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Abstract 27 
Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the 28 
brain and spinal cord. Genetic studies have identified many risk loci, that were thought to 29 
primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-30 
wide association study with 20,831 MS and 729,220 control participants, identifying 236 31 
susceptibility variants outside the Major Histocompatibility Complex, including four novel loci. 32 
We derived a polygenic score for MS and, optimized for European ancestry, it is informative for 33 
African-American and Latino participants. Integrating single-cell data from blood and brain 34 
tissue, we identified 76 genes affected by MS risk variants. Notably, while T cells showed the 35 
strongest enrichment, inhibitory neurons emerged as a key cell type, highlighting the importance 36 
of neuronal and glial dysfunction in MS susceptibility. 37 
  38 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.04.24318500doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.12.04.24318500
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

Introduction 39 

The genetic architecture of multiple sclerosis (MS) has come into focus over the past decade. 40 
Efforts have been most successful around genetic susceptibility, with over 233 independent risk 41 
variants identified to date (1), but a recent study reported one genome-wide significant severity 42 
locus (2). While the functional consequences of some susceptibility variants have been 43 
characterized – such as the protective effect rs2300747G (3, 4) within the CD58 locus and the 44 
risk allele rs1800693-G in TNFRSF1A (5) - most of these variants remain poorly understood, and 45 
there have been few dedicated efforts to systematically map such effects (1, 6-10). Functional 46 
consequences of MS variants have been found primarily in peripheral immune cells and in 47 
microglia, the resident mesoderm-derived immune cell in the central nervous system (1). While 48 
some effects have been noted in non-immune cells, such as astrocytes, in targeted analyses (11-49 
13), such studies highlight an important challenge in functional genomics as the effect of risk 50 
variants can be seen in multiple different cell types and subtypes, creating ambiguity about 51 
which cell type is the causal one or whether a combination of cell types is required. Further, the 52 
limited availability of quantitative trait locus mapping results in a cell-type specific manner 53 
outside of peripheral blood mononuclear cell (PBMC) populations means that the extent of a 54 
variant’s effect beyond PBMC is largely unknown.  55 
 56 
Thus, despite some suggestions (14-16), there is currently a dearth of evidence that 57 
neuroectodermal derivatives that make up the central nervous system are involved in the onset of 58 
MS. Rather, the predominance of an initial peripheral auto-inflammatory response is further 59 
supported by the fact that approximately half of MS susceptibility variants may be shared with 60 
one or more autoimmune disease (17); it appears that an important component of genetic 61 
susceptibility to MS involves dysregulated pathways that lead to a propensity for auto-reactive 62 
immune responses. Interestingly, among the shared loci, a large proportion have an opposite 63 
effect in other diseases (an MS risk allele is protective for another disease), and MS shares more 64 
susceptibility loci with certain auto-inflammatory diseases, including ulcerative colitis (UC), 65 
celiac disease (CeD), inflammatory bowel disease (IBD), psoriasis (PS), and rheumatoid arthritis 66 
(RA) than others (18). While this portion of shared genetic susceptibility may be more readily 67 
understood functionally, the functional consequences of the other MS-specific half of 68 
susceptibility variants remains to be determined; it presumably contributes to the targeting of the 69 
auto-inflammatory process to the central nervous system instead of the skin, pancreas, joints, or 70 
other tissue. 71 
 72 
Here, we focused on systematically exploring the question of possible MS susceptibility variants 73 
exerting functional consequences only in neuronal and glial cell types. To properly power such a 74 
systematic evaluation genome-wide, we accessed our prior MS susceptibility results, expanding 75 
discovery meta-analysis with three new genome-wide datasets: the UK Biobank (UKBB) (19), 76 
the Electronic Medical Records and Genomics (eMERGE) (20) study, and the initial release of 77 
the All of US cohort (AoU) (21). Our team has previously harmonized these three datasets (22) 78 
into a coherent dataset of 750,051 participants. This significantly expanded the GWAS as our 79 
prior study had only a targeted replication effort (1). Further, these three cohorts have substantial 80 
numbers of diverse participants, allowing us to complete a multi-ancestry meta-analysis in MS 81 
and to pose some important questions about the relevance of MS susceptibility loci discovered 82 
among participants of European ancestry (EUR), African-American (AFR) and Admixed 83 
American (AMR). To identify potential causal MS genes, we integrated the extended EUR 84 
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GWAS results with the gene expression data from EUR participants using a colocalization 85 
analysis (COLOC) across the six major cell types of the dorsolateral prefrontal cortex (DLPFC) 86 
and 14 major cell types of the peripheral blood mononuclear cell (PBMC). We then compared 87 
the effect of MS risk loci across 12 inflammatory diseases, four neurodegenerative diseases, four 88 
psychiatric disorders, and metabolic traits. Finally, we designed, optimized, and tested a genome-89 
wide polygenic score (GPS) (23) for MS that maximizes performance across ancestries. We then 90 
conducted a hypothesis-free phenome-wide association study (PheWAS) to identify 91 
diseases/traits associated with the GPS, and examined the GPS associations with brain MRI data 92 
collected from MS patients (Fig. 1).  93 

Results 94 

New European ancestry GWAS meta-analysis for MS 95 
We first harmonized the genetic and phenotypic data available from the UKBB, eMERGE-III, 96 
and AoU datasets (22), defining cases by ICD 9: 340, 323 and 341 (Supplementary table S1). 97 
We then conducted a European ancestry GWAS meta-analysis (using METAL) (24) that 98 
includes a total of 5,063 MS cases and 596,340 controls (see Methods) (Supplementary table 99 
