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COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

has gained global attention. SARS-CoV-2 identifies and invades human cells via

angiotensin-converting enzyme 2 receptors, which is highly expressed both in lung

tissues and intestinal epithelial cells. The existence of the gut-lung axis in disease could

be profoundly important for both disease etiology and treatment. Furthermore, several

studies reported that infected patients suffer from gastrointestinal symptoms. The gut

microbiota has a noteworthy effect on the intestinal barrier and affects many aspects of

human health, including immunity, metabolism, and the prevention of several diseases.

This review highlights the function of the gut microbiota in the host’s immune response,

providing a novel potential strategy through the use of probiotics, gut microbiota

metabolites, and dietary products to enhance the gut microbiota as a target for COVID-19

prevention and treatment.
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INTRODUCTION

Emerging respiratory infectious diseases are among the top concerns and fascinations of both
the public and scientific/medical communities (1). Since December 2019, coronavirus disease
2019 (COVID-19) has become an international public health emergency caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical symptoms of the diseases are fever,
cough, and myalgia/fatigue, which can develop into acute respiratory distress syndrome (ARDS),
and resulting in death (2). Gastrointestinal symptoms, such as diarrhea, have also been reported in
several infectious patients (3).

Respiratory viral infections, such as influenza, are often accompanied by intestinal symptoms,
mainly including shifts in the intestinal microbiota composition (4, 5). The gut microbiota provides
the human host with various biological functions, including metabolizing nutrients, maintaining
the normal function of the intestinal mucosal barrier, and promoting immune system development
(6). For instance, the gut microbiota can generate anti-inflammatory metabolites including short-
chain fatty acids (SCFAs), tryptophan, and niacin (7), promoting CD4 immune cells/Th17 cell
proliferation and differentiation (8); and enhance the host’s antiviral immune response (9). Thus,
balance gut microbiota is associated to maintain systemic health that contributes to resistance
to SARS-CoV-2 invasion. This review focuses on the etiology and clinical features, especially
intestinal symptoms, of COVID-19 and discusses their effects on the intestinal microecology
and the applicable mechanisms whereby the gut microbiota regulates immune and inflammatory
responses to coronavirus-related diseases of the host.
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SYMPTOMS OF VIRAL INFECTIONS IN
COVID-19

COVID-19 infection shows non-specific incipient symptoms,
and the most common clinical manifestations are fever and
dry cough (10). Furthermore, gastrointestinal symptoms, such
as diarrhea, have been reported as common manifestations in
COVID-19-infected patients (11). Coronavirus entry into host
cells is mediated by the transmembrane S-glycoprotein that
forms homotrimers protruding from the viral surface (12). The
S-glycoprotein SB of SARS-CoV-2 recognizes the angiotensin-
converting enzyme 2 (ACE2) receptor on the cell surface, fuses
with the cell membrane, and enters the target cell for subsequent
replication and assembly (13) (Figure 1). ACE2 is expressed not
only in lung tissue but also in esophageal and intestinal epithelia
(14). ACE2 is a relevant player in the renin-angiotensin system
(RAS), counterbalancing the deleterious effects of angiotensin
II. Furthermore, intestinal ACE2 functions as a chaperone for
the aminoacid transporter B0AT1. It has been suggested that
B0AT1/ACE2 complex in the intestinal epithelium regulates gut
microbiota (GM) composition and function, with important
repercussions on local and systemic immune responses against
pathogenic agents, namely viruses. A previous study pointing
that ACE2 imbalance is a key player for the poor outcomes in
COVID-19 patients with age-related comorbidities (15).

Additionally, the gut microbiota dysbiosis of COVID-19 is
associated with infection severity, and patients suffering from
diarrhea increasingly need respiratory assistance and intensive
care (16). Thus, diarrhea should be considered a symptom of
a possible coronavirus infection and examined for an early
diagnosis. Patients showing digestive symptoms receive an
average of 9-day treatment from symptoms until admission,
whereas patients showing respiratory symptoms receive an
average of 7.3-day treatment, indicating that patients showing
digestive symptoms spend a longer time in the hospital (17).
Furthermore, it is widely known that the gut microbiota is
usually influenced by diet, age, and even gender, which means
the immunity of a host is also the difference. A previous study
showed that gut microbiota diversity is decreased in old age and
in patients with certain chronic diseases, which constitute two
of the primary fatality groups in COVID-19 infections, it can be
assumed that the gut microbiota may play a role in COVID-19
pathology and fatality rate (18).

