in state 5. (C) Group-average transition patterns and their difference (HC–SZ).
Diagonal values have been removed to improve image contrast. Only one entry (i.e., the probability of dwell in state 2) is significantly different after FDR correction.
(D) Relationship between transition probability and state similarity. State similarity is assessed from four aspects: IPS pattern similarity, activity map similarity,
prevalence similarity, and persistence similarity. Activity map resemblance is uncorrelated with transition probability between states; however, similarity in the other
three functional and temporal aspects of the states significantly correlates with the probability of switching between them. The correlation coefficient (r) is imprinted
beside each plot, and red lines denote best fitted lines. In panels (A,B), asterisks show statistically significant differences, after FDR correction (∗ indicates p < 0.05;
∗∗∗ indicates p < 0.001).
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FIGURE 6 | Identifying and characterizing metastates (MS). (A) Metastates are groups of states with higher probability of within-group transitions, than across. States
1–4 and 5–8 show this property, as evidenced by diagonal blocks on the group transition matrix. Entries of the transition matrix (left panel) denote 0.6th quantiles,
across subjects. The top right panel shows the Fiedler vector (i.e., the second smallest eigenvector of the graph Laplacian associated with the transition matrix) and
the lower panel contains the dendrogram of hierarchical clustering (cophenetic correlation coefficient = 0.22). Both methods acknowledge the same metastates.
(B) Average metastate patterns, across subjects. MS1 is clearly more coherent (than MS2) and MS2 is notable for anticoupling of the cognitive control network
components. (C) Difference in the phase coupling pattern of the metastates. Left panel: connections that are on average stronger in MS1 (or MS2) were identified
using permutation-based paired t tests. Positive (pink) bars show (average) phase couplings that are significantly higher in MS1 than MS2; negative (blue) bars
denote the inverse. The two connectograms (middle panel) convey the same information graphically. The bar plot (on the right) shows that average phase coupling is
significantly higher in MS1, than MS2 (permutation-based paired t test: p < 1e–4). Error bars stand for standard errors of mean, and >∗∗∗ indicates p < 1e–4.
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prevalence and persistence values, in each group. Figure 7A
shows that the probability of dwell in MS1 is higher in HC
compared to SZ (0.85 versus 0.81, p-value < 1e−3). Conversely,
the probability of dwell in MS2 is higher in SZ than HC (0.84
versus 0.80). Transition probabilities (from MS1 to MS2 and
vice versa) are the complements of dwell values, so they are also
significantly different between the two groups. Moreover, the
dwell probabilities are significantly different within each group;
that is, MS1 dwell is higher than MS2 dwell in HC subjects
(p < 1e−3), and the opposite is true for SZ patients (p = 0.0162).
All p-values were FDR corrected. These results become clearer as
we inspect other temporal characteristics of the metastates.

Figures 7B,C show that MS1 is more prevalent and persists
longer in the HC, compared to the SZ group (compare the pink
bars); the inverse is true for MS2 (inspect the blue bars). All
FDR-corrected p-values remained below 0.001 for these tests.
But, more importantly, this plot is saying that the balance of
MS expression for a typical SZ patient is the inverse of what is
expected in a normal subject. That is, while MS1 is dominant
in the HC (both in terms of prevalence and persistence),
MS2 is the leading phase coupling mode in SZ. These within-
group effects were investigated using paired (permutation-based)
t tests16. Comparing MS ratio between the groups showed
that both persistence ratio and prevalence ratio (computed as
MS2/MS1) are significantly higher in SZ (p-values < 1e−4;
Cohen’s d = 0.86 and 0.85).

In short, although immediate IPS transition probabilities seem
to be minimally changed in SZ (Figure 5C), deep temporal
organization of the states has been gravely altered in the
patient group. Notably, this altered balance is such that patients
spend more time in a poorly connected MS (i.e., MS2), which
promotes phase decoupling within and across most functional
networks – and anticoupling within the cognitive control
network. Overall, this metastate analysis suggests that large-scale
functional disconnection in SZ could be mediated by distortions
in the deep temporal structure of IPS connectivity modes, at
the network level.