S1). These results were subsequently combined with our prior meta-analysis (1), increasing 100 
sample size to a total of 19,865 MS patients and 623,043 controls. Since the focus of this project 101 
was the evaluation of non-immune SNPs, we elected to exclude the extended Major 102 
Histocompatibility Complex (MHC) region from our analysis (Chr6: 25,383,722-33,368,421bp 103 
in GRCh37). 104 
 105 
A total of 5,041 non-MHC SNPs exceeded a threshold of p<5x10-8 in the new meta-analysis 106 
(Fig. 2); 99% of these SNPs showed a concordant direction of effect between the prior study (1) 107 
and the three new cohorts. Using linkage disequilibrium (LD)-based clumping methods, we 108 
identified 236 SNPs independently associated with MS susceptibility among the 5,041 109 
significant SNPs. We then removed SNPs with r2> 0.1 and within ±500kb window of any of the 110 
200 previously reported susceptibility variants (1). A total of 38 SNPs were not in LD with the 111 
previously reported SNPs. Next, we defined novel MS genomic risk loci using non-overlapping 112 
genomic segments that contain at least one MS SNP, with the condition that MS SNPs in 113 
adjacent loci are more than 250�kb away from each other (that is, a 250-kb window on each side 114 
of one of the SNPs). This approach results in 4 loci that do not appear to have been reported 115 
previously as harboring MS susceptibility variants (Table 1). Therefore, most of the new 116 
independently associated variants (n=34) fall within loci that harbor other MS susceptibility 117 
variants. We have also removed two susceptibility SNPs reported in our previous study 118 
(rs6498163 and rs11256593) due to an LD > 0.1 with other MS SNPs; in these cases, we kept the 119 
SNP within a pair that had the smaller p-value, which brings the total count of current MS 120 
susceptibility variants to 198 known and 38 novel variants, or 236 independent MS susceptibility 121 
effects, each of which is labeled by a lead SNP (Supplementary table S2). We used the results 122 
of this new meta-analysis for all subsequent analyses.  123 
 124 
Previous studies reported that multiple MS loci harbored more than one statistically independent 125 
effect that met a genome-wide significance threshold (1). This pattern was also observed in our 126 
updated list of MS risk variants, where multiple independent associations were found at many 127 
loci, such as the DDX6-CXCR5 locus (Supplementary fig. S1), which has also been implicated 128 
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in other autoimmune diseases. For example, the variant rs12365699-G, located in the DDX6-129 
CXCR5 locus, increased the risk of rheumatoid arthritis and lupus (25-27).  130 
 131 
Multi-ancestry GWAS meta-analysis for MS 132 
Although the total number of AFR (614 cases and 62,044 controls) and AMR (352 cases and 133 
44,133 controls) ancestry individuals identified by us across the three biobanks was large for an 134 
MS study, it remains modest for a GWAS. Our prior study of European ancestry participants 135 
required 1,000 MS cases to yield two loci meeting a threshold of genome-wide significance (28). 136 
Nonetheless, we completed separate GWAS for these two populations aiming to identify 137 
ancestry-specific loci. Surprisingly, one new locus is genome-wide significant among AFR 138 
participants (rs76911648), its minor allele frequency (MAF) in EUR (MAF=0.013) is lower 139 
compared to AFR (MAF=0.035), and two new SNPs are significant among AMR participants 140 
(rs59061674, rs113284638) (Table 1, fig. S2), where rs59061674 has a lower MAF in EUR 141 
(MAF=0.010) than AMR (MAF=0.038), while the rs113284638 showed a slightly higher MAF 142 
in EUR (MAF=0.072) than AMR (MAF=0.063) . Given small sample size, these results should 143 
be viewed cautiously; in participants of European ancestry, none of these three SNPs have a 144 
p<0.05. Further, they are not in LD with one of the significant SNPs described above. There are 145 
no additional non-European ancestry datasets available for replication, so these results will 146 
require validation in future more diverse cohorts. 147 
 148 
To be thorough, we next performed a multi-ancestry meta-analysis of a total of 20,831 MS cases 149 
(>40% increase in the number of MS cases used in the previous GWAS (1)), and 729,220 control 150 
participants using two methods: a multi-ancestry meta-regression implemented in MR-MEGA 151 
(29) and a random effects model implemented in PLINK v1.9 (30). No additional loci became 152 
significant in this slightly larger meta-analysis. When we took the list of 236 significant SNPs 153 
from the EUR meta-analysis, 184 SNPs were available in AFR, and 18 of these SNPs showed 154 
some evidence for replication among AFR participants (nominal P<0.05, 14 with the same effect 155 
directions). In addition, 189 of the 236 SNPs could be tested in AMR participants, and 11 SNPs 156 
showed some evidence of association (P<0.05, 9 with the same effect directions) 157 
(Supplementary table S3). Thus, while dedicated studies of non-European populations are 158 
sorely needed, our results suggest that certain findings from European-ancestry meta-GWAS are 159 
also relevant to AFR and AMR populations, consistent with earlier studies (31, 32).  160 
 161 
Susceptibility alleles overlap between MS and other autoimmune diseases 162 
Next, we assessed the extent to which MS susceptibility was shared with other diseases. We 163 
assembled a list of SNPs that reached genome-wide significance (p<5×10-8) in at least one of 12 164 
autoimmune diseases using their publicly available genome-wide summary statistics (see details 165 
in Methods) (33-40). Adding these SNPs to those meeting a threshold of genome-wide 166 
significance in our MS analysis, 32,901 SNPs were retained for a cross-disease analysis (Fig. 167 
3A). A single risk allele (rs3184504-T), a nonsynonymous SNP in the SH2B3 gene, exhibited the 168 
highest level of pleiotropy with concordant risk associations shared across seven autoimmune 169 
diseases (Supplementary table S4), including multiple sclerosis, psoriasis, lupus, type 1 170 
diabetes, celiac diseases, inflammatory bowel disease and thyroiditis. In addition, we identified 171 
7,849 SNPs with associations shared between at least two autoimmune diseases, and we see 172 
decreasing numbers of SNPs that have some evidence of association in 3 more diseases, 173 
including 5 SNPs that may have a role in 6 diseases. 174 
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 175 