As for intestinal barrier integrity, inborn and adaptive
immune cells can activated and secrete proinflammatory
cytokines to the circulatory system, resulting in systemic
inflammation (19). COVID-19 patients who suffer from
diarrhea and have increased serum interleukin (IL)-6 levels
show higher calprotectin concentrations (20). Calprotectin a
clinical biomarker for inflammatory bowel diseases and has
immunoregulatory functions that could play a potential role in
monitoring the disease in the diagnosis and especially the follow-
up of COVID-19-related diarrhea (21). In addition, diarrhea may
rank second to virus-induced inflammation due to the access of
inflammatory cells to the intestinal mucosa, such as neutrophils
and lymphocytes, thereby disrupting the gut microbiota (22).

GUT MICROBIOTA CHANGES IN COVID-19
PATIENTS

Respiratory viral infections often occur with intestinal symptoms.
The composition of intestinal microbiota changes in different
lung diseases has been reported (23–25). Several studies have
reported gut microbiota changes in the feces of patients suffering
from COVID-19 (26, 27). Alterations in the gut microbiota
were first reported using shotgun metagenomic sequencing
that analyzed fecal samples from admission to discharge
(27). Cases were classified as mild (no radiographic evidence
of pneumonia), moderate (presence of pneumonia), serious
(respiratory rate ≥ 30/min or oxygen saturation ≤ 93% while
breathing ambient air), or crucial (respiratory failure needing
mechanical ventilation, shock, or organ failure needing intensive
care). Microbiome results were compared to cases of community-
acquired pneumonia and healthy people, characterized by
an enrichment of opportunistic pathogens and depletion of
beneficial commensals, at the time of hospitalization (27).
Another study compared COVID-19 patients, H1N1 patients,
and healthy controls to recognize variations in the gut microbiota
(26). The same results were also observed in the studies, with
significant differences in fecal microbiomes compared to the
control groups with characteristics of enriched opportunistic
pathogens and depleted beneficial commensals.

Figure 2 shows the main gut microbiota changes after
infection. In which the gut microbiota composition shows
stratification with disease severity in line with increased
concentrations of inflammatory cytokines and blood markers,
including C-reactive protein, lactate dehydrogenase, aspartate
aminotransferase, and γ-glutamyl transferase (28). There is an
association between the relative abundance of Coprobacillus,
Clostridium ramosum, and Clostridium hathewayi and the
severity of COVID-19 but an inverse relationship between
abundant Faecalibacterium prausnitzii (which possess anti-
inflammatory effects) and the disease severity. F. prausnitzii is a
commensal bacterium identified as anti-inflammatory based on
human clinical data (29). F. prausnitzii has anti-inflammatory
effects both in vitro and vivo. As one of its mechanisms of
inhibition and inflammation, F. prausnitzii secretes bioactive
molecules that can block the activation of nuclear factor-κB
and the production of IL-8 by intestinal epithelial cells (30).
In addition, F. prausnitzii can stimulate high secretion levels
of IL-10 through peripheral blood mononuclear cells, mucosal
dendritic cells (DCs), and macrophages. It probably plays a
role in intestinal homeostasis by inhibiting the production
of proinflammatory cytokines, including interferon-γ, tumor
necrosis factor-α, IL-6, and IL-12, and enhancing the suppressive
activity of forkhead box P3 regulatory T cells (Tregs) in
the mucosa (31). F. prausnitzii is a known strain with
immunomodulatory potential and can contribute to host defense,
which was significantly depleted in patients with COVID-19
infected when compared with non-COVID-19 (32). During
hospitalization, several particular intestinal microorganisms,
Bacteroides thetaiotaomicron, Bacteroides dorei, and Bacteroides
massiliensis downregulating ACE2 expression in the patient’s gut,
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FIGURE 1 | Illustrative model of the entire mechanism of pathogenicity of SARS-CoV-2 (the life cycle of the virus in host cells from attachment to replication) (12, 13).

showed a reverse tendency compared to the load of SARS-CoV-
2 among fecal samples of the patients. Notably, Coprobacillus
strongly upregulated the colonic expression of ACE2 in the
murine gut in the previous study (33).