This concludes our cluster-based analysis. In the next
section, we will see the results of our cluster-free approach
to IPS assessment, using the trajectory of instantaneous phase
couplings. We will inspect whether phase synchrony evolution
has been modulated in SZ.

Phase Coupling Trajectory Is Less
Efficient and Less Smooth in the Patient
Group
In this section, we report the results of IPS trajectory
characterization. We mentioned that collapsing IPS patterns
onto one dimension (i.e., state labels) is a simplification that
overlooks potentially useful information in the sample-to-sample
connectomic changes (Miller et al., 2016). Hence, we used
L1 distance to assess dissimilarity between time-indexed IPS
matrices, and defined a number of measures to characterize the
hyperspace and pathway traversed during each session. These

16FDR-corrected p-values for test on prevalence: p < 1e−4 (HC), p = 0.0165 (SZ);
test on persistence: p< 1e−4 (HC), p = 0.0135 (SZ).

measures are summarized in Table 2, and their empirical values
are presented in Table 3.

The results show that the average trajectory length is higher
in SZ (compared to HC), but the difference is weakly significant
(p = 0.096). However, all the other indices have significantly
higher means in the HC group. Namely, the span, capacity,
efficiency, and smoothness of the trajectory are all higher in
normal subjects (FDR corrected p-values = 0.023, 0.002, 0.032,
and 0.024, respectively). These results speak to the modulation
of ongoing phase coupling in SZ, at the network level. This
modulation is such that consecutive patterns are more dissimilar
in the patient brain (hence the reduced smoothness), but this
jumpy trajectory fails to achieve the more diverse repertoire of
IPS patterns that is realized by the typical healthy brain.

Figure 8 shows representative IPS trajectories from a normal
subject (22-year-old male) and a SZ patient (33-year-old male),
projected on the first two principal components of their IPS
profiles. Hence, each circle (or cross) is a time-indexed IPS
pattern presented on a low-dimensional manifold and the
connecting lines show the progression of IPS from time to time.
Even visual inspection confirms that the HC trajectory smoothly
explores a larger space (left panel) as opposed to the patient
trajectory (right panel) which seems to be confined in the top
right corner of the space most of the time. The corresponding
state sequences (lower panels) show that the normal subject
spends longer periods in state 2 and 4 (which belong to MS1).
Conversely, the patient sequence mostly avoids states 1 and 2, but
visits states 5–8 more often (which are associated with MS2).

Equipped with IPS measures derived from our state,
metastate, and trajectory analyses, we will now look into the
explanatory power of these phase indices for predicting SZ in a
regression model.

IPS Measures Predict SZ
A linear regression model was used to assess the predictive power
of different IPS measures for SZ diagnosis, while treating age,
gender, and MFD as confounds. The adjusted R2

values (i.e.,
explained variances) have been reported in Figure 9, alongside
the regression coefficients and FDR corrected p-values (of the
F tests).

Among the included states, state 2 features (namely, its
prevalence, persistence, and dwell) are the better predictors
(adjusted R2

= 0.10). Notably, all the MS indices (i.e., MS
prevalence, persistence, dwell, and MS2/MS1 ratio) have adjusted
R2 above 0.12, while MS2/MS1 persistence ratio alone can explain
19% of the variance in diagnosis label. As such, metastates
seem to be distinctive features. In fact, previous correlation-
based DFC research has shown that metastate profile is heritable,
subject-specific, and related to behavioral traits (Vidaurre et al.,
2017). Among the trajectory measures, capacity seems the most
distinctive, with adjusted R2

= 0.10. These results are particularly
useful for selecting IPS features for classification studies.

IPS States Are Distinct From Random
Phase Synchrony Patterns
Figure 10A shows IPS states derived from clustering surrogate
data, alongside empirical states. Surrogate1 was generated by
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FIGURE 7 | Temporal characteristics of metastates (MS). (A) Average transition probability matrices of metastates, for the healthy control (HC, left panel) and
schizophrenic (SZ, right panel) subjects. Dwell probabilities (i.e., the diagonal entries) were compared within and between groups. (B) Difference in the prevalence
(i.e., probability of occurrence) of MS1 and MS2, within and across groups. (C) Difference in the persistence (i.e., uninterrupted occupancy) of metastates, within and
across groups. The key finding here is that MS1 is dominant in the HC, whereas MS2 prevails in SZ. Statistical tests were permutation-based t tests (paired, when
appropriate). Error bars denote standard errors of mean (SEM). Asterisks denote significant difference in mean, after FDR correction (∗ indicates p < 0.05; ∗∗

indicates p < 0.01; ∗∗∗ indicates p < 0.001; >∗∗∗ indicates p < 0.0001).

TABLE 3 | Trajectory analysis results.

Measure HC mean SZ mean p-value (uncorrected) p-value (FDR corrected) Effect size (Cohen’s d)

Trajectory Length 3.93e+3 3.98e+3 0.096 0.096 −0.31

Span 63.25 61.94 0.0092 0.023 +0.50

Capacity 48.90 48.69 0.0004 0.002 +0.67

Efficiency 0.0125 0.0122 0.025 0.032 +0.36

Smoothness 3.35e−3 3.29e−3 0.0145 0.024 +0.46

The measures were defined in Table 2.

phase shuffling the original series and surrogate2 was produced
by inducing random circular shifts in the original data. For
surrogate data, the cluster validity index (i.e., Davies–Bouldin
index, panel C) continues to decrease by increasing model
complexity, as opposed to the empirical plot (in panel B)
that endorses eight clusters. Subsequent inspection of surrogate
centroids (assuming k = 8 clusters) revealed that the resultant
states are indistinguishable and lack the strong (anti)coupling
structure in the empirical arrangements. Furthermore, we
depicted group-specific states to highlight the correspondence of

IPS modes in the two groups, although SZ patterns (especially
states 1 and 2) are somewhat fainter.

In short, we see that empirical IPS modes are well-
defined, diverse, and distinct from random phase synchrony
patterns. In other words, IPS states seem to reflect intrinsic
order in the phase synchronization of functional networks,
which further corroborates the idea that resting-state dynamics
may be conceptualized as excursion though a bounded
repertoire of metastable functional modes (Deco et al., 2011;
Cabral et al., 2017).
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FIGURE 8 | Sample IPS trajectories from a healthy control subject (HC, left panel) and a schizophrenia patient (SZ, right panel). Top panels: IPS trajectories in
low-dimensional manifolds (spanned by the first two principal components, PC). Notably, the HC subject covers a larger space and realizes a smoother trajectory
(compared to the patient). Lower panels illustrate the corresponding state sequences. The healthy subject spends longer periods in states 2 and 4 (which belong to
metastate 1), while the patient’s sequence mostly avoids states 1 and 2, but visits states 5–8 more often (which are associated with metastate 2). Please refer to
Table 3 for group differences in IPS trajectory measures.

FIGURE 9 | Diagnostic value of IPS measures for schizophrenia (SZ). A linear regression model (Eq. 7) was set up for each measure, while treating age, gender, and
mean framewise displacement (MFD) as confounds. Bars denote adjusted R2 values (i.e., explained variances). Numbers on the right show regression coefficients
(βmeasure) and FDR-corrected p-values (qFDR) of F tests conducted on regression models. The measures have been grouped into three categories: state-related
measures, metastate-based measures, and trajectory measures. For definition of the measures, please refer to Table 2. S: State; MS: Metastate.
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FIGURE 10 | Continued
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FIGURE 10 | Empirical versus surrogate IPS states. Panel (A) plots show that clustering IPS patterns from surrogate data do not result in the same well-defined and
distinct states identified in empirical data. The first column (left) shows the empirical states (same as Figure 4A). The second and third columns reflect the high
correspondence of IPS states in the two (HC and SZ) groups. Percentage values denote the prevalence of each IPS mode. Conversely, the patterns in the last two
columns (on the far right) were derived from surrogate data. Surrogate1 was generated by phase shuffling the original series and surrogate2 was produced by
inducing random circular shifts in the original time courses. Surrogate data were subjected to the same clustering procedure as empirical data. The cluster validity
plot for surrogate data [in panel (C)] shows that the Davies–Bouldin validity index continues to decrease by increasing model complexity (i.e., the cluster number).
This is in contrast to the trend observed in real data [panel (B) here, same as Figure 3C], which endorses an optimal model size of 8. The surrogate states depicted
in panel (A) show the clustering solution for k = 8, for the sake of comparison with empirical modes. The resultant surrogate states are flat and lack the strong
coupling and anticoupling structure in the original states. Healthy Control: HC; Schizophrenic: SZ.

Phase Synchrony States Are Not Driven
by Head Motion
Correlation analysis showed that FD does not meaningfully
covary with the occurrence of any state: r = 0.0323, 0.0198,
0.0023, −0.0286, 0.008, −0.0190, 0.0029, and −0.0141, for states
1–8, respectively. Moreover, the effect of state label on mean FD
was insignificant [repeated-measures ANOVA: F (7,693) = 1.12,
p = 0.35]. Hence, none of the states is associated with head
movement, and the evidence does not support difference in the
associated motion of the states.

To verify the potential relation of the states to wakefulness, we
inspected state occurrence rates over time. It turned out that only
the best fitted line to state 4 incidence rate has a significantly non-
zero (positive) trend. The uncorrected p-values (of one-sample
t tests on the line slopes, across subjects) were 0.66, 0.69, 0.13,
0.034, 0.91, 0.76, 0.12, and 0.35, for the eight states, respectively.
The actual state occurrences have been depicted in Figure 11,
for all subjects (in the upper surface plots). In each lower plot,
state occurrence has been accumulated over subjects per time
point; hence, the superimposed fitted lines show group trends.
Specifically, the group trend for state 4 reflects 3.9% increase in
the appearance of this state, per time sample. Notably, state 4
was not different in prevalence or persistence between HC and
SZ subjects (see Figures 5A,B).

DISCUSSION

Today, resting-state DFC features are being rigorously examined
as potential functional biomarkers for diagnosis and prognosis of
brain disorders. The ease of task-free data acquisition (especially
from patients) makes resting-state studies particularly appealing.
Besides, recent evidence suggests that resting-state DFC can affect
task performance and may explain inter-subject differences in

perception, learning, and other cognitive abilities (Gonzalez-
castillo and Bandettini, 2019). Among DFC measures, fMRI IPS
has the advantage of evading the window problem (Hindriks
et al., 2015; Leonardi and Ville, 2015; Zalesky and Breakspear,
2015) and its functional relevance has been revealed in health,
disease, and pharmacological conditions (Glerean et al., 2012;
Ponce-Alvarez et al., 2015; Cabral et al., 2017; Alderson et al.,
2019; Lord et al., 2019; Zhang et al., 2019). In the present
study, we extended IPS characterization to higher functional and
temporal scales, and addressed an important analysis issue – that
of finding natural order in this type of data. In the following, we
will review the key contributions of this work and the significance
of the findings.

We showed that the inherent spatiotemporal order in IPS
data can be uncovered (using spectral clustering) without
compromising the phase coupling details. Importantly, this
approach improves interpretability of the identified states. For
instance, state 5 (which is more prevalent in SZ patients)
shows clear anticoupling between CC and CB networks (see
Figure 4). In fact, fronto-cerebellar dissociation in SZ has
been commonly reported and relates to negative and cognitive
symptoms, as well as executive dysfunction in SZ (Ridler et al.,
2006; Brady et al., 2019). Moreover, cluster analysis revealed a
globally coherent state (i.e., state 1), which has been reported
in prior IPS research as well. Specifically, Cabral et al. (2017)
showed that this highly synchronous state is visited less often
in older adults with poor cognitive scores. Similarly, Lord
et al. (2019) showed that the occurrence of a very synchronous
state decreases after psilocybin injection. We found that state
1 is significantly less frequent in the SZ group, alongside
state 2. As for state 2, it reflects strong interactions of SC
and AUD with other networks. Functional (and structural)
alterations of the subcortical network in SZ and their relationship
with social and cognitive performance have been extensively
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FIGURE 11 | Drowsiness effect. The occurrence of each state (over time) has been depicted for each subject. The two groups (HC and SZ) have been separated by
a constant (white) line, in the surface plots. Other white patches indicate the emergence of that particular state over time. In the lower bar plots, state occurrences
have been accumulated over subjects, for each time point. The black fitted lines show group trends. Group trend for state 4 reveals a 3.9% increase in the
expression of this state, per time sample. Only state 4 has a significantly non-zero (positive) trend (p-value = 0.034).
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studied in the literature (Koshiyama et al., 2018). It has even
been suggested that reduced fronto-subcortical FC could be a
functional biomarker of SZ (Vandevelde et al., 2017). As such,
preserving the details of IPS patterns is quite informative and can
reveal useful functional features (e.g., for diagnostic purposes).

Another important aspect of our research was focusing on
IPS analysis at the network level (rather than regional), with
a whole-brain scope, which speaks to higher-order functional
integration in the brain. Notably, transient interaction of large-
scale networks is a functional attribute that relates to personality
traits (Vidaurre et al., 2017, 2019) and shows alterations in
prior DFC accounts of SZ (Damaraju et al., 2014; Rashid
et al., 2014; Salman et al., 2019). We used constrained ICA
and verified (section “Subject-Specificity of Networks”) that this
approach respects subject specificity of the estimated networks
and simultaneously maintains network correspondence at the
group level. Moreover, the fine-grained functional parcellation
(with 50 ICs) was useful for inspection of sub-network behavior.
For instance, we notice that four states reflect anticoupling among
CC sub-components (i.e., states 4–7). Remarkably, three of these
states belong to metastate 2, which is significantly predominant
in SZ (Figure 7). This phase coupling alteration in the CC
network of the patients might be related to cognitive deficits in SZ
and supports previous reports of dysfunctional CC connections
(Lesh et al., 2010; Alústiza et al., 2017). Hence, including sub-
components of the networks is valuable in that it provides more
insight into the functional organization of the states.

A further product of our analysis was uncovering the
relationship between transition probability and IPS state
similarity. Specifically, we showed that similar states (in terms
of functional pattern and temporal profile) are more likely to
switch into each other (Figure 5D). This is the same phenomenon
reported in Vidaurre et al. (2017) – about gradual connectivity
progression at rest – despite the fact that our connectivity
states reflect phase synchrony modes and their states reflect
correlations. Hence, the tendency to explore local neighborhoods
in the (functional and temporal) feature space of metastable
connectivity structures seems to be a fundamental aspect of
spatiotemporal reorganization of the brain, at rest17.

Subsequently, we looked for deeper (slower) temporal order
in the IPS transience. This analysis disclosed higher-level
temporal organization of phase synchrony modes and the utility
of metastate analysis. This hierarchical temporal arrangement
seems to be another fundamental DFC trait that does not
depend on the (correlation or phase based) nature of the
connectivity states (Vidaurre et al., 2017). Moreover, metastate
analysis turned out particularly useful in our clinical application.
That is because patients and HCs do not differ much in
their immediate transition profiles (Figure 5C); however, we
noticed that MS balance has been gravely altered in SZ

17Note that if this gradual connectivity evolution were simply due to the
continuous nature of fMRI signals or ICA time series, then the activity maps
(associated with connectivity states) could have more readily reflected this gradual
change – but they do not (Figure 5D, upper right panel). Moreover, the tendency
of temporally similar connectivity states (in terms of prevalence and persistence
profile) to follow each other in time cannot be explained by the continuity of
fMRI/ICA time series (Figure 5D, lower panels).

(Figure 7). In other words, it is the slower clock (which
determines metastate occupation) that seems to be damaged
in the SZ disorder. Importantly, metastate proportion turned
out to be a strong predictor of SZ, in the regression analysis
(Figure 9). Additionally, MS characterization showed that MS2
(which prevails in SZ) is significantly less coherent than MS1
(Figures 6B,C). Overall, we showed that SZ connectivity disorder
is manifest on higher functional (i.e., network) and temporal (i.e.,
metastate) levels as well.