To extend this analysis and better understand the pleiotropy of our MS variants, we next 176 
evaluated the behavior of our updated list of 236 MS susceptibility SNPs (Supplementary table 177 
S2) in the results of other GWAS, including MS severity (2), 12 autoimmune diseases (33-40), 178 
four neurodegenerative diseases (41-44), four psychiatric disorders/traits (45-48), and three 179 
metabolic traits (49, 50) (Supplementary table S5). The analysis was run twice, using either a 180 
nominal significance level (p<0.05) or a slightly more conservative threshold of p<0.001. We 181 
partitioned the results into three groups: (1) SNPs showing the same direction of effect as MS in 182 
the other disease/trait, (2) SNPs showing the opposite direction with these phenotypes, and (3) 183 
SNPs that did not meet the threshold of significance (Fig. 3B & C). T1D and IBD had the most 184 
potential associations for our MS SNPs, with 87 and 73 of SNPs meeting a nominal threshold of 185 
significance (Fig. 3B). In both cases, there was a clear skew for the sharing to occur in the same 186 
direction of effect, but a quarter of the MS variants had a flipped direction of effect in the other 187 
diseases. This pattern held true for the other autoimmune diseases and for the higher threshold of 188 
significance (Fig. 3C), consistent with patterns seen in earlier studies (18). The extent of sharing 189 
is dependent, in part, on the size of the GWAS for the non-MS trait, as some diseases still have 190 
relatively small GWAS or are underpowered, such as the MS severity GWAS, which returned 191 
only one significant locus (2). 192 
 193 
Interestingly, we see a fair amount of sharing with the neuropsychiatric traits, more than with the 194 
neurodegenerative diseases. Alzheimer’s disease is intriguing, given an apparent excess of 195 
inverse effects in the shared SNPs with MS (p<0.05). The metabolic traits also harbor a notable 196 
amount of sharing. However, the direction of these variants seems relatively random, with ~50% 197 
of the variants having an inverse effect relative to the MS risk. Under the more stringent 198 
statistical significance cutoffs (p<0.001), few of the MS SNPs were associated with the other 199 
traits, but the pattern among the autoimmune diseases was the same (Fig. 3C).  200 
 201 
Fig. 3D presents the same results in a more granular form, where we filtered the MS risk variants 202 
that showed genome-wide significance in at least one of the 24 phenotypes utilized here: for 203 
example, the rs3184504-T allele in the SH2B3 locus consistently shows increased risk in MS, 204 
lupus, celiac disease, thyroiditis, psoriasis, RA, and IBD (Supplementary table S4). We gain an 205 
appreciation of the complexity of the mechanisms of MS susceptibility: while a good portion of 206 
the variants clearly affect some aspect that yields a propensity to develop an autoimmune 207 
response, the substantial number of inverse effects highlight that the role of certain immune 208 
pathways is disease-specific. One example of this complexity is the STAT3 locus, in which 209 
rs1026916 reaches p < 10−28 in MS (Fig. 3D) and has substantial evidence of being involved in 210 
psoriasis in the same direction, but this variant has attained genome-wide significance in IBD, 211 
UC, and CD in the opposite direction of effect relative to MS. Despite many shared autoimmune 212 
SNPs with MS, 50/236 were specific to MS at the most comprehensive threshold (p<0.05) across 213 
the 12 autoimmune diseases, and 27 were specific to MS among all the phenotypes we tested. 214 
 215 
With the genome-wide summary statistics collected above, we then obtained the genetic 216 
correlations estimate from MS for the 325 pairwise combinations among the 25 phenotypes and 217 
compared the results to the LD score regression (LDSC) estimates (Fig. 3E, Supplementary 218 
table S6) using an imputed reference panel including 1,217,312 quality-controlled HapMap3 219 
SNPs (51). This analysis suggests that MS is most similar to UC (rg=0.250, p-value=5.47×10-09), 220 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.04.24318500doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.04.24318500
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

SLE (rg=0.221, p-value=1.00×10-04, IBD (rg=0.194, p-value=3.60×10-06) and RA (rg=0.150, p-221 
value=1.50×10-03), which is consistent with earlier studies (52, 53). Interestingly, we also found 222 
significant positive correlations between MS and neuroticism (rg=0.090, p-value=2.00×10-04). 223 
MS severity did not show any significant correlations with the traits we tested. This MS severity 224 
study is probably underpowered, and we will need larger studies to truly explore the possibility 225 
of shared genetic architecture between MS severity and other inflammatory and 226 
neurodegenerative diseases. Notably, IgA nephropathy, COPD, thyroiditis, IBD, and CD had a 227 
significant genetic correlation with the psychiatric disorders/traits we tested (Fig. 3E).  228 
 229 
Polygenic score for multiple sclerosis 230 
Polygenic risk scores have emerged as tools with which to capture an individual’s inherited 231 
disease susceptibility. They may be useful for stratifying individuals in clinical trials, and for 232 
guiding primary prevention and management of individuals at high genetic risk for MS (54). A 233 
genome-wide polygenic score (GPS) may also be used for discovery of the shared genetic 234 
architecture between MS and other unsuspected traits beyond inflammatory diseases.  235 
 236 
We rigorously approached the construction of such a score using our non-MHC SNPs. We 237 
developed our initial model in the combined IMSGC, UKBB, and AoU datasets. We reserved the 238 
eMERGE-III dataset to test the model. The flowchart summary of our analytical approach is 239 
provided in Figure 4A (see details in Methods). The GPS for MS was tested with adjustment for 240 
age, sex, genotyping batch, and genetic ancestry. As shown in Table 2, the GPS was strongly 241 
associated with the risk of MS in the independent testing cohort of European ancestry, with an 242 
overall odds ratio (OR) per standard deviation of the GPS of 1.70 (95%CI:1.52-1.91, 243 
P=1.37×10�19). The participants in the top 1% vs. the remaining 99% of MS-GPS had more than 244 
a 7-fold increased MS risk (95% CI: 4.37-12.00, P = 1.60×10�¹�). We additionally validated 245 
the risk score in two smaller testing cohorts of AMR and AFR ancestry. Although the magnitude 246 