Collectively, these findings suggested that the configuration
of the gut microbiome may influence the susceptibility and
response to SARS-CoV-2 infection and highlighted a known
concept that an original and specific method of modulating the
gutmicrobiotamay stand for a therapeutic avenue for COVID-19
and its comorbidities. The persistence of depleted symbionts and
gut dysbiosis differed from individuals who considered healthy
after clearing SARS-CoV-2, as decided by throat swabs and the
resolution of respiratory symptoms. In a recent study, 55 of the
406 cases were tested by anal swab, and results showed that
81.8% of the stool samples were positive. It is noteworthy that
23.3% of the stools were still positive after the respiratory viral
nucleic acid tested negative, suggesting that the digestive tract
clears viruses slower than the respiratory tract (34–36). In the
follow-up of patients who recovered from SARS-CoV-2, it has

been reported that common clinical sequelae, including general
symptoms (49.6%), respiratory symptoms (39%), cardiovascular-
related symptoms (13%), psychosocial symptoms (22.7%), and
alopecia (28.6%) (37). Furthermore, some patients retained
intestinal microecology dysbiosis after recovery, suggesting that
the gut microbiota is closely correlated with the host’s immune
system during infection and after recovery (28). Therefore,
daily intake of beneficial substances, such as probiotics, can
improve the gut microbiota composition and enhance the body’s
immunity, thereby contributing to the prevention and treatment
of coronavirus and the alleviation of sequelae (38).

INTESTINAL BARRIER REGULATED BY
THE GUT MICROBIOTA FOR COVID-19
PREVENTION

The interface between a person and their external environment
in the body, the intestinal tract has two key functions.
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FIGURE 2 | Gut microbiome features in the feces of patients with COVID-19 compared to healthy individuals. The characteristics are enriched opportunistic

pathogens and depleted beneficial commensals. Data were collected from published literature (26–28).

A filter with selected permeability, permits the transfer of
required nutrients from the intestinal lumen into circulation
and the internal milieu in general. The intestinal tract as a
barrier stops the penetration and prevents the movement of
some harmful particles, including microorganisms, viruses, and
luminal proinflammatory elements (39).

Barrier defenses comprise both immunogenic and non-
immunogenic mechanisms, in which the gut microbiota is the
main functional component. Regarding non-immunogenic
mechanisms, the primary function is selective intestinal
permeability influenced by variations in the gut microbiota.
Several commensal bacteria, including Escherichia coli, Klebsiella
pneumoniae, and Streptococcus viridans, significantly increase
intestinal permeability, allowing harmful entities, such as
viruses, to enter circulation more easily, whereas probiotics,
such as Lactobacillus brevis, have the counteractive effect,
decreasing permeability (40). The intestinal tract is also an active
immunological organ with more resident immune cells than
anywhere else in the body; the gut microbiota contributes to non-
immunological defenses in the mucosa (41). The homeostasis
of the gut microbiota is beneficial to maintain the cooperation
between the innate and adaptive immune systems of the host
(42). The innate and adaptive immune systems participate in
SARS-CoV-2 infections. Lymphopenia with greatly decreased
B and T cells and programmed cell death-1 is upregulated in
severely infected patients (43). Various interventions displayed

that the gut microbiota increases antiviral immunity (Table 1).
It is supposed that the gut microbiota significantly regulates the
growth and function of the innate and adaptive immune systems
by influencing immune cells to activate anti-inflammatory
responses and keep immune homeostasis, influencing the host’s
susceptibility to different diseases (52, 53). The proinflammatory
response should also be considered because the balance between
proinflammatory and anti-inflammatory responses is important
in many diseases, and understanding how the microbiota shapes
immune responses is critical for human health (54). A previous
study reported that microbial colonization might provide
pro-inflammatory signals that affect the reciprocal development
of T-helper and Treg cells. It is suggested that the normal gut
microbiota can activate T-cell responses and activate antiviral
responses in macrophages by activating inflammasomes and
inducing the migration of DCs (9). These findings revealed that
the intestinal microbiota acts as a barrier that profoundly impacts
the balance between pro-inflammatory and anti-inflammatory
immune responses.

The gut microbiota and its metabolites provides protect
against thousands of pathogens and closely associates with
the host’s systemic and pulmonary immune functions (55).
SARS-CoV-2 is a reported respiratory pathogen, but intestinal
symptoms should also be considered because the intestinal
system associates with the immune system. The intestinal and
respiratory microbiota develops simultaneously after birth, and
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TABLE 1 | Antiviral functions of the gut microbiota.

Bacterial species Intervention Mechanisms References

Commensal microbiota Antibiotic treatment Regulates the generation of virus-specific CD4 and CD8T cells

Provides signals leading to the expression of mRNA for pro–IL-1β and

pro–IL-18

(44)

Commensal microbiota Antibiotic treatment Enhances primary alveolar macrophage function (45)

Commensal microbiota Streptococcus pneumoniae

treatment

Modifies neutrophil phenotype through down-regulating neutrophil

expression of an efferocytosis-inhibitory molecule reduces susceptibility to

severe pneumonia

(46)

Bacteroides species

increased

SCFA treatment Enhancement of CD8+T cell metabolism

Increased generation of macrophages with reduced ability to produce

CXCL1 in airways

Reduced neutrophil recruitment, resulting in the attenuation of lung

immunopathology

(47)

Clostridium orbiscindens Antibiotic treatment Enhanced type I IFN signaling in macrophages (48)

Commensal microbiota Microbiota transfer Production of virus-specific CD8+T cell responses via dendritic cells (49)

Lachnospiraceae spp. SCFA treatment GPR43-mediated and IFNAR dependent IFN-β responses in lung epithelial

cells

(50)

Lactobacillus plantarum

L-137

SCFA treatment Proinflammatory activity

Th1 immune response

(51)

the lungs are inhabited by a microbial population distinct from
the gut (56). The interaction between the host and the microbiota
shapes different local cell functionalities, immune responses
and can further influence disease development (57). Pulmonary
immune homeostasis is maintained by a network of tissue-
resident cells while ensuring that efficient and rapid immune
responses can be mounted against invading pathogens (58).

The function of pulmonary immune homeostasis mainly
depends on the respiratory mucosa regulated by the microbiota
and systemic metabolome (59). Furthermore, a previous study
demonstrated a vital cross-talk between the lungs and intestinal
mucosal sites of the human body through what is commonly
referred to as the “gut-lung axis” (5). The human oral microbe
also plays vital roles in the development and maintenance of
immune homeostasis (60). Accumulated evidence for the oral-
gut axis has revealed its role in modulating the pathogenesis
process in numerous diseases (61). It is compelling to look into
the oral and intestinal microbiome combined with SARS-CoV-2
infection and the crosstalk among them, which may provide an
improved understanding of the initiation of viral infection and
the path of disease deterioration. The gut microbiota has been
shown to influence pulmonary immunity (62). An important
player in this gut-immune-lung axis is the microbiota that
utilizes dietary components as energy sources, and the resulting
metabolic byproducts can be potent immune modulators (63).
The movement of immune cells between the gut and lungs
can be made through the lymphatic system and/or the blood,
thereby modulating the immune response of both organs (64).
A number of studies indicated that alterations of early-life
microbiota, especially gut microbiota, have consequences for
lung diseases. A previous study reported that treatment of mice
with vancomycin led to a drop in the diversity of the gut
microbiota, which was linked to an exaggerated Th2-driven
allergic airway inflammation (65). In recent years, studies have
pointed out that it is difficult to distinguish the effects of the

intestines, followed by the lungs and the host immune system;
in all likelihood, both organs will be significantly important
(58). Separating early-life events that influence the gut and the
immune system and those that directly influence the lungs is
difficult. This relationship is bidirectional, and gut microbiology
and physiology could be changed by chronic and acute lung
diseases (66). Therefore, in the case of a disrupted intestinal
mucosal immune block, invading organisms can access the
blood or lungs, leading to ARDS (67). Together, these findings
showed that the intestinal tract closely associates with the
body’s antiviral function, showing promise as a target to resist
coronavirus infections.

