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Ensiling has long been as a mainstream technology of preserving forage for 

ruminant production. This study investigated the effects of bioaugmented 

ensiling with laccase and Pediococcus pentosaceus on the fermentation 

quality, nutritive value, enzymatic hydrolysis, and bacterial community of 

alfalfa. The application of laccase and Pediococcus pentosaceus combination 

was more potent in modulating the fermentation quality of silage than laccase 

and Pediococcus pentosaceus alone, as indicated by higher lactic acid 

contents and lactic acid to acetic acid ratios, and lower pH, dry matter losses, 

and ammonia nitrogen contents. Moreover, treatments with additive enhanced 

protein preservation and structural carbohydrate degradation, while increasing 

true protein and water-soluble carbohydrate contents. By promoting lignin 

degradation, treatments containing laccase further facilitated the release 

of sugars from cellulose compared with treatment with Pediococcus 

pentosaceus alone. The additive treatments reduced the bacterial diversity and 

optimized the bacterial community composition of silage, with an increase in 

the relative abundance of desirable Lactobacillus and a decrease in the relative 

abundance of undesirable Enterobacter and Klebsiella. PICRUSt functional 

prediction based on Kyoto Encyclopedia of Genes and Genomes (KEGG) 

databases revealed that PL and LPL treatments increased the metabolism of 

membrane transport, carbohydrate, and terpenoids and polyketides related to 

fermentation activities. It can be concluded that bioaugmented ensiling with 

laccase and Pediococcus pentosaceus combination can be an effective and 

practical strategy to improve silage fermentation and nutrient preservation of 

alfalfa silage.
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Introduction

Alfalfa is a high-yielding and nutrient-rich forage legume and 
is widely used as a dietary component of ruminants. The 
utilization of alfalfa in ruminant production can expand the 
protein source and thus reduce the dependency on expensive 
protein supplement (Tabacco et al., 2006). In many regions of the 
world, ensiling rather than haying is a more practical strategy for 
preserving forage, considering greater harvest speed and less 
weather damage in practice (Broderick et al., 2017). However, 
natural ensiling produces high-quality alfalfa silage is difficult due 
to the high buffering capacity and low water-soluble carbohydrate 
(WSC) content and attached lactic acid bacteria (LAB) number 
(McDonald et  al., 1991). Therefore, silage additives, including 
chemicals (sugars and organic acid) and biologicals (LAB and 
enzymes), have been applied to alfalfa at ensiling to modulate the 
resultant silage quality. Compared with chemical additives, 
biological additives are more applicable in silage preparation 
because of cost-effective and eco-friendly properties.

Laccases, one group of multicopper-containing oxidases, are 
mainly present in fungi, bacteria, insects, and plants (Fillat et al., 
2017). Laccases can catalyze the oxidation of both the lignin-
related compounds and aromatic compounds, at the expense of 
molecular oxygen (Nazar et al., 2022). In the past decade, laccases 
have received extensive attention due to their high-efficiency 
applications in various industries (Debnath and Saha, 2020). 
Fungal laccases have been shown to effectively degrade lignin in 
grasses and crop residues (Rajak and Banerjee, 2018; Sherpa et al., 
2018). Moreover, Chen et al. (2012) reported that fungal laccase 
enhanced the lignin degradation of corn stover silage compared 
with raw corn stover, leading to increased downstream cellulose 
hydrolysis. These authors ascribed the increased lignin 
degradation to the fact that ensiling provided access for laccase to 
enter the complex biomass for delignification by partially 
hydrolyzing cellulose and hemicellulose into soluble sugars. 
Therefore, it was hypothesized that the addition of fungal laccase 
at ensiling could degrade lignin in alfalfa and thus increase the 
conversion of fiber into soluble sugars for LAB growth. Besides, 
given that the reaction of laccase degrading lignin consumes 
oxygen, laccase addition may favorably create anaerobic 
conditions in silage and reduce the respiration losses. To our 
knowledge, there are little information about effects of fungal 
laccase on the fermentation quality and bacterial community of 
alfalfa silage. Furthermore, Pediococcus pentosaceus has been 
proven to be  an efficient silage inoculant, because they can 
promote lactic acid fermentation in silage and improve nutrient 
preservation (Irawan et al., 2021). Accordingly, it is expected that 
alfalfa silage quality can be greatly improved by the addition of 
laccase and P. pentosaceus combination in consideration that they 
may act synergistically or additively on enhancing lactic acid 
fermentation and cell wall degradation.

Understanding the bacterial community composition of silage 
can provide deep insight into the relationship between key taxa 
and fermentation parameters in silage (Bai et al., 2022). Thus, 

extensive attempts to profile bacterial community related to silage 
fermentation are needed to reveal important taxa that are 
favorable to improving silage quality. Therefore, the objective of 
this study was to investigate the potential of laccase and 
P. pentosaceus bioaugmentation on modulating the performance 
of alfalfa silage, with special accent in the fermentation 
characteristics, nutrient composition, enzymatic hydrolysis, and 
bacterial community.