After state and metastate characterization, we focused on
the trajectory of IPS evolution, free from the restrictions of
cluster analysis. We defined novel measures (Table 2) to quantify
different trajectory attributes. The results (in Table 3) showed
that, despite the relatively large sample-to-sample jumps in
SZ, the inefficient IPS trajectory of the patient brain precludes
realization of a rich repertoire of FC patterns, compared to HC
subjects. Hence, all four measures of span, capacity, efficiency,
and smoothness were significantly lower in the patient group.
Relevant research (Miller et al., 2016) has characterized the
trajectory of (correlation-based) DFC patterns in SZ and showed
that patient trajectories cover a smaller portion of the state space
and realize fewer distinct patterns. These results seem also in line
with the findings in Alderson et al. (2019), which indicate that
cognitive performance is directly related to the variety of network
configurations explored at rest. This makes more sense when we
remember that cognitive deficits are among the core symptoms of
SZ (Goldman-Rakic, 1994; Perlstein et al., 2001; Silver et al., 2003;
Barch, 2005; Forbes et al., 2009).

Despite partial consistency of our findings with those in
Miller et al. (2016) – about the reduced span of DFC space in
SZ – IPS analysis shows that the connectivity trajectory length
is actually longer in SZ, unlike the correlation-based result in
Miller et al. (2016). A key difference is that we have followed the
connectomic path in a higher dimensional space, and that IPS
has inherently higher temporal resolution. This longer trajectory
in SZ, alongside shorter span, results in the lower efficiency of
FC evolution (Table 3), suggesting less structured navigation of
the state space in SZ. Moreover, the recurrent inter-network IPS
modes identified by our analysis do not resemble the complex-
valued states (based on wavelet coherence) in Yaesoubi et al.
(2015, 2017) or the correlation-based states in Allen et al. (2014),
even though the same network parcellations were adopted in
our studies18. This speaks to a well-defined identity for the IPS
repertoire, beyond correlation-based19 DFC states. This disparity
is due to the different mathematical properties of IPS and sliding-
window correlations (Pedersen et al., 2018).

Lastly, we investigated the diagnostic value of IPS measures,
using regression analysis. The metastates turned out to be
distinctive traits for SZ identification, together with the
prevalence of state 2 and the capacity of the trajectory.
There is hope that, developing neuroimaging-based biomarkers
and (machine learning based) classifiers would facilitate more

18Once collapsed along the frequency dimension, Yeasoubi’s FC states are almost
identical to those in Allen et al. (2014), as depicted in Figure 5 of Yaesoubi et al.
(2015), and both are remarkably different from IPS states. This comparison is
licensed because our adopted functional networks are identical to theirs.
19Coherence is also correlation in the frequency domain.
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objective diagnosis of patient (sub)groups, to furnish more
effective treatment selection and prognosis (Drysdale et al., 2017;
Fernandes et al., 2017; Bzdok and Meyer-Lindenberg, 2018).
Along this way, FC-based methods can provide useful (statistical)
insight into the pathological alterations of brain connectivity,
at the observation level; however, characterizing the underlying
neuronal circuitry and revealing the mechanisms of functional
integration would call for model-based (effective connectivity)
approaches (Friston, 2011, 2016; Gilson et al., 2019), which are
recently being integrated with machine learning techniques as
well (Frässle et al., 2020).

To elucidate the long-term vision, we mention a couple
of recent achievements. Lately, Brady et al. (2019) have used
a data-driven approach to show that connectivity breakdown
between the cerebellum (CB) and right dorsolateral prefrontal
cortex (DLPFC) directly corresponds to the severity of negative
symptoms in SZ, which are known to be resistant to medication.
Notably, when these researchers applied transcranial magnetic
stimulation (TMS) to the cerebellar midline of SZ patients
and restored this specific CB-DLPFC functional connection,
the negative symptoms were also relieved – reflecting a causal
relationship that is useful for therapeutic purposes. In another
prominent research, Deco et al. (2019) have proposed a
generative whole-brain model that can predict (in silico) how
direct electrical stimulation of different brain regions would
change the proportion of IPS states in the brain (of the sort
depicted in our prevalence plot, in Figure 5A). As a proof of
concept, the authors showed that this method can be used to
“awaken” the brain from deep sleep to wakefulness and vice versa,
i.e., switching between two conditions that entail different state
proportions. Accordingly, 1 day we may be able to modulate
disease-specific circuitry and restore state (or metastate) balance
in brain disorders – such as SZ – which might relieve the
clinical symptoms and eventually improve the quality of life
for these patients.
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