PROBIOTICS REGULATED GUT
MICROBIOTA FOR COVID-19 TREATMENT

The probiotics function has gained more attention to mediate
the gut microbiota exerts an effect on the treatment of
environmental contaminants and diseases (68). Probiotics
can alter the gut microbiota composition and play essential
roles in maintaining the gut microbiota ecosystem (69).
Furthermore, several probiotics drive anti-inflammatory and
immunoregulatory roles in the settings of enteric infections and
mucosal inflammation (70). Although the immune responses
caused by bacteria are different from the virus, several previous
studies reported that probiotic or gut microbiota is contributed
against COVID-19. Probiotics balancing the local microbiota
by inhibiting the growth of pathogenic microorganisms (71),
and by enhancing local and systemic immune responses
(72). They may also influence the composition and activity
of microbiota in the intestinal contents. Considering the
beneficial effects of probiotics in virus infections, specific
probiotics have been suggested to be effective in alleviating the
duration and severity of acute rotavirus gastroenteritis (73).

Frontiers in Medicine | www.frontiersin.org 5 March 2022 | Volume 9 | Article 811176

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhao et al. Gut Microbiota and COVID-19

A previous study demonstrated that the genus Lactobacillus
can drive respiratory immune responses to increase the host’s
defense against respiratory infections (74). Recently, large-
scale vaccinations have been implemented worldwide to control
COVID-19; however, the discovery of mutant viruses may
affect vaccine immunity. Furthermore, some studies reported
that the gut microbiota could act as immune modulators
and natural vaccine adjuvants to affect intestinal immune
responses (75). Intestinal dysbiosis play a role in the failure
to respond to vaccines (75). In the management of COVID-
19 Bifidobacterium, promotes efficacy of vaccines against SARS-
CoV-2 (76). These results provided possible evidence for
using probiotics for the defense of COVID-19. However,
using probiotics for therapy is worth noting in many aspects.
Although probiotics have an excellent overall safety record,
they should be used with caution in certain patient groups
like neonates born with immunodeficiency. Because of the
paucity of information regarding the mechanisms through
which probiotics act, appropriate administrative regimens,
and probiotic interactions, further investigation is needed
in these areas. Finally, note that the properties of different
probiotic species vary and can be strain-specific. Therefore,
careful consideration should be given to these issues before
patients are advised to use probiotic supplements in clinical
practice (77).

The intestinal immune system is regulated by microbes and
their metabolites. Anaerobic colonic bacteria are adopted to
ferment non-digestible carbohydrates, such as cellulose, xylans,
resistant starch, and inulin, to yield energy for microbial
development (78). The most frequently used probiotics, such
as lactic acid bacteria and bifidobacteria, can also generate
SCFAs by fermenting carbohydrate end-products (79). The
generated SCFAs, such as butyric acid and propionic acid, are
the most important metabolites with many microbials, which
play a significant role for adjusting the intestinal mucosal
immune block and keeping their common functions during
respiratory tract infections (63). Moreover, SCFAs can strengthen
the number and function of Tregs, thus weakening excessive
inflammation and immune response in airway diseases (80).
Different dietary carbohydrates not digested by the host, called
“prebiotics”, can selectively stimulate the development and
metabolic activity of probiotic bacteria, such as bifidobacteria
and lactobacilli. In fact, through combining probiotics-prebiotics
(called symbiotic), predominant bacteria and the generation
of SCFAs of fecal microbiota can be shifted in a model
system of the human colon (81). The generation of SCFAs by
these bacteria is a promising fundamental regulatory factor of
epithelial proliferation in the gut (82). Except for SCFAs, a lot
of other metabolites of the symbiotic gut microbiota associate
with host immunity (83). Retinoic acid maintains intestinal
immune homeostasis, as IgA production can be promoted
by B and Treg cell growth (84). Tryptophan is an energy
source for Lactobacillus that can produce ligands for an aryl
hydrocarbon receptor, which maintains the homeostasis of the
epithelial block and intraepithelial lymphocytes (85). Niacin
has been reported to promote anti-inflammatory properties of
colonic macrophages and DCs through GPR109A signaling and

enable them to induce Treg cells and IL-10-producing T cells
(86). During respiratory tract infections, lipopolysaccharides
(LPS) act as part of the intestinal mucosal immune block to
keep their common functions (87). In addition, lactate and
pyruvate can strengthen the immune response by attracting the
dendrite protrusion of small intestinal mononuclear cells (88).
LPS are part of the intestinal mucosal immune barrier and
maintain normal functions during respiratory tract infections
(87). The various probiotics and metabolites for pulmonary
infectious disease treatment are summarized in Table 2. This
evidence demonstrated that dietary fiber could play a significant
function in adjusting the gut microbiota further to regulate
the intestinal barrier for virus infection and injury. In
pathogenic SARS-CoV-2 infections, a healthy gut microbiota
also plays a significant role against lung infection and
injury (Figure 3).

CONCLUSION AND FUTURE PROSPECTS

In conclusion, as the third wave of coronavirus epidemic of the
21st century, after SARS and Middle East respiratory syndrome,
the COVID-19 pandemic shows a great global social and

TABLE 2 | The functional of different probiotics, microbial products and dietary

products for host immunity enhancement to against pulmonary infectious disease.

Characteristics Main functions References

Probiotics

Lactobacillus

gasseri

Enhanced inflammatory signals

Enhanced antiviral immune reaction

(74)

Lactobacillus

rhamnosus

Enhanced vaccine immune efficacy

Enhanced antiviral immune reaction

(89)

Lactobacillus casei Enhanced phagocytic and killing

activity of alveolar macrophages

Increased levels of IgA, IFN-γ,

and TNF-α

(90)

Bifidobacterium Enhanced vaccine immune efficacy (25)

Microbial metabolites

Short-chain fatty

acids (SCFAs)

(Butyrate,

Propionate)

Maintenance of mucosal barrier

Enhanced antiviral immune reaction

Anti-inflammatory effect

(63)

Retinoic acid Increased IgA level Treg

cell development

(84)

Niacin Anti-inflammatory effect Increased

activity of macrophages and

dendritic cells Development of T

regulatory cells and IL-10-producing

T cells

(86)

LPS Enhance the mucosal

immune response provide improved

resistance against infection

(87)

Desaminotyrosine Increased IFN-1 (48)

Dietary products

Carbohydrate

polymers

Increased SCFAs (91)

Prebiotics Increased SCFAs (92)
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FIGURE 3 | Possible models of SARS-CoV-2 infection, interactions between the human gut and lungs, and potential positive immune responses triggered by

probiotics and other prebiotics against lung infection and injury (69, 70, 78–80).

TABLE 3 | Clinical trials about using probiotics to regulate gut microbiota for COVID-19 treatment and COVID-19 vaccination efficacy.

Identifier Country/location Intervention Study design Main aim

NCT04366089 Italy Probiotic Parallel assignment Treatment COVID-19

NCT04366180 Spain Probiotic Parallel assignment Treatment COVID-19

NCT04399252 Unit States Probiotic Parallel assignment Treatment COVID-19

NCT04420676 Austria Synbiotic Parallel assignment Treatment COVID-19

NCT04980560 Prince of Wales Hospital,

Hong Kong

Probiotic An observation study Compare microbiome profile in

subjects with different COVID-19

vaccination and subjects recovered

from COVID-19

NCT04884776 Prince of Wales Hospital,

Hong Kong

3Bifidobacteria at 2 × 1,010

CFU for 12 weeks

Parallel assignment Restore gut microbiota to increase

COVID-19 vaccine efficacy and

reduce side-effects

NCT04798677 Hospital Mare de Déu de la

Merc, Spain

ABBC1 including

beta-glucans, Inactivated

saccharomyces cerevisae,

Selenium, and Zinc

Parallel assignment Enhance immune responses including

generation of T cells, IgM and IgG

economic pressure. Given the close association between viral
replication and gastrointestinal immunity, a healthy intestinal
barrier strategy targeting and modulating the host immune
response may effectively decrease viral replication and its spread
to the circulatory system. Additionally, probiotic uses have been
reported as a promising strategy for severe COVID-19 infection
treatment by China’s National Health Commission and studies
by the National Administration of Traditional Chinese Medicine.
Probiotics improve the composition of the gut microbiota
and the function of microbial metabolites. Most importantly,
coronavirus-targeting vaccines and antiviral drugs have been
developed to prevent COVID-19 and future epidemics (Table 3).
Notably, according to several results, intestinal dysbiosis may
affect the failure to respond to vaccines. With regard to this, the

gut microbiota could influence intestinal immune responses as
immune modulators and natural vaccine adjuvants. Therefore,
the probiotic bacterial polysaccharide structure can be regarded
as a lipopeptide-based vaccine. Thus, in the control of COVID-
19 and other coronavirus-mediated diseases, it is potential for
probiotic bacteria to strengthen vaccine efficacy.
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