Materials and methods

Forage and silage preparation

Whole-plant alfalfa (cultivar SR4030) was mowed at the early 
flowering stage at the field of Shanxi Agricultural University. 
Alfalfa was field-wilted (26–31°C) for 4 h to 35% DM and chopped 
to about 2-cm in length using a forage harvester. The fresh forage 
was randomly divided into 12 piles (2 kg each pile), which were 
assigned to one the following treatments in triplicate: deionized 
water (Control), laccase (100,000 U/g, Xiasheng Industrial Group 
Co., Ltd., Beijing, China) at application rate of 0.04% of fresh 
forage (LA), P. pentosaceus 3XM4512 (GenBank accession number 
MF623192.1) to achieve 1 × 106 cfu/g of fresh forage (PL), and a 
combination laccase and Pediococcus pentosaceus (LPL), 
respectively. The strain of P. pentosaceus was inoculated in De 
Man, Rogosa, and Sharpe (MRS) broth (Huankai Biotechnology, 
Co., Ltd., Guangdong, China) at 37°C for 20 h, and then 
centrifuged at 3,000 g for 20 min to obtain the bacterial pellet. The 
pellet was washed three times with sterile NaCl (0.9%, w/v), and 
resuspended in sterile deionized water to be a concentration of 
109 cfu/ml (measured by OD at 600 nm). All additives were diluted 
in sterile deionized water to obtain the target application rate and 
sprayed uniformly onto the forages at a rate of 10 ml/kg. 
Approximately 500 g of raw material was placed into a vacuum-
packed bag silo (25 width × 36 cm height) and heat sealed with a 
vacuum packaging machine (YMX-958-6l, Yiminxin Co., Ltd., 
Quanzhou, China). The experimental silos were weighed and 
stored at room temperature (22–25°C) for 90 days. The bags were 
weighed again on opening to calculate DM losses (DML) of silage 
due to fermentation. Once silos were opened, subsamples were 
prepared for the determination of fermentation end-products, 
enzymatic hydrolysis, and bacterial community. Fresh alfalfa 
subsamples from the initial pile of chopped alfalfa were collected 
for chemical and microbial analyses.

Chemical and microbial analyses

The first subsamples (100 g) were oven-dried at 55°C for 72 h, 
and then ground passing through a 1-mm screen (Ke et al., 2017). 
The contents of DM (method 930.15), acid detergent fiber (ADF, 
method 973.18), and crude protein (CP, method 984.13) were 
analyzed according to the Association of Official Analytical 
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Chemists (AOAC, 1990). The protein fractions including 
non-protein nitrogen (PA) and true protein (PB) were determined 
with the method of Licitra et al. (1996). For the neutral detergent 
fiber (NDF) and acid detergent lignin (ADL) analyses, ground 
materials were treated with heat-stable α-amylase and sodium 
sulfite as described by Van Soest et al. (1991). Hemicellulose (HC) 
and cellulose (CL) were estimated as the differences between NDF 
and ADF and the differences between ADF and ADL, respectively. 
The WSC was determined by anthrone sulfuric acid calorimetry 
method according to Zhao et al. (2021).

The second subsamples (20 g) were mixed with 60 ml of 
deionized water and left to stand at 4°C for 24 h to prepare water 
extracts (Chen et al., 2021). The water extracts were filtered 
through Whatman filter papers, and the filtrates were used to 
determine pH, ammonia nitrogen (NH3–N) and free amino 
acid nitrogen (AA–N), organic acids (lactic, acetic, propionic, 
and butyric acids) and ethanol. The pH was immediately 
measured using an electrode pH meter (P901, YOKE Instrument 
Co., Ltd., Shanghai, China). The NH3–N and AA–N were 
determined according to Broderick and Kang (1980). The 
organic acids and ethanol were analyzed using HPLC (1,260, 
Agilent Technologies, Inc., Waldbronn, Germany) coupled with 
a refractive index detector, on an Carbomix® H-NP5 column 
(Sepax Technologies, Inc., Newark, DE, United  States), 
following the parameters: mobile phase, 2.5 mmol/l H2SO4; flow 
rate, 0.5 ml/min and oven temperature, 55°C. The third 
subsample (10 g) was blended with sterilized saline solution 
(NaCl, 9.0 g/kg) at a ratio of 1:9 w/v, homogenized for 20 min at 
25°C in a table shaker (120 rpm/min). Ten-fold serial dilutions 
were prepared, and LAB and yeast numbers were analyzed with 
the pour plate method (Chen et al., 2021). In brief, the numbers 
of LAB were enumerated on de Man, Rogosa, Sharpe (MRS) 
agar (Huankai Biotechnology, Co., Ltd., Guangdong, China) 
incubated at 30°C for 48 h; and that of yeasts was enumerated 
on malt extract agar (Huankai Biotechnology, Co., Ltd., 
Guangdong, China) incubated at 32°C for 72 h.

Enzymatic hydrolysis of alfalfa silage

The hydrolysis of fresh forage and alfalfa silage was carried 
out in a 100 ml Erlenmeyer flask containing 10% w/w substrate 
and 0.1 M sodium citrate buffer (pH 4.8). The hydrolysis 
enzymes were added into the mixture at a dose of cellulase 
10 FPU/g and β-glucosidase 10 CBU/g per gram of cellulose 
(Travaini et  al., 2013). The cellulase and β-glucosidase were 
purchased from Solarbio Science & Technology Co., Ltd. 
(Beijing, China). For preventing microbial contamination, agent 
sodium azide (0.1% w/v) was applied to the reaction mixture of 
hydrolysis. Hydrolysis was performed at 50°C for 48 h in a 
shaking inoculator (150 rpm). Samples from hydrolysates were 
collected and centrifuged at 10, 000 × g for 10 min. The 
supernatants were analyzed for reducing sugar yield with the 
dinitrosalicylicacid method (Miller, 1959).

Bacterial community composition

Bacterial community analysis of silages in each treatment was 
performed using 16S rDNA sequencing technology at Lianchuan 
Biotechnology Co., Ltd. (Hangzhou, China). Genomic DNA of 
bacteria from silage samples was extracted using Tiangen DNA 
extraction kit (DP 705, Tiangen Bitech, Co., Ltd., Beijing, China). 
The V3–V4 regions of 16S rDNA gene was amplified using 
primers 341F: (5′-CCTACGGGNGGCWGCAG-3′) and 805R: 
(5′-GGACTACHVGGGTATCTAAT-3′), which were tagged with 
specific barcode at the 5′ ends of the primers (Logue et al., 2016). 
Each PCR amplification was run with a final 25 μl reaction mixture 
containing 12.5 μl PCR Premix, 2.5 μl of each primer, 25 ng of 
template DNA, and PCR-grade water to adjust the volume. The 
procedure of PCR amplification and gel electrophoresis for 
checking amplicons were described in Du et  al. (2019). The 
amplicons were purified by AMPure XT beads (Beckman Coulter 
Genomics, Danvers, MA, United States) and quantified by Qubit 
(Invitrogen, United States). The purified amplicons were pooled 
in equimolar proportions, and then paired-end sequenced using 
the Illumina NovaSeq PE250 platform in by LC-Bio Technology 
Co., Ltd. (Zhejiang, China). Paired-end reads were assigned to 
samples according to the unique barcodes, trimmed by truncating 
the barcodes and primer sequences, and merged using 
FLASH. The feature table and feature sequence were obtained by 
screening and quality filtration with fqtrim (v0.94), chimera 
removal using Vsearch software (v2.3.4), and chimeric sequence 
dereplication and filtering using DADA2. Subsequently, the 
obtained sequences were assigned into amplicon sequence 
variants (ASVs), which were used for species annotation in the 
SILVA database at a confidence cut-off of 0.7. Alpha diversity and 
beta diversity were calculated by normalized to the same random 
sequences. Feature abundances were then normalized using the 
relative abundance of each sample according to the SILVA (release 
132) classifier. Alpha diversity indices including Shannon, 
Simpson, Chao1, and Good’s coverage were applied in analyzing 
complexity of species diversity for samples. Beta diversity was 
calculated by principal coordinate analysis (PCoA) based on 
UniFrac metrics, and statistical comparisons amongst groups were 
conducted using ANOSIM. Alpha diversity and Beta diversity 
were all calculated by QIIME2 script. Functional gene prediction 
based on Kyoto Encyclopedia of Genes and Genomes (KEGG) 
databases was conducted using PICRUSt2 according to Langille 
et  al. (2013). Other diagrams were implemented using the R 
packages. Sequence data were deposited in NCBI’s Sequence Read 
Archive under BioProject accession number PRJNA875211.

Statistical analysis

Data for microbial numbers were transformed by log10 and 
presented on a fresh matter (FM) basis. All statistical analyses 
were performed using the variance (ANOVA) by the GLM 
procedure of SAS 9.2 (SAS Institute Inc.; Cary, NC, USA). The 
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model for data analysis was: Yi = μ + αi + εi; where Yi is the 
dependent variable, μ is the general mean, αi is the treatment 
effect, and εi is the experimental error. The treatment differences 
between least square means were determined using the Tukey’s 
test, and significance was declared at p < 0.05.

Results

Initial characteristics of fresh alfalfa

The chemical composition and microbial numbers of fresh alfalfa 
are shown in Table 1. The contents of DM and WSC in alfalfa were 
357 g/kg FM and 49.2 g/kg DM, respectively. Alfalfa contained CP, 
NDF, ADF, and lignin of 225, 406, 329, and 66.7 g/kg DM, respectively. 
The LAB numbers of alfalfa silage were 4.56 log10 cfu/g FM.

Fermentation characteristics of alfalfa 
silage

The fermentation parameters of alfalfa silages were different 
among treatments (Table  2). All additive treatments deceased 
(p < 0.05) the pH, acetic acid, butyric acid, ethanol, NH3–N, and 
AA–N contents, and DML relative to the CK treatment, while 
increased (p < 0.05) lactic acid contents and LAB numbers. The 
LPL treatments produced the largest decrease in pH, acetic acid, 
ethanol, NH3–N, and AA–N contents, and DML, and produced 
the largest increase in lactic acid content.

Nutrient composition and enzymatic 
hydrolysis of alfalfa silage

The addition of additives resulted in a higher (p < 0.05) DM 
content than the CK, but no differences in DM content were 

observed among the additive treatments (Table 3). Although 
silage CP was unaffected by the additive treatments, protein 
fraction (PA and PB) contents were clearly affected by the 
additive treatments. The additive-treated silages had a lower 
(p < 0.05) content of PA and a higher (p < 0.05) content of PB 
than the CK silage, and LPL silage had the lowest PA content 
and the highest PB content. In addition, LA, PL, and LPL silages 
had lower (p < 0.05) contents of NDF, ADF, hemicellulose, and 
cellulose than the CK silage, and these variables were lowest in 
LPL silage. The ADL was reduced (p < 0.05) by LA and LPL 
treatments. The WSC content was higher (p < 0.05) in silage 
treated with PL and LPL compared with the CK silage, but was 
even higher (p < 0.05) in silage treated with LA.

The enzymatic reducing sugar yield of alfalfa silage was shown 
in Figure 1. The LA, PL and LPL treatments further enhanced 
(p < 0.05) the reducing sugar production compared with the CK 
treatment, and LPL treatment resulted in the highest reducing 
sugar yield.

Bacterial community of alfalfa silage

In total, 1,012,847 DNA sequences were detected in the 12 
silage samples, and 869,281 clean DNA sequences were 
obtained by the quality-filtering and chimera-removal steps. 
Goods_coverage value in all silage samples was 1.00 
(Figure 2A). Compared with the CK treatment, the additive 
treatments decreased Shannon and Simpson values and 
increased Chao1 values. The PCoA plot for sequence 
similarities using the unweighted UniFrac displayed a clear 
clustering of the bacterial community by different treatments 
(Figure 2B). Moreover, the ANOSIM test (R = 0.75, p = 0.001) 
revealed that the between-treatment variation outweighed the 
within-treatment variation.

Generally, Lactobacillaceae, Enterobacteriaceae and 
Methylobacteriaceae were the main families in all silages 
(Figure  3A). Specifically, the relative abundance (RA) of 
Lactobacillaceae, Enterobacteriaceae and Methylobacteriaceae 
averaged 72.5, 6.14% and 5.90, respectively. The additive 
treatments increased the RA of Lactobacillaceae and decreased the 
RA of Methylobacteriaceae. The Lactobacillaceae abundance in the 
LPL silage was highest, followed by that of PL and LA silages. 
Moreover, the RA of Enterobacteriaceae was extensively lowered 
by LPL treatment compared with the other treatments. The CK 
silage had a high RA of Leuconostocaceae and Streptococcaceae. 
Figure 3B shows the most abundant genera using the taxonomic 
classification of the microbiota. Compared to the CK treatment, 
the additive treatments increased the RA of Lactobacillus and 
decreased the RA of Pediococcus, Weissella, and Lactococcus. The 
LA, PL, and LPL treatments decreased the RA of Methylobacterium 
and Klebsiella, while increased the RA of Rhizobium and 
Sphingomonas. Moreover, the RA of Enterobacter was reduced by 
PL and LPL treatments, but was increased by LA treatment 
compared with the CK treatment.

TABLE 1 Chemical composition and microbial counts of fresh alfalfa.

Item Alfalfa

Dry matter (g/kg FM) 357

pH 6.19

CP (g/kg DM) 225

NDF (g/kg DM) 406

ADF (g/kg DM) 329

ADL (g/kg DM) 66.7

Hemicellulose (g/kg DM) 77.3

Cellulose (g/kg DM) 263

WSC (g/kg DM) 49.2

LAB (log10 cfu/g FM) 4.16

Yeasts (log10 cfu/g FM) 4.62

FM, fresh matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent 
fiber; ADL, acid detergent lignin; WSC, water-soluble carbohydrate; LAB, lactic acid 
bacteria.
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Correlation analysis between bacterial 
community and fermentation parameters

The pH, individual organic acids, ethanol, NH3-N, and WSC 
contents, and DML were correlated with several bacterial taxa 
(Figure 4). Silage pH had positive correlation (p < 0.05) with the 
genera Weissella, Lactococcus, and Enterobacter, but negative 
correlation (p < 0.05) with Lactobacillus and Rhizobium. Lactic 
acid was positively correlated (p < 0.05) with the genera Lactobacilli 
and Rhizobium. However, it was negatively correlated (p < 0.05) 
with the general Weissella, Lactococcus, Enterobacter, Klebsiella, 
and Pantoea. Acetic acid was positively correlated (p < 0.05) with 
the genera Weissella, Lactococcus, Enterobacter and Klebsiella, and 
negatively correlated (p < 0.05) with Lactobacillus. In addition, 
butyric acid was positively correlated (p < 0.05) with the genera 
Weissella, Lactococcus, Enterobacter, Klebsiella, and Pantoea, but 
negatively correlated (p < 0.05) with the genera Lactobacillus and 
Rhizobium. Ethanol had a positive correlation (p < 0.05) with the 
general Weissella, Lactococcus, Enterobacter, and Pantoea, and a 
negative correlation (p < 0.05) with the genus Lactobacillus. The 
NH3-N was positively correlated (p < 0.05) with the general 
Weissella, Lactococcus, Enterobacter, and Klebsiella, and negatively 

correlated (p < 0.05) with Lactobacillus, Rhizobium, and 
Sphingomonas. The DML also revealed correlations with some 
taxa, including positive correlation (p < 0.05) with the genera 
Weissella, Lactococcus, and Enterobacter, but negative correlation 
(p < 0.05) with Lactobacillus and Rhizobium.

16S rDNA gene-predicted functional 
profiles of alfalfa silage

The 16S rDNA gene-predicted functions of microbiota in the 
CK silage and additive-treated silage are shown in Figure  5. 
Compared with the CK, the addition of additives upregulated the 
metabolism of membrane transport, amino acid, lipid, and 
terpenoids and polyketides, biosynthesis of other secondary 
metabolites, and downregulated the metabolism of replication and 
repair, translation, nucleotide metabolism, transcription, genetic 
information processing, glycan biosynthesis, and infectious 
diseases. The LA and LPL treatments increased the metabolism of 
energy and xenobiotics biodegradation. The PL and LPL enriched 
carbohydrate metabolism.

Discussion

Fermentation quality of alfalfa silage

In this study, the chemical composition of fresh alfalfa was 
comparable to the general values reported by Muck and Hintz 
(2003) and Contreras-Govea et  al. (2013). The conditions for 
applying additives to enhance alfalfa silage fermentation were 
almost ideal: a slightly higher DM content (357 g DM/kg) would 
weaken normal fermentation, a limited WSC content, and 
epiphytic LAB numbers below 1 × 105 cfu/g FM (McDonald et al., 
1991). It is generally accepted that silage pH is a quality indicator 
of silage, and pH 4.30 to 5.00 is considered as the pH range for 
well-preserved alfalfa silage (Kung et  al., 2018). All additive 
treatments reduced the pH of alfalfa silage compared with the CK 
treatment, and the pH values for the additive treatments were 
within that range. Due to its low pKa (3.86), lactic acid is the most 
critical organic acid to rapidly lower silage pH (Kung et al., 2018). 
Thus, the decreased pH in the additive-treated silages was most 
likely due to the increased lactic acid formation by the additives. 
Together with decreased acetic acid content and increased lactic 
acid to acetic acid ratio in these silages, this indicated that the 
additive treatments shifted the fermentation pattern toward a 
more homolactic fermentation. In agreement with previous 
studies (Filya et al., 2007; Queiroz et al., 2018), inoculation with 
P. pentosaceus led to silages with an enhanced homolactic acid 
fermentation and lactic acid production. Importantly, the 
increased lactic acid content in LA silage confirmed the hypothesis 
that laccases have a positive effect on the extent of lactic acid 
fermentation. Delignification by laccase would expose readily 
hydrolysable fiber fractions in silage, which were hydrolyzed by 

TABLE 2 Fermentation characteristics and losses of alfalfa silage 
treated without or with different additives.

Item Treatments SEM Value 
of p

CK LA PL LPL

pH 5.05a 4.69b 4.53c 4.41d 0.07 <0.001

Lactic acid 

(g/kg DM)

43.9d 58.8c 65.6b 75.7a 3.49 <0.001

Acetic acid 

(g/kg DM)

38.6a 26.3b 18.5c 18.2d 2.50 <0.001

Lactic:acetic 

acid

1.14d 2.24c 3.55b 4.15a 0.35 <0.001

Propionic acid 

(g/kg DM)

0.31 ND ND ND – –

Butyric acid 

(g/kg DM)

1.97a 1.04b 0.55c 0.29d 0.19 <0.0001

Ethanol 

(g/kg DM)

6.01a 3.86b 3.20c 2.44d 0.40 <0.001

NH3-N  

(g/kg TN)

125.2a 89.5b 77.8c 65.1d 6.77 <0.001

AA-N 

(g/kg TN)

392a 364b 346c 325d 7.50 <0.0001

DML (g/kg) 67.5a 56.8b 45.2c 33.9d 3.81 <0.001

LAB (log10 

cfu/g FM)

7.88b 8.21a 8.19a 8.26a 0.05 <0.001

Yeasts (log10 

cfu/g FM)

ND ND ND ND – –

NH3–N, ammonia nitrogen; AA–N, free amino acid nitrogen; DML, dry matter losses; 
LAB, lactic acid bacteria; ND, not detected. 
CK, no additives; LA, laccase; PL, Pediococcus pentosaceus; LPL, laccase + Pediococcus 
pentosaceus. 
Within a row, means without a common superscript letter (a–d) differ (p < 0.05).
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organic acids to yield more sugars for lactic acid fermentation. 
Another reason could be that the accelerated oxygen consumption 
due to delignification by laccase inhibited plant and aerobic 
microorganism activities, and thus saved more fermentable sugars 
for lactic acid fermentation. These assumptions were partly 
supported by decreased hemicellulose and cellulose contents as 
well as increased WSC content in LA silage. The highest lactic acid 
content in LAL silage may be due to the synergistic effect of LA 
and PL treatments, with sugars being efficiently used by LAB to 
produce lactic acid. The formation of butyric acid and ethanol 
during ensiling accompanies carbon dioxide production, which 

can cause substantial DM and energy losses in the silage (Blajman 
et al., 2020). Thus, lower butyric acid and ethanol contents and 
DML in the additive-treated silages than the CK silage indicated 
a reduction in fermentation loss of alfalfa silage. The reduction in 
these variables was due to the enhanced lactic acid production and 
pH decline by the additive treatments, which inhibited the 
metabolic activities related to butyric acid and ethanol formation 
(Borreani et al., 2018).

Nutrient composition and enzymatic 
hydrolysis

Forage true proteins are firstly converted into peptides and 
free amino acids by plant enzymes, and these nitrogenous 
compounds are further hydrolyzed into amides, amines, and 
ammonia by the microbial deamination activities (Albrecht and 
Muck, 1991). Compared with NPN, true protein is more efficiently 
utilized by ruminants, thereby increasing forage protein available 
for digestion and absorption in the small intestines (He et al., 
2021; Bachmann et al., 2022). In this study, the additive treatments 
decreased the NPN, NH3–N, and AA–N contents, and increased 
the true protein content relative to the CK treatment. The present 
results indicated that the addition of additives inhibited the 
proteolysis and improved the protein quality of alfalfa silage. It 
seemed to be a consequence of restricted plant and microbial 
proteolytic processes due to the accelerated pH decline by the 
additive treatments. Regarding to carbohydrate compositions, the 
LA, PL, and LPL treatments increased the degradation of 
hemicellulose and cellulose by 24.7 and 5.17%, 15.3 and 3.5%, and 
21.7 and 6.09%, respectively, mainly accounting for the decreased 
NDF and ADF of silage. It should be noted that LA and LPL 
treatments were more effective in degrading fibers than PL 
treatment. This might because lignin degradation by laccase 
destroyed cellulose–hemicellose–lignin network structure and 
thus enhanced acid hydrolysis in cellulose and hemicellulose 
(Chen et al., 2012). Accordingly, the WSC content increased to 
varying degrees by the additive treatments. The higher residual 
WSC contents in additive-treated silages indicated not only an 
efficient fermentation, but also a more available fermentable 
substrate to ruminal microbes.

Enzymatic hydrolysis is a simple method to evaluate the 
carbohydrate digestion property of silage biomass in microbial 
fermentation (He et al., 2021). Compared with the CK treatment, 
a higher reducing sugar yields was observed for the additive 
treatments. The increased reducing sugar production was most 
likely due to the removal of lignin and hemicellulose as 
aforementioned. Sun et al. (2019) reported that the removal of 
hemicellulose and lignin increased the porosity in the silage 
biomass, thus making cellulose more accessible to cellulase and 
enhancing reducing sugar production. Overall, the addition of 
laccase and P. pentosaceus improved the fermentation quality and 
preserved more nutrients of alfalfa silage, and LA–PL combination 
had a beneficial synergistic effect.

TABLE 3 The nutrient composition of alfalfa silage treated without or 
with different additives.

Item Treatments SEM Value 
of p

CK LA PL LPL

DM (g/kg FM) 353 363 361 364 1.80 0.074

CP (g/kg DM) 219 225 228 230 1.66 0.114

PA (g/kg CP) 631a 604b 581c 557d 8.32 <0.001

PB (g/kg CP) 276d 299c 320b 346a 7.88 <0.001

NDF (g/kg DM) 407a 365c 384b 362c 5.42 <0.001

ADF (g/kg DM) 341a 316c 329b 310d 3.62 <0.001

ADL (g/kg DM) 68.9a 57.5b 67.2a 54.8b 1.85 <0.001

Hemicellulose 

(g/kg DM)

65.7a 49.4c 55.6b 51.4c 1.93 <0.001

Cellulose (g/kg 

DM)

272a 258bc 262b 256c 1.98 <0.001

WSC (g/kg DM) 9.53d 20.6a 11.9c 18.3b 1.37 <0.001

FM, fresh matter; CP, crude protein; PA, non-protein nitrogen; PB, true protein; NDF, 
natural detergent fiber; ADF, acid detergent fiber; ADL, acid detergent lignin; WSC, 
water-soluble carbohydrate. 
CK, no additives; LA, laccase; PL, Pediococcus pentosaceus; LPL, laccase + Pediococcus 
pentosaceus. 
Within a row, means without a common superscript letter (a–d) differ (p < 0.05).

FIGURE 1

Reducing sugar yield of alfalfa silage treated with or without 
additives after enzymatic hydrolysis. CK, no additives; LA, laccase; 
PL, Pediococcus pentosaceus; LPL, laccase + Pediococcus 
pentosaceus. Different letters (a–d) above the column were 
significant (p < 0.05).
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Bacterial diversity and composition of 
alfalfa silage

According to the Goods_coverage values (> 0.99), the 
sequencing analysis revealed that coverage of bacterial diversity 
was sufficient to represent the bacterial community composition 
of silage. In this study, the bacterial diversity was reduced in the 
additive-treated silages, especially for PL and LPL silages, 
compared with the CK silage. The additive treatments increased 
the RA of predominant genus Lactobacillus, thus decreasing 
bacterial diversity. It was commonly accepted that the diverse of 
microbial community is negatively related to the abundance of 
predominant bacteria (Polley et al., 2007; Allen et al., 2009). In the 
present study, the decrease in the bacterial diversity may result 
from the pH decline as aforementioned, which inhibited the 
growth of the other bacteria (Zi et al., 2021). Furthermore, PCoA 
indicated that the additive treatments reshaped the structure of 
bacterial community of silage, and reflected the turnover of 
species from the CK to additive-treated silages.

The main bacterial species performing lactic acid fermentation 
in silage generally belong to the genera Lactobacillus, Pedicoccus, 
and Lactococcus of the family Lactobacillaceae and to the general 
Weissella, and Leuconostoc of the family Leuconostocaceae (Pang 
et  al., 2011; Gharechahi et  al., 2017). Our study revealed that 
71.4% of the bacterial community in the CK silage belong to the 
families Lactobacillaceae and Leuconostocaceae, comprising by the 
genera Lactobacillus, Pediococcus, Lactococcus, and Weissella. This 
was consistent with the findings of Ogunade et al. (2018) and Su 
et al. (2019), who reported that majority of genera detected in 
alfalfa silage are Lactobacillus, Pediococcus, Lactococcus, and 
Weissella. The additive treatments reduced the RA of Pediococcus, 
Weissella, and Lactococcus of alfalfa silage, but increased that of 
Lactobacillus. This was most likely due to the fact that the additive 

treatments accelerated the pH decline during ensiling and lowered 
final pH of silage (Ogunade et al., 2018). Pediococcus, Weissella, 
and Lactococcus are known to function as the early initiators of 
lactic acid fermentation, but would be gradually outcompeted by 
acid-tolerant Lactobacillus species as fermentation progresses (Cai 
et al., 1999). Moreover, this may explain the negative relationship 
between Weissella and Lactococcus and lactic acid content, because 
these two genera are replaced by Lactobacillus at low pH resulted 
from lactic acid accumulation. Furthermore, most species of 
Weissella convert WSC into both lactic and acetic acids via the 
heterofermentative pathway (Graf et  al., 2016). Therefore, the 
decreased Weissella abundance in the additive-treated silages 
partly contributed to lower acetic acid contents and lactate-to-
acetate ratios in these silages.

Methylobacterium are strictly aerobic and neutrophilic 
bacteria, however, Methylobacterium dominated in the CK silage. 
Similarly, Methylobacterium has also been found in large quantities 
in Sorghum-Sudangrass Hybrid silages (Dong et  al., 2022). 
Ogunade et al. (2018) reported Methylobacterium had a positive 
correlation with silage pH. Moreover, Guo et al. (2020) reported 
that Methylobacterium was positively correlated with NH3–N 
content and negatively correlated with lactic acid content. 
However, Spearman correlation analysis revealed no relationship 
between Methylobacterium and fermentation parameters in alfalfa 
silage in this study. The species of Enterobacteriaceae are 
considered as undesirable microorganisms in silage because they 
are associated with DML and proteolysis (Zhao et  al., 2021). 
Previous studies have reported that members of the genus 
Enterobacter can ferment glucose and lactic acid into acetic acid 
and ethanol, and degrade protein into ammonia (Pahlow et al., 
2003; Borreani et al., 2018). Compared with the CK silage, the 
decreased RA of Enterobacter in the PL and LPL silages may 
be  partly responsible for their lower acetic acid, ethanol, and 
NH3-N content. Queiroz et  al. (2018) have reported that 

A B

FIGURE 2

Bacterial community diversities of alfalfa silage treated with or without additives. (A) Alpha-diversity of bacterial community (Shannon, Simpson, 
Chao1, and Goods_coverage). (B) Principal coordinates analysis plots with unweighted Unifrac dissimilarity of bacterial community. ANOSIM value, 
R-squared: 0.75, p = 0.001. CK, no additives; LA, laccase; PL, Pediococcus pentosaceus; LPL, laccase + Pediococcus pentosaceus.
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enterobacteria are susceptible to low pH in silage, surprisingly, LA 
treatment increased the Enterobacter abundance despite lower pH 
in the LA silage compared with the CK silage. Considering that 
LAB inoculants can not only reduce the pH at silo opening, but 
also accelerate the initial acidification rate of silage. This indicates 
the initial acidification in LA silage is not fast enough, thus 
Enterobacter may remain active and in high numbers for a longer 
time. Moreover, a lower RA of Enterobacter was found in LPL 
silage than LA and PL silages, indicating a synergistic reduction 
on Enterobacter by LA and PL. Klebsiella belongs to the family 
Enterobacteriaceae and is a group of acid-intolerant facultative 
anaerobe (Xian et al., 2022). Some strains of Klebsiella consume 
glucose producing 2,3-butanediol as the major end-products 
(Grimont and Grimont, 2015). Moreover, Klebsiella is a spoilage-
associated microorganism in silage, and can cause mastitis in 
animals. Thus, the inhibition on the growth of Klebsiella by the 
additive treatments would favor silage fermentation. Pantoea is a 
genus separated from the genus Enterobacter, which is inferred to 
compete with lactic acid bacteria for nutrients and to cause butyric 
acid accumulation in silage (Li et  al., 2017). Supporting their 
assumption, we  found that Pantoea was positively related to 
butyric acid content, and negatively related to lactic acid content. 

As a Gram-negative aerobic aerobe, Sphingomonas is commonly 
found in plants (White et al., 1996) and has ability to degrade 
various xenobiotic compounds such as herbicides and pesticides 
(He et  al., 2017). Ogunade et  al. (2018) found that the genus 
Sphingomonas was negatively correlated with ammonia-N content 
in alfalfa silage, and inferred this genus may be  beneficial for 
protein preservation. In agreement with their reports, a negative 
correlation between Sphingomonas and NH3-N content was 
observed in this study. Rhizobium is usually distributed in the soil 
where legumes grow and is involved in N fixation by legumes 
(Zou et al., 2021).

Compared with the CK treatment, PL and LPL treatments 
upregulated the metabolism of membrane transport, 
carbohydrate, lipid, and terpenoids and polyketides. This 
might be due to the fact that the addition of LAB enhanced the 
utilization of available carbohydrates to produce lactic acid, 
acetic acid, and terpenoids and polyketides, which transported 
these fermentation substrates and end-products intracellular 
or extracellular for bacterial cell division (Kanehisa, 2019; 
Hisham et al., 2022). Herein, the relative abundance of amino 
acid metabolism was higher in the additive-treated silages 
than the CK silage, which was inconsistent with the finding of 

A

B

FIGURE 3

Relative abundance of bacterial community at family level (A) and at genus level (B) in alfalfa silage treated with or without additives. CK, no 
additives; LA, laccase; PL, Pediococcus pentosaceus; LPL, laccase + Pediococcus pentosaceus.
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Bai et al. (2022), who reported that amino acid metabolism 
was predicted to be downregulated in well-preserved silages. 
This phenomenon is difficult to explain, but the upregulation 
of amino acid metabolism might be related to increased lactic 
acid content in the additive-treated silages, as lactic acid 
formation involves processes of amino acid decarboxylation 
and arginine deamination (Bai et al., 2021). The LA and LPL 
treatments upregulated the metabolism of membrane 
transport, amino acid, lipid, energy, and xenobiotics 
biodegradation and metabolism. It is inferred that the laccase 
inclusion could enhance the activity of bacterial 
biodegradation to remove xenobiotics, which might need to 
mobilize metabolism routes link to amino acid, lipid, and 
energy (He et  al., 2021). The functions of replication and 

repair, translation, nucleotide metabolism, transcription, and 
genetic information processing were downregulated by the 
additive treatments. These decreased genetic functions in the 
additive-treated silages were probably due to lower pH 
inhibiting the undesirable microorganisms, and reflected a 
more stable bacterial community in these silages. Furthermore, 
the increased metabolism of terpenoids and polyketides in the 
additive-treated silages might indicate an increase in the 
synthesis of terpenoids and polyketides that are related to 
promotion of antimicrobial activities for inhibiting pathogen 
(Hisham et  al., 2022). Promotion of antimicrobial activity 
against pathogens would be  supported by downregulated 
infectious diseases metabolism with the additives compared 
with the CK. It is worth to note that caution should be given 

FIGURE 4

Heatmap of Spearman correlation analysis of bacterial community composition and fermentation parameters. CK, no additives; LA, laccase; PL, 
Pediococcus pentosaceus; LPL, laccase + Pediococcus pentosaceus. *0.01 < p < 0.05; **p < 0.01. NH3–N, ammonia nitrogen; DML, dry matter losses; 
WSC, water-soluble carbohydrate.
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when interpreting functional profile from genomic sequence-
prediction as they may differ from genetic constituent of 
microbial community. Therefore, a need exists for using more 
omics approaches, such as metabolomics and proteomics, to 
further investigate the functions of bacterial community 
in silage.

Conclusion

The bioaugmentation of LA and PL enhanced homolactic 
fermentation and reduced fermentation loss of alfalfa silage, and 
consequently improved silage fermentation quality and nutrient 

preservation. The contents of lactic acid, true protein, and WSC 
were increased, and the contents of acetic acid, NH3-N, and 
ethanol were decreased by LA and PL bioaugmentation. The 
addition of LA and PL reduced the bacterial diversity of alfalfa 
silage, increased RA of Lactobacillus, and decreased RA of 
Enterobacter and Klebsiella. Metabolic pathways in the silage 
associated with activities of actively reproducing bacteria 
fermenting available sugars into organic acids, terpenoids and 
polyketides were enriched with the addition of additives. The 
combination of LA and PL synergistically improved the 
fermentation quality and nutrients preservation, and bacterial 
community of alfalfa silage, and can be a promising strategy for 
improving alfalfa silage quality.

FIGURE 5

Heatmap of 16S rDNA gene-predicted functional profiles using PICRUSt. CK, no additives; LA, laccase; PL, Pediococcus pentosaceus; LPL, 
laccase + Pediococcus pentosaceus.
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