of effect was decreased, the GPS was significantly associated with MS in both cohorts. The OR 247 
per standard deviation of the GPS was estimated at 1.46 (95%CI 1.10-1.94, P=8.57×10�03) for 248 
AMR ancestry and 1.26 (95%CI 1.07-1.49, P=5.64×10�03) for AFR ancestry (Table 2). Thus, 249 
while dedicated efforts in these populations are sorely needed to further improve the GPS 250 
performance, the current GPS is already validating across major ancestral populations found in 251 
North America. 252 
 253 
We then assessed phenome-wide associations of this GPS in a PheWAS based on eMERGE 254 
participants who were not included in the GPS design. This approach offers a complementary 255 
strategy to assess for unsuspected shared genetic architecture with a range of clinical traits across 256 
the entire phenome. In the well-powered analysis of participants with European ancestry, the 257 
GPS association with MS was strongly replicated (OR=1.97, 95%CI:1.71-2.27, P=1.35×10-21, 258 
Fig. 4B). We also found a GPS association with “other inflammatory demyelinating diseases” 259 
(OR=1.67, 95%CI:1.36-2.04, P=7.33×10-07, Fig. 4B). This poorly defined diagnostic group may 260 
harbor certain individuals with MS and contains conditions that share symptomatology with MS 261 
but have different immune mechanisms. Thus, there may be some overlap in genetic architecture 262 
with these less common entities. The association with “functional disorders of the bladder” 263 
(OR=1.22, 95%CI:1.12-1.34, P=7.59×10-06, Fig. 4B) was likely related to the fact that bladder 264 
dysfunction represents a common symptom of MS. No other diagnostic category was 265 
significantly associated with the MS GPS, suggesting that our GPS is fairly specific to MS.  266 
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 267 
In the smaller AFR dataset, the association of the GPS with MS was also phenome-wide 268 
significant (OR=1.62, 95%CI:1.31-2.01, P=7.55×10-06, Fig. 4C), consistent with the earlier 269 
dedicated analysis. In the AMR cohorts with fewer cases, the association with MS was only 270 
nominally significant (OR=1.51, 95%CI:1.01-2.26, P=0.04, Fig.4D) likely due to low power. 271 
The GPS was also associated with “Congestive heart failure (CHF) NOS” (OR=1.28, 272 
95%CI:1.15-1.43, P=1.08×10-05, Fig.4D). MS has been reported to be linked to a higher risk of 273 
cardiovascular disease, including congestive heart failure (55), but given small sample size of the 274 
AMR cohort, and the absence of this association in AFR and EUR cohorts, this association may 275 
be spurious. We conclude that the GPS is associated with MS across different ancestral 276 
populations, but its predictive performance remains lower in non-European populations. 277 
 278 
Finally, we have tested our GPS in MS patients with magnetic resonance imaging (MRI) 279 
measurements (gray matter, white matter, and cerebrospinal fluid), the Expanded Disability 280 
Status Scale (EDSS), and genotype information using the data selected from the Comprehensive 281 
Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women’s Hospital 282 
(CLIMB) study (56) (see details in Methods). A linear regression model was used to examine the 283 
associations between the GPS and brain tissue compartments adjusted for age at visit, sex, and 284 
top three ancestry PCs. We observed a nominally significant association between the GPS and 285 
lower white matter volume in the MS patients (p-value = 0.03) (Fig. 4E). However, no 286 
significant associations were found between MS-GPS and other MRI measurements. 287 
 288 
Functional characterization of MS variants using cell-type specific brain and blood eQTL 289 
Prior systematic evaluations of functional consequences of MS susceptibility variants (1, 2) had 290 
revealed that MS SNPs affected gene expression in peripheral immune cells and microglia (a 291 
myeloid cell type that integrates the neurectoderm early in development). While some targeted 292 
investigations looked at astrocytes in relation to molecular pathways present in many cell types, 293 
there has been few systematic evaluation of MS genetic effects specific to CNS cell types in 294 
relation to MS susceptibility or severity (2, 57-61). Thus, we accessed our recent atlas of CNS 295 
cell type-specific eQTL effects generated from well-powered set of frozen postmortem human 296 
brain samples collected from the same brain region, the dorsolateral prefrontal cortex (62). 297 
Further, we accessed a publicly available resource derived from PBMC samples (63) to map the 298 
effects of MS variants on peripheral immune cells as a contrast and to assess cell-type specificity 299 
of the functional consequences. Using these two references, we identified those MS 300 
susceptibility variants that are found in the vicinity of an eQTL in each of the tested blood and 301 
brain cell types and then assessed whether the two effects co-localize using Coloc (v5.1.0) (see 302 
Methods). The results are shown in Figure 5A (Supplementary table S7) where, as expected, 303 
there are several colocalized effects (PP.H4>0.8) among blood-derived cells; this is consistent 304 
with prior reports that naïve T cells harbor the most of these MS-related functional consequences 305 
(64, 65). Most of these effects are shared among several cell types, but some – such as NR1D1 306 
and MMEL1 – appear specific to naïve T cells (amongst the cells surveyed here). Further, we 307 
now demonstrate colocalization with microglial eQTL, which had been suspected from prior 308 
analyses that uncovered enrichment of microglial genes amongst genetically implicated MS 309 
susceptibility genes (1, 6).  310 
 311 
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However, the most interesting new set of results involves the cell types that derive from the 312 
neurectoderm: the glial and neuronal cells. In our reference, the most numerous cell types are 313 
excitatory neurons; they also have the largest transcriptome and, hence, have the most eQTL 314 
effects compared to other CNS cell types that are less frequent in the cortex (62). Despite this, 315 
inhibitory neurons harbor the most eQTLs that colocalize with MS susceptibility variants of any 316 
CNS cell type (n=15) (Fig. 5A & B & S3); this is more than the resident immune cells, the 317 
microglia (n=6). Further, seven of these functional consequences to MS variants are unique to 318 
inhibitory neurons. We also see five other variants that have functional consequences only in 319 
excitatory neurons. Thus, neuronal cells seem to play an important role in the earliest events 320 
leading to the onset of MS. Figure 6A&B zooms into two MS loci, STAT3 and IL7, illustrating 321 
the co-localization of susceptibility and expression effects. These are well-studied cytokine-322 
related genes involved in amplification of immune responses, with evidence that IL7-driven 323 
signaling occurs, in part, through STAT3. Our comparative assessment of blood and brain cells 324 
indicates that these two functional consequences of MS variants may be mechanistically related 325 
and unique to inhibitory neurons. They may provide a bridge between the peripheral leukocyte-326 
driven propensity for autoimmunity and the targeting of the CNS by peripheral immune 327 
dysfunction, as neuronal cells respond differently to inflammatory stimuli. Further work is 328 
needed to understand how these two functional consequences intersect with the other neuronal-329 
specific effects (in excitatory as well as inhibitory neurons). 330 
 331 
While neurons harbor the most functional consequences of MS variants, each of the glial cell 332 
types harbor some such effects, including some that are specific to astrocytes (KCTD13 and 333 
RRAS2) and oligodendrocytes (PHGDH and SYNGR1), for example. A previous report 334 
implicated an MS variant near the NFKB1 gene in altered immune responses in astrocytes; 335 
however, this SNP is not found to alter gene expression in our brain datasets (66). We note that 336 
the pathognomonic feature of multiple sclerosis at its onset is the presence of inflammatory 337 
demyelination, which targets the myelin sheath produced by oligodendrocytes. Thus, while some 338 
of the MS loci may finally connect the peripheral immune dysfunction to a well-validated target 339 
cell type, many more loci implicate neuronal cells, and this may provide insights into the 340 
neurodegenerative component of the disease, which is apparent as brain atrophy early on (67, 68) 341 
but presents clinically only much later.  342 
 343 
Replication of colocalized eQTL & epigenomic assessment 344 
We accessed additional single-nucleus datasets, and, as shown in Figure 6C-E, and the STAT3 345 
RNA expression effect in inhibitory neurons is robust, being reproducibly found in two other 346 
datasets (69). The rs1026916A risk allele is associated with decreased gene expression using our 347 
original dataset (CUMC study 1) (62), data from colleagues at the Massachusetts Institute of 348 
Technology (MIT) (69), and a new snucRNAseq dataset (CUMC study 2). In addition, we 349 
identified eQTL-eGene effects in multiple corresponding cell types (Supplementary table S8). 350 
For example, rs4896153 is an eQTL associated with AHI1 in microglia, and rs6032662 is 351 
associated with SLC12A5 in both excitatory and inhibitory neurons. 352 
 353 
Reviewing reference epigenomic profiles (70), we found that most of our top prioritized variants 354 
(Figure 5 and Supplementary Table S7) are not located in segments of open chromatin in the 355 
cell types implicated by the eQTL analyses. However, one SNP,  rs3923387, tags a genetic effect 356 
near the PLEC gene that influences (1) MS susceptibility, (2) the accessibility of chromatin in a 357 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.04.24318500doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.04.24318500
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

nearby chromosomal segment (GRCh37 chr8:145034681-145035181) in microglia 358 
(colocalization of MS susceptibility PP.H4=0.84), and (3) the expression of the PLEC gene in 359 
the same cell type (as shown in Figure 5, colocalization of the ATAC QTL and eQTL 360 
PP.H4=0.93 (Supplementary fig. S4). This result illustrates the next phase of our consortium’s 361 
work, generation of improved, cell-resolved, multi-omic data to map the propagation of effects 362 
from the MS susceptibility variants. 363 
 364 
Finally, to extend the narrative, we also confirmed the expression of STAT3 protein in inhibitory 365 
neurons using immunofluorescence in DLPFC tissue sections of a post-mortem MS individual 366 
obtained from the New York Brain Bank (NYBB). We observed that STAT3 is expressed in 367 
GAD1+GAD2+ inhibitory neuron cells, with 2.8% of these neurons showing elevated STAT3 368 
expression (>2SD) (Fig. 6F and S5). However, no significant differences in neuronal 369 
morphology, including compactness and shape, were observed between STAT3-expressing 370 
inhibitory neurons and those lacking STAT3 expression. 371 

Discussion 372 

In an updated MS GWAS analysis of 19,865 MS cases with genome-wide genotype data, we 373 
identified 38 novel MS risk variants and four novel genomic loci involved in MS susceptibility. 374 
Combined with SNPs generated from previous studies (1), our consortium has reported a total of 375 
236 independent non-MHC MS risk variants identified in participants of European ancestry. We 376 
have also conducted a multi-ancestry MS GWAS, including AFR and AMR ancestry 377 
participants. Although the sample size of the diverse participants is small, we uncovered one 378 
locus that reached genome-wide significance among AFR participants and two loci among AMR 379 
participants. These results should be considered cautiously until further evidence of replication 380 
emerges, given the small size of their discovery analyses. Our rigorously derived GPS provides a 381 
new tool for the community to investigate the role of genetic predisposition to MS in other 382 
datasets and contexts. Interestingly, while it requires additional optimizations for use in non-383 
European populations, our results suggest that the current version already has some predictive 384 
capacity among individuals of AFR and AMR ancestry, consistent with earlier reports (71, 72). 385 
There is a pressing need for larger studies in non-European ancestry groups to ensure that any 386 
future clinical utility is broadly applicable. Given the strong but complex role of the MHC in 387 
MS, inclusion of susceptibility variants from that region will further improve the prediction in 388 
European populations but may be less informative in diverse population given the rapid and 389 
copmplex evoluation of the MHC which harbors many population-specific effects. 390 
 391 
Using our updated MS results, we sought to classify our susceptibility variants functionally. In 392 
one approach, we accessed the results of other GWAS to identify those variants that may affect 393 
susceptibility by altering more general mechanisms that lead to a propensity for autoimmunity. 394 
This hypothesis is consistent with epidemiological studies reporting a higher prevalence of other 395 
autoimmune diseases in persons with MS, such as T1D, thyroid disease, and inflammatory bowel 396 
disease (73, 74) as well as the existence of families with members affected by different 397 
autoimmune diseases (75). However, the story is not that simple, as there does not appear to be a 398 
clear “global genetic risk for autoimmunity”: The rs3184504 variant in the SH2B3 locus offers a 399 
good illustration, as its risk allele “T” was found associated with increased risk of celiac disease, 400 
IBD, MS, psoriasis, lupus, T1D and thyroiditis. The SH2B3 gene encodes the Src homology 2 401 
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adaptor protein 3, which regulates inflammation, immunity, and blood cell production. Certain 402 
genetic variants of SH2B3 can cause it to fail to control an overactive immune response, which 403 
can lead to autoimmunity (76). It was also reported to be associated with immunoglobulin levels 404 
and multiple other non-immune traits; it displayed a high degree of pleiotropy, being associated 405 
with 79 different GWAS traits (77). Overall, our results support shared autoimmune mechanisms 406 
(52), where we show that a substantial proportion of shared loci harbor pleiotropic effects 407 
influencing risk to MS and other autoimmune diseases. 408 
 409 
We thus found that 186 of the 236 variants have some evidence of association with another 410 
autoimmune disease using the most inclusive threshold. This suggests that the remaining 50 411 
variants may have a role in other processes that relate to targeting the propensity for an 412 
autoimmune process towards the target organ, in our case, the brain and spinal cord. Prior work 413 
had clearly demonstrated that the peripheral immune system harbors the functional consequences 414 
of many variants. While CD4+ T cells were strongly implicated, all other bone marrow-derived 415 
cells and microglia were also found to harbor at least some of the effects of susceptibility 416 
variants (1, 2) in these analyses. The role of CNS cells was unclear, with a potential but 417 
ambiguous association with SLC12A5 expression in brain transcriptomic data and functional 418 
consequences of the six MS variants in astrocytes that perturbed the NF-κB pathway. This 419 
pathway is also implicated in many immune cells, and current MS treatments are found to be 420 
directly or indirectly linked to NF-κB pathways, modulating both the innate and adaptive 421 
immune system in patients (78-80). 422 
 423 
Here, our co-localization analysis showed that CD4+ Naïve T cells harbor the largest number of 424 
cases where the same variant influences MS susceptibility and RNA expression, consistent with 425 
previous studies. Surprisingly, we found that inhibitory neurons showed the most colocalization 426 
signals among CNS cell types, followed by excitatory neurons, astrocytes, and microglia, and 427 
most of the colocalized signals in neurons are unique to this cell type (when compared to cortical 428 
and bone-marrow-derived cells). For example, STAT3 and IL7 illustrate loci with evidence of co-429 
localization of susceptibility and expression effects only in inhibitory neurons. These are well-430 
studied cytokine-related genes that are involved in the amplification of immune responses, with 431 
evidence that IL7-driven signaling occurs, in part, through STAT3 (81). Thus, these two loci 432 
implicate a specific molecular pathway in the onset of MS through perturbation of neuronal 433 
function. Another example is ZHX3 in excitatory neurons, ZHX3 is a member of a family of 434 
transcriptional repressors that are involved in neural progenitor maintenance, hematopoietic cell 435 
development, and differentiation. Dysfunction of ZHX family members is linked to the 436 
development and progression of neurological disease (82). Our comparative assessment of blood 437 
and brain cells, therefore, prioritizes a subset of MS variants that implicate CNS parenchymal 438 
cells in disease onset. Clearly, perturbed pathways that lead to a propensity to autoimmune 439 
reactions are interacting with perturbed immune responses in neurons and glial cells to initiate 440 
autoreactive cells that lead to both recurrent bouts of inflammatory demyelination and a slowly 441 
progressive neurodegenerative process that remains poorly understood. The predilection of 442 
inhibitory neurons as a target for these risk variants is intriguing, particularly given the recent 443 
report that inhibitory neurons appear to be lost preferentially in the MS brain (83). With our 444 
observations, we can now generate hypotheses to explore the downstream molecular and 445 
functional changes elicited by the variants in the cell type in which they are implicated. The role 446 
of the adaptive immune system is well established in MS, while CD8+ T cells are most abundant 447 
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in the white matter of MS brain (84). The CD4+ T cells probably play a role that is as important 448 
given the convergence of genetic susceptibility effects in this cell type and earlier studies (85). 449 
Our data here suggest direct interactions between T cells and neurons or glia may be important to 450 
trigger the onset of MS through both classes of lymphocytes, elaborating a rich literature of 451 
immune responses expressed by neuroglial cells (86, 87). More broadly, it is likely that tissue-452 
specific cells are likely to play a similar role in other inflammatory diseases. 453 
 454 
In summary, these results advance our understanding of the biological etiology of MS, 455 
refocusing our efforts on understanding the onset of the disease to include specific molecular 456 
pathways in the brain. While most loci have functional consequences in a variety of immune cell 457 
types, our study prioritizes understanding the unsuspected neuronal contribution to the onset of 458 
MS. They alter our conceptualization and approach to primary prevention and treatment of MS, 459 
which may have to include interventions targeting the central nervous system pathways. 460 

Methods and Materials 461 

Study design 462 
This cross-sectional study involves a combined analysis of the UKBB, eMERGE-III, and AoU 463 
cohorts. All participants provided informed consent to participate in genetic studies. Each cohort 464 
was first analyzed separately, and cohort-specific results were combined using fixed-effects 465 
meta-analysis. 466 
 467 
UK Biobank (UKBB) 468 
The UKBB is a longitudinal cohort of individuals ages 40–69 years at enrollment, recruited 469 
between 2006 and 2010 across the United Kingdom (19). The individuals recruited to UKBB 470 
signed an electronic consent to allow the broad sharing of their anonymized data for health-471 
related research. UKBB generated and released SNP microarray, exome sequence, and structured 472 
EHR data for 488,377 participants. The cohort is 54% female, with a mean age of 57 years, and 473 
the composition is 94% Europeans, 2% West or Southeast Asians, and 2% African ancestry by 474 
self-report (19) (Supplementary table S1). 475 
 476 
SNP microarray data 477 
The details of the UKBB microarray genotyping, imputation, and quality control are available 478 
elsewhere (19). Briefly, using the UKBB Axiom Array (N�=�438,427) and UK BiLEVE 479 
Axiom Array (N�=�49,950), a total of 488,377 participants have been genotyped for 805,426 480 
overlapping markers. The 1000 Genomes, UK10K, and Haplotype Reference Consortium (HRC) 481 
reference panels were used to perform genome-wide imputation using IMPUTE2 software (88, 482 
89). We performed post-imputation quality control analyses as described in our previous work 483 
based on this dataset (90) retaining 9,233,643 common (i.e., Minor Allele Frequency 484 
(MAF)�>�0.01), high-quality (imputation R2�>�0.80) variants for the purpose of GPS 485 
calculation. To eliminate any potential confounding by close familial relationships, we excluded 486 
cryptically related individuals (kinship coefficient�>�0.0442) (91) from downstream analyses. 487 
 488 
Genetic ancestry analysis 489 
We used the UKBB genotype array data for principal component analysis (PCA). We first 490 
pruned the genotype data using the plink command ‘--indep-pairwise 500 50 0.05’. We then used 491 
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FlashPCA (92) based on 35,091 pruned variants. We merged the UKBB samples with 2504 492 
participants of the 1000 Genomes Project (1KG phase 3) (93) and kept only shared variants 493 
between the two datasets. Then, we used a random forest machine learning based on 10 principal 494 
components to train ancestry classifiers using 1KG labeled data. Finally, we used the trained 495 
model to predict the genetic ancestry of the UKBB samples (Supplementary fig. S6a). 496 
 497 
All of Us (AoU) 498 
The AoU research program launched recruitment in 2018 across 340 sites across the United 499 
States, and over 372,380 participants were enrolled by 2022. AoU combines participant-derived 500 
data from surveys such as self-reported health information, physical measurements, electronic 501 
health records, and biospecimens. We analyzed the AoU data on Workbench, a cloud-based 502 
environment (21). The second release data included N�=�312,944 participants with complete 503 
SNP microarray, genome sequencing data, and phenotype information. The participants included 504 
60% female, the mean age was 55 years, and consisted of 53% European, 4% Asian, and 21% 505 
Black/African American race by self-report. In addition, 17% of the cohort self-reported 506 
Hispanic/Latinx ancestry (Supplementary table S1). 507 
 508 
SNP microarray genotype data 509 
All participants were genotyped with the Illumina Global Diversity Array (GDA). This 510 
microarray contains 1,904,679 SNVs and 44,172 indels. First, we performed genome-wide 511 
imputation analysis on the Workbench platform. Before imputation, we excluded all variants 512 
with MAF�less than or equal to 0.005 (671,685 variants) or genotype missingness rate greater 513 
than or equal to 0.05 (41,526 variants). The genomic positions were lifted over from human 514 
GRCh38 to hg19 for 96% of SNPs. We then adopted the TopMed pre-imputation quality control 515 
(QC) pipeline to correct allele designations and remove poorly mapping variants (94). After QC, 516 
we used 1,191,468 variants for imputation. To reduce RAM usage and increase speed, we split 517 
the 312,944 subjects with microarray data into 8 equal batches and then imputed each batch 518 
separately. After pre-phasing with EAGLE v.2 (95), we imputed missing genotypes using the 519 
Minimac4 (88) and 1KG phase 3v5 (93) reference panel. A total of 43,371,225 autosomal 520 
variants were imputed in 312,944 individuals. We then merged the eight batches based on 521 
position using VCFtools software with the command ‘vcftools --gzvcf --positions --recode --522 
recode-INFO-all –stdout’. MAFs for the imputed markers were closely correlated (correlation 523 
coefficient (r) =�0.96) with the MAFs for the 1KG dataset. 524 
 525 
Genetic ancestry analysis 526 
Similar to the UKBB data, we first pruned the genetic data using the command ‘--indep-pairwise 527 
500 50 0.05’ in PLINK (96) and used N�=�36,358 pruned variants for kinship and ancestry 528 
analysis. Using KING software (91), we removed 270 samples with pairwise kinship 529 
coefficients>0.35. We then merged our AoU samples with 1KG samples, kept only SNPs in 530 
common between the two datasets, calculated PCs for the 1KG samples, and projected each of 531 
our samples onto those PCs. We then used a random forest-based machine learning approach to 532 
assign a continental ancestry group to each AoU sample. Briefly, we trained and tested the 533 
random forest algorithm on 1KG subjects with known labels. We trained the random forest 534 
model using 10 PCs as a labeled feature matrix. Then, we used our trained random forest model 535 
to predict the genetic ancestries for the AoU dataset (Supplementary table S1 and 536 
Supplementary fig. S6b). 537 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.04.24318500doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.04.24318500
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

 538 
eMERGE-III 539 
The eMERGE network provides access to electronic health record information linked to GWAS 540 
data for 102,138 individuals recruited in 3 phases (eMERGE-I, II, and III) across 12 participating 541 
medical centers from 2007 to 2019 (54% female, mean age 69 years, 76% European, 15% 542 
African-American, 6% Latinx and 1% East or southeast Asian by self-report) (97, 98). All 543 
individuals were genotyped genome-wide; details on genotyping and quality control analyses 544 
have been described previously (97, 98). All GWAS datasets were briefly imputed using the 545 
multiethnic Haplotype Reference Consortium panel on the Michigan Imputation Server (99). The 546 
imputation was performed in 81 batches. We included only markers with a MAF�≥�0.01 and 547 
R2�≥�0.8 in ≥75% of batches post-imputation. A total of 7,529,684 variants were retained for 548 
the GPS analysis. For PCA, we used FlashPCA (92) on a set of 48,509 common (MAF�≥�0.01) 549 
and independent variants (pruned in PLINK with the --indep-pairwise 500 50 0.05 command). 550 
The analyses were performed using a combination of VCFtools v.0.1.13 (100) and PLINK v.1.9 551 
(96). Similar to UKBB and AoU, we defined the genetic ancestry for eMERGE based on random 552 
forest (Supplementary fig. S6c).  553 
 554 
MS phenotyping and case-control definitions 555 
The MS phenotype was defined using ICD codes from the UKBB, eMERGE-III, and AoU 556 
datasets. Cases were identified by at least one occurrence of the following ICD codes: ICD-9: 557 
340, 323, or 341. Participants without any of these codes were classified as controls. 558 
 559 
Meta-GWAS 560 
The MHC is the most gene-dense and most polymorphic part of the human genome. The region 561 
exhibits haplotype-specific linkage disequilibrium patterns, extreme structural variation and copy 562 
number variations, and an extremely high level of genetic diversity; the use of a single reference 563 
sequence to analyze GWAS data in this area is problematic (101). Therefore, the Extended MHC 564 
region (xMHC) is set aside in our meta-analysis (defined as the regions between HIST1H2AA 565 
and RPL12P1 genes: chr6: 25,383,722-33,368,421Mb; ~7.6Mb, GRCh37), resulting in ~68,000 566 
SNPs located in xMHC were removed for further analysis.  567 
 568 
We first performed a meta-analysis using an inverse-variance-weighted fixed-effects model in 569 
METAL (version 2011-03-25) (24) combining UKBB, AoU, and eMERGE-III cohorts for 570 
European ancestry (5,063 MS cases and 596,340 controls), African-American (614 MS cases and 571 
62,044 controls) and Hispanic American (352 MS cases and 44,133 controls) populations, 572 
respectively. In addition, another meta-analysis using METAL was performed exclusively for the 573 
European ancestry cohort, which included the GWAS summary statistics from the IMSGC 574 
discovery cohort (1), along with UKBB, AoU, and eMERGE-III (19,865 MS cases and 623,043 575 
controls). A genome-wide significant locus was defined as the region around a SNP with 576 
P�<�5�×�10−8, LD r2

�>�0.1, within a 500-kb window, using the reference panel from phase 577 
3 of the 1000 Genomes Project as the reference population. 578 
 579 
Two models were used to conduct multi-ancestry meta-analyses (20,831 MS cases and 729,220 580 
controls). Random effects models were performed using PLINK v1.9 (96), while a separate 581 
analysis was performed using MR-MEGA v0.2 (29). PLINK v1.9 was preferred over METAL 582 
due to its capacity to perform random effects analyses in parallel. A random effects model 583 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.04.24318500doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.04.24318500
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

provides a more conservative framework that allows each study to have unique effects, as 584 
expected in different populations. MR-MEGA was also employed since it is well-powered to 585 
detect associations at loci with allelic heterogeneity. MR-MEGA models allelic effects as a 586 
function of axes of genetic variation that are derived from the input GWAS summary statistics. 587 
This method can result in reduced variant sets since it requires that variants have sufficient 588 
overlap between the input datasets (K�>�3), where K is the number of inputs GWAS, in 589 
contrast to random effects models implemented in PLINK v1.9, which were limited to K�>�2 590 
to quantify heterogeneity accurately. 591 
 592 
To identify novel genomic risk loci, LD blocks of independent significant SNPs (R2

�>�0.1, 593 
±500kb, 1KG phase 3) were merged into a single genomic locus if the distance between LD 594 
blocks was less than 250�kb. These loci were compared to the previous GWAS (1) to assess 595 
whether these regions were known to be associated with MS. There was no evidence of 596 
stratification artifacts or uncontrolled inflation of test statistics in the results from any cohort (λ 597 
GC�=�1.02–1.14 Supplementary fig. S2).  598 
 599 
Conditional analysis 600 
To identify secondary association signals, we used the program GCTA-COJO (102) to perform 601 
conditional analysis on the summary meta-analysis. GCTA-COJO (--cojo-cond) performs a 602 
secondary association analysis conditioned on discovered top variants; such conditional analysis 603 
is conducted with GWAS meta-analysis summary statistics rather than individual-level data of 604 
the full sample.  605 
 606 
Summary Statistics for Autoimmune Diseases and Other Traits 607 
We downloaded complete summary statistics for autoimmune and inflammatory disease GWAS 608 
available in the NHGRI-EBI GWAS catalog ( 609 
https://www.ebi.ac.uk/gwas/downloads/summary-statistics) and PubMed 610 
(https://pubmed.ncbi.nlm.nih.gov/) (Supplementary table S5). We focused on European 611 
ancestry studies with at least 2,000 study participants for which signed summary statistics were 612 
available. We chose the study with the largest cohort size, where multiple studies were available 613 
for a given trait. By applying these filters, we obtained GWAS statistics for the IgA nephropathy 614 
(IGA) (33), Chronic obstructive pulmonary disease (COPD) (34), Obesity (OB) (34), Psoriasis 615 
(PS) (35), Rheumatoid arthritis (RA) (36), Systemic lupus erythematosus (SLE) (37), Type 1 616 
diabetes (T1D) (38), Thyroiditis (TRD) (33), Celiac disease(CeD) (39), Inflammatory bowel 617 
disease (IBD), which IBD summary statistics also included results for Crohn’s disease and 618 
ulcerative colitis (40). We have also downloaded four neurodegenerative diseases: Alzheimer's 619 
disease (AD) (41), Amyotrophic lateral sclerosis (ALS) (42), Frontotemporal dementia (FTD) 620 
(43), Parkinson's disease (PD) (44), four psychiatric disorders/traits: Bipolar disorder (BIP) (45), 621 
Major depressive disorder (MDD) (46), Neuroticism (Neuro) (47), Schizophrenia (SCZ) (48), 622 
and three metabolic traits: Type 2 diabetes (T2D) (49), Body mass index (BMI) and waist-to-hip 623 
ratio adjusted BMI (WHRadjBMI) (50). Given that most of the GWAS we collected were 624 
conducted in participants of European ancestry, