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Training differentially regulates elastin level and proteolysis in
skeletal and heart muscles and aorta in healthy rats
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ABSTRACT
Exercise induces changes in muscle fibers and the extracellular
matrix that may depend on elastin content and the activity of
proteolytic enzymes. We investigated the influence of endurance
training on the gene expression and protein content and/or activity of
elastin, elastase, cathepsin K, and plasmin in skeletal and heart
muscles and in the aorta. Healthy rats were randomly divided into
untrained (n=10) and trained (n=10; 6 weeks of endurance training
with increasing load) groups. Gene expression was evaluated via
qRT-PCR. Elastin content was measured via enzyme-linked
immunosorbent assay and enzyme activity was measured
fluorometrically. Elastin content was significantly higher in skeletal
(P=0.0014) and heart muscle (P=0.000022) from trained rats versus
untrained rats, but not in the aorta. Although mRNA levels in skeletal
muscle did not differ between groups, the activities of elastase
(P=0.0434), cathepsin K (P=0.0343) and plasmin (P=0.000046) were
higher in trained rats. The levels of cathepsin K (P=0.0288) and
plasminogen (P=0.0005) mRNA were higher in heart muscle from
trained rats, but enzyme activity was not. Enzyme activity in the aorta
did not differ between groups. Increased elastin content in muscles
may result in better adaption to exercise, as may remodeling of the
extracellular matrix in skeletal muscle.
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INTRODUCTION
Physical activity, particularly endurance training, causes many
adaptive changes in the organism. These adaptations mainly occur
in skeletal muscles and include changes in metabolism and tissue
composition (Röckl et al., 2007). Adaptive changes in the
extracellular matrix (ECM) occur at the same time. ECM not only
provides scaffolding and structural support for cells and organs, it
also exchanges information with cells and thereby modulates
cellular development, attachment, and differentiation as well as
tissue repair (Hayden et al., 2005; Fonovic ́ and Turk, 2014). ECM
remodeling in skeletal muscle influences cellular processes
including DNA synthesis, microtubule fragmentation, and
myoblast fusion (Calve et al., 2010), all of which improve muscle

strength and render tissue more compliant and resistant to damage
(Hayden et al., 2005). The ECM is also involved in the regeneration
of muscle fibers (Suelves et al., 2002). Elastase, cathepsin K, and
plasmin contribute to the remodeling of ECM components,
including elastin (Antonicelli et al., 2007), which is mainly
responsible for tissue elasticity (Boudoulas et al., 2012);
inhibition of ECM-modifying enzymes previously resulted in
aberrant muscle regeneration (Vinarsky et al., 2005). Proteolytic
enzymes may also directly influence muscle fibers, for instance by
inducing apoptosis (Doeuvre et al., 2010).

The aim of this study was to investigate the influence of 6 weeks
of endurance training on the mRNA levels of tropoelastin, elastase,
cathepsin K and plasminogen in skeletal muscle (soleus) and heart
muscle (ventricle) from healthy rats. We also characterized the
effect of training on elastin protein levels and the activities of
elastase, cathepsin K, and plasmin in muscles and the aorta.

RESULTS
In skeletal muscle (soleus), the mRNA levels of tropoelastin
[untrained (UT), n=10; trained (T), n=10], elastase (UT, n=9; T,
n=9), cathepsin K (UT, n=10; T, n=10), and plasminogen (UT,
n=10; T, n=9) did not differ significantly between trained and
untrained rats (Fig. 1). However, elastin protein concentrations
(UT, n=10; T, n=8) were significantly higher in trained rats
than in untrained rats (P=0.0014; Fig. 1). The activities of
elastase (UT, n=10; T, n=8; P=0.0434), cathepsin K (UT, n=10;
T, n=8; P=0.0343), and plasmin (UT, n=10; T, n=8;
P=0.000046) were significantly higher in trained rats than in
untrained rats (Fig. 1).

The mRNA levels of cathepsin K (UT, n=10; T, n=10; P=0.0288)
and plasminogen (UT, n=10; T, n=10; P=0.0005) were higher in the
heart muscle (ventricle) of trained rats than in this muscle in
untrained rats (Fig. 2). Although there were no significant between-
group differences in the mRNA levels of tropoelastin (UT, n=10; T,
n=10) and elastase (UT, n=10; T, n=10; Fig. 2), elastin protein
concentrations were significantly higher in trained rats than in
untrained rats (UT, n=10; T, n=9; P=0.000022; Fig. 2). The
activities of proteolytic enzymes did not differ between groups (UT,
n=10; T, n=10; Fig. 2).

We did not measure mRNA levels in aorta samples due to the
small amounts of available material. In the aorta, there were no
significant differences in elastin content (UT, n=10; T, n=7) or the
activities of the proteolytic enzymes elastase (UT, n=10; T, n=10),
cathepsin K (UT, n=9; T, n=10), and plasmin (UT, n=10; T, n=10) in
trained rats versus untrained rats (Fig. 3).

All results are presented as medians with min and max in Table 1.

DISCUSSION
The principal finding of this study is that endurance training
differentially modulates elastin mRNA and protein content as wellReceived 16 February 2016; Accepted 8 March 2016
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as the mRNA expression and activity of proteolytic enzymes in a
tissue-dependent manner. Here, skeletal and heart muscle exhibited
similar adaptive changes in elastin expression after training; gene
expression did not differ between groups, but elastin protein levels

were higher in trained rats than in untrained rats. Post-transcriptional
modificationsmay underlie this differential response. Inmammalian
cells, the correlation coefficient between mRNA and protein levels
was previously determined to be <0.5 (Pradet-Balade et al., 2001).

Fig. 1. Effect of endurance training on gene expression, and protein content and activity in soleus muscle. mRNA levels of tropoelastin (UT, n=10; T,
n=10), elastase (UT, n=9; T, n=9), cathepsin K (UT, n=10; T, n=10), and plasminogen (UT, n=10; T, n=9) did not differ significantly between trained and untrained
rats. Elastin protein concentrations (UT, n=10; T, n=8) were significantly higher in trained rats than in untrained rats (P=0.0014). The activities of elastase (UT,
n=10; T, n=8; P=0.0434), cathepsin K (UT, n=10; T, n=8; P=0.0343), and plasmin (UT, n=10; T, n=8; P=0.000046) were significantly higher in trained rats than in
untrained rats. The experiments were performed in duplicates, except for elastin protein concentration which wasmade in single repetition. Error bars express s.d.
Mann–Whitney test was used for comparisons. *P≤0.05; **P≤0.01; ****P≤0.0001.
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Elastin levels may influence the elastic and force-bearing features
of the ECM (Lehti et al., 2006). Heart muscle contains few elastic
fibers; its physiological compliance stems mainly from
cardiomyocytes (Mizuno et al., 2005). Nonetheless, in the
myocardial ECM, elastin makes important contributions to the
maintenance of structural integrity, the transmission of mechanical
stress into and out of myocardial cells, elasticity and compliance
during the cardiac cycle, and the prevention of excessive stretching
(Kwak et al., 2011).

There are some investigations addressing the influence of
physical exercise on elastin mRNA and protein levels in skeletal
muscle. Lehti et al. showed that endurance training reversed
decreases in elastin transcription in skeletal muscle from diabetic
mice but in accordance with the present study, elastin mRNA levels
were not affected by training in healthy mouse and sedentary
healthy controls (Lehti et al., 2006). Additionally, few studies have
evaluated elastin expression and protein content in the heart, and
these studies mainly focused on heart failure. Consistent with our

Fig. 2. Effect of endurance training on
gene expression, and protein content
and activity in heart muscle. The mRNA
levels of cathepsin K (UT, n=10; T, n=10;
P=0.0288) and plasminogen (UT, n=10; T,
n=10; P=0.0005) were higher in the heart
muscle (ventricle) of trained rats than in
untrained rats. There were no significant
between-group differences in the mRNA
levels of tropoelastin (UT, n=10; T, n=10)
and elastase (UT, n=10; T, n=10). Elastin
protein concentrations (UT, n=10; T, n=9;
P=0.000022) were significantly higher in
trained rats than in untrained rats. The
activities of proteolytic enzymes did not
differ between groups (UT, n=10; T, n=10).
The experiments were performed in
duplicates, except for elastin protein
concentration which was made in single
repetition. Error bars express s.d. Mann–
Whitney test was used for comparisons.
*P≤0.05; ***P≤0.001; ****P≤0.0001.
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observations, (Marshall et al., 2013) reported that relative elastin
mRNA levels did not significantly differ between Yucatan
miniature swine with induced heart failure that exercised versus
those that remained sedentary (both healthy control and sedentary
with heart failure). In our study, despite similarity at the level of
gene expression, elastin protein levels were higher in our trained rats
than in our untrained rats, which may reflect an adaptive mechanism
in healthy subjects that affects force transmission and the resistance
to injury of skeletal muscle after physical training (McHugh, 2003).
In heart muscle, this mechanism may contribute to the well-known
increase in heart compliance after training (Stickland et al., 2006).
The specific roles of elastin in skeletal and heart muscle are not well
described in the literature (Fomovsky et al., 2010).
In the present study, post-training changes in proteolytic enzymes

differed between skeletal muscle and heart muscle. In skeletal
muscle, the mRNA levels of the investigated enzymes were similar
in trained and untrained rats, but the activities of elastase, cathepsin
K, and plasmin were significantly higher in trained rats than in
untrained rats. In heart muscle, the mRNA levels of cathepsin K and
plasminogen were higher in trained rats than in untrained rats, but
the activities of these enzymes did not differ between groups. The
discrepancy between gene expression and enzyme activity observed
here may stem from the low coefficient of correlation between
mRNA levels and protein levels in mammalian cells (Pradet-Balade
et al., 2001). This discrepancy also suggests the presence of a post-
translational mechanism and perhaps other mechanisms that
influence enzyme activity. For example, numerous studies have
reported decreased activity of plasminogen activator inhibitor-1 in
plasma after training (Jahangard et al., 2009).

The roles of elastase, cathepsin K, and plasmin in the adaptation
of skeletal muscle to physical exercise are unclear. It is worth
mentioning that in our study, proteolytic activity in skeletal muscle
coincided with increased elastin levels in the soleus muscle of
trained rats, indicating that adaptation does not translate into lower
elastin content in soleus muscle.

The elastases belong to the group of serine, metallo-, or cysteine
proteases. They degrade elastin and several matrix and non-matrix
substrates such as fibronectin, laminin, collagen (types III, IV, and
VI), and proteoglycans (Antonicelli et al., 2007; Paczek et al.,
2008). While there is little data on the influence of physical
training on the generation of elastase in skeletal muscle, single
bouts of physical activity are known to increase elastase (Serteyn
et al., 2010; Gleeson et al., 1998). Elastase content remained
increased in triathletes as long as 19 days after the race (Neubauer
et al., 2008).

Cathepsin K belongs to the family of lysosomal cysteine
cathepsins; it is involved in the turnover of ECM proteins in many
organs, and contributes to cardiovascular disease (including
atherosclerosis and aortic aneurysms), inflammation, and obesity
(Lv et al., 2013; Podgorski, 2009). In addition, cathepsin Kmay be a
collagenase (Antonicelli et al., 2007) and may play a role in the
prevention of muscle fibrosis.

Plasmin mediates blood-clot dissolution and is necessary for
myogenesis, muscle regeneration, and hypertrophy (Suelves et al.,
2002; López-Alemany et al., 2003). It can degrade several ECM
proteins either directly or by activating matrix metalloproteinases 1-
3 or 9. Plasmin also drives the inflammatory response (Syrovets and
Simmet, 2004; Li et al., 2007). Plasmin may prevent intramuscular

Fig. 3. Effect of endurance training on protein content and activity in aorta. There were no significant differences in elastin content (UT, n=10; T, n=7)
or the activities of the proteolytic enzymes elastase (UT, n=10; T, n=10), cathepsin K (UT, n=9; T, n=10), and plasmin (UT, n=10; T, n=10) in trained rats
versus untrained rats. The experiments were performed in duplicates, except for elastin protein concentration which was made in single repetition. Error bars
express s.d. Mann–Whitney test was used for comparisons.
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fibrin accumulation and contribute to an accurate inflammatory
response in muscles after injury (Lluís et al., 2001).
Given these previous reports, we conclude that all of the enzymes

evaluated in the present study take part in ECM remodeling and that
ECM in skeletal muscle plays a very important role in providing
tissue with elastic properties, giving mechanical support to
myofibers during muscle contractions, and participating in the
transmission of force frommyofibers to tendons (Lehti et al., 2006).
Additionally, extracellular proteolysis is necessary for the
development and regeneration of skeletal muscle. The adaptation
of muscle to physical exercise is a complex process that relies, at
least in part, on the increased local proteolytic activity observed in
the present study. However, we note that despite concomitant
increases in gene expression, the lack of change in proteolytic
activity in heart muscle that was detected here indicates that
adaptation does not take place in heart muscle.
In our study, there were no significant differences in elastin

content and enzyme activity in the aorta of trained versus untrained
rats. Such results are in line with the results obtained by others. For
example, 8 weeks of aerobic training had no effect on aortic elastin
content in 6-month-old normotensive rats (Niederhoffer et al.,
2000); another study failed to uncover a difference in elastin content
between trained rats and sedentary controls (both young and old)
after 17-21 weeks of swimming training (Nosaka et al., 2003).
Similarly, no training effect occurred in a voluntary running group
(Matsuda et al., 1989; Matsuda et al., 1993). Training-induced
increases in elastin levels were previously observed in aged mice or
hypertensive rats (Moraes-Teixeira et al., 2010; Kadoglou et al.,
2011). However, spontaneously hypertensive rats exhibited higher

mRNA levels of elastin and markedly higher elastin/collagen
content; training effectively corrected the elastin content in the
aorta of these hypertensive rats, reducing pulsatility, facilitating
buffering, and reducing cardiovascular risk (Jordão et al., 2011).
Overall, most previous studies described differences in the elastin
content of the aorta in the context of existing pathology or aging, but
not in healthy subjects.

Conclusions
Our results indicate that endurance training activates different
signaling pathways in various tissues. Increased elastin content may
translate into increased compliance; we detected this increase in
heart and skeletal muscle but not in the aorta. The activities of
enzymes responsible for ECM remodeling increase in skeletal
muscle and may function in concert with the adaptation of skeletal
muscle to physical training, mainly by this mechanism, but also via
direct effects on muscle cells. Such a mechanism was not evident in
heart muscle or in the aorta in the present investigation.

MATERIALS AND METHODS
All procedures used in this study were approved by the Ethical Committee of
the Medical University in Bialystok, Poland (Resolution No. 23/2011 on the
proposal No./dated 27.04.2011) and were performed in accordance with
European Union regulations regarding the humane treatment of laboratory
animals.

Twenty male Wistar rats were used in this study. The rats had ad libitum
access to water and were fed with Labofeed B under a 12 h light/12 h dark
cycle. For the first 5 days, rats were subjected to exercise adaptation via a
once-daily regime of 10 min of running on a treadmill at 15 m/min. Rats
were then randomly assigned to one of two groups: untrained (UT, n=10) or

Table 1. Comparison of mRNA and protein levels, and enzyme activity, in aorta, soleus and heart muscle of trained and untrained rats.

mRNA level
Protein level*

Enzyme activity**

Eln ΔCT Elane ΔCT

Ctsk
K ΔCT Plg ΔCT

Elastin
(ng/µg×10−3)

Elastase
(U/µg×10−3)

Cathepsin
K (U/µg×10−3)

Plasmin
(U/µg×10−3)

Soleus muscle
Untrained
Median 7.9 20.1 5.5 14.5 1.4 2.0 0.2 1.7
Min 4.8 16.8 2.1 10.9 0.6 1.4 0.1 1.0
Max 13.8 24.1 6.5 19.8 1.8 2.8 0.3 2.2

Trained
Median 9.1 20.8 6.0 14.1 2.5 2.5 0.3 4.0
Min 5.4 10.2 1.9 7.3 1.6 1.7 0.2 2.9
Max 14.7 24.2 9.1 19.6 8.5 2.9 2.4 7.2

Heart muscle
Untrained
Median 5.6 14.4 8.4 12.9 33.7 1.1 0.5 2.1
Min 2.2 13.6 5.6 11.3 20.7 0.8 0.2 1.9
Max 9.3 19.3 11.7 16.7 48.1 1.3 0.8 2.8

Trained
Median 7.9 13.8 6.5 10.2 62.9 0.9 0.6 2.2
Min −3.0 9.2 4.3 7.2 48.9 0.6 0.2 1.7
Max 10.6 18.9 8.7 13.2 205.6 1.2 0.9 2.7

Aorta
Untrained
Median – – – – 10.3 2.1 0.2 4.7
Min – – – – 0.2 1.2 0.0 2.7
Max – – – – 105.4 5.0 0.3 11.4

Trained
Median – – – – 2.6 1.9 0.2 3.8
Min – – – – 0.01 1.3 0.1 2.4
Max – – – – 39.7 3.0 0.4 7.2

The expression of mRNA for tropoelastin (Eln), elastase (Elane), cathepsin K (Ctsk), and plasminogen (Plg) in skeletal and heart muscle expressed as ΔCT
median (min, max) (after the normalization of CT to the expression of GAPDH gene). Elastin protein level and enzyme activities of elastase, plasmin and
cathepsin K skeletal muscle, heart muscle and aorta in untrained UT and trained T groups.
Results are presented as: * the ratio of elastin concentration to total protein concentration; ** the ratio of enzyme fluorescence to total protein concentration.
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trained (T, n=10). Rats in the trained group were subjected to exercise
training 5 days per week for 6 weeks. Exercise intensity and duration were
gradually increased over time. Initially, sessions lasted 10 min (1200 m/h);
this duration was increased 10 min each day during the first week for a final
duration of 60 min/day, which was maintained over the rest of the training
period. The running speed was 1500 m/h in the second week and 1680 m/h
for weeks 3-6. There was no additional running stimulation. The untrained
group remained sedentary throughout the training period. The age of the rats
at the beginning of exercise was 5–6 weeks.

Twenty-four hours after the last training session, all rats were sacrificed
under anesthesia (intraperitoneal chloral hydrate, 1 ml/100 mg body
mass). The average body mass of rats on the day of sacrifice was
271±11.6 g in the untrained group and 283.17±24.67 g in the trained
group. Samples of soleus muscle, heart muscle (ventricle), and aorta were
collected and immediately stored at −80°C. Soleus muscle was chosen
because it contains a large proportion of type I slow-twitch fibers (Feng
et al., 2011). Soleus muscle is primarily recruited during running at the
speeds used in our study, while fast-twitch muscles generally are not
(Lambert and Noakes, 1989).

We measured the mRNA levels of tropoelastin, elastase, cathepsin K and
plasminogen in skeletal and heart muscle. Tropoelastin is a soluble
precursor of elastin (Vrhovski and Weiss, 1998) and plasminogen is the
inactive precursor of plasmin (Novokhatny, 2008).We also evaluated elastin
protein content as well as the activities of elastase, cathepsin K, and plasmin
in both muscle types. Only elastin protein content and the activity of
proteolytic enzymes were investigated in samples from the aorta due to the
small amount of available material.

Total RNA isolation
Approximately 50 mg of heart muscle (ventricle) or soleus muscle were
homogenized in QIAZOL (Qiagen, Germany) plus 8 µl proteinase K
(Qiagen) in a TissueLyser bead mixer (Qiagen) at 25 Hz in two 5-min
repetitions. Total RNA isolation was performed with an EZ1 RNA
Universal Tissue Kit and Biorobot EZ1 (Qiagen) in accordance with the
manufacturer’s instructions. Total RNA concentrations were measured at
260 nm via spectrophotometry (ND-1000 spectrophotometer, NanoDrop
Technologies, Inc.). Samples were frozen and stored at −80°C for
subsequent analysis.

Quantitative reverse transcription polymerase chain reaction
(qRT-PCR)
mRNA levels were measured with the ABI-Prism 7500 Sequence Detection
System (Applied Biosystems, USA). Specific probes and primers for rat
glyceraldehyde 3-phosphate dehydrogenase (Assay ID: Rn01775763_g1),
tropoelastin (Assay ID: Rn01499782_m1), neutrophil elastase (Assay ID:
Rn01535456_g1), cathepsin K (Assay ID: Rn00580723_m1) and
plasminogen (Assay ID: Rn00585167_m1) and the TaqMan One-Step
RT-PCR Master Mix Reagents Kit were purchased from Applied
Biosystems.

mRNA levels were calculated using the comparative cycle threshold (CT)
method. The CT of each sample was normalized to the expression of
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), with results
reported as ΔCT. According to Pérez et al. GAPDH is optimal gene to be
used as reference gene in the heart (Pérez et al., 2007). The relative mRNA
levels of the investigated proteins were calculated by subtracting the
normalized CT values for the trained group relative to the median untrained
value (ΔΔCT=ΔCT, trained−ΔCT,untrained), and the relative fold change of
the mRNA levels of the investigated proteins was calculated as 2−ΔΔCT

(Livak and Schmittgen, 2001).

Tissue homogenization and total protein quantification
Due to the limited amount of sample, homogenization of each sample was
performed as follows. All samples were homogenized in water in a
TissueLyser bead mixer (Qiagen) and centrifuged twice at 7826 g for
10 min at 4°C. Plasmin activity and elastase activity were assayed directly
after centrifugation. Supernatants were stored at −80°C for further analyses
of cathepsin K, elastin, and total protein content.

For the determination of elastin levels, samples of heart muscle were
homogenized in phosphate-buffered saline in accordance with the
manufacturer’s (see below) instructions and stored overnight at −20°C.
After two freeze-thaw cycles, the homogenates were centrifuged for 5 min at
5000 g. The supernatant was removed and assayed immediately as described
below.

Total protein concentration was measured at 562 nm on a BioTek Power
Wave XS spectrophotometer (BioTek Instruments, USA) using the
bicinchoninic acid Protein Assay Reagent (Pierce, Holland) in accordance
with the manufacturer’s instructions.

Quantification of elastin levels
Elastin levels were measured in tissue homogenates via enzyme-linked
immunosorbent assay (ELISA). Concentrations were measured at 562 nm
on a BioTek Power Wave XS spectrophotometer using the Elastin ELISA
Kit (EiAab, China). Results are presented as the ratio of elastin
concentration to total protein concentration.

Assays of enzyme activity
Enzyme activity was measured using a spectrofluorimeter (LS-50B,
PerkinElmer, USA). Fluorescence measurements were made with induction
at λ=355 nm and emission at λ=460 nm. The substrate for elastase was
Z-Arg-Arg-7-amido-4-methylcoumarin and the substrate for plasmin was
Boc-Val-Leu-Lys-7-amido-4-methylcoumarin (Bachem,BiochemicaGmbH,
Germany). A commercial kit (Cathepsin K Activity Fluorometric Assay Kit,
BioVision, Inc., USA) was used to measure cathepsin K activity (substrate
Ac-Lys-Arg- amino-4-trifluoromethyl coumarin) with a 400-nm excitation
filter and a 505-nmemission filter. Results are presented as the ratio of enzyme
fluorescence to total protein concentration.

Statistical analyses
Results are reported as medians with min and max, as mean±standard
deviation (s.d.) and as relative fold changes. Differences in mRNA levels
(for statistics, ΔCT was used) and protein levels between groups were
analyzed with theMann–WhitneyU-test.P-values <0.05 were considered to
be statistically significant.
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Gómez, E. andOtero, J. (2007). Identifying themost suitable endogenous control
for determining gene expression in hearts from organ donors. BMC Mol. Biol. 8,
114.

Podgorski, I. (2009). Future of anticathepsin K drugs: dual therapy for skeletal
disease and atherosclerosis? Future Med. Chem. 1, 21-34.

Pradet-Balade, B., Boulmé, F., Beug, H., Müllner, E. W. and Garcia-Sanz, J. A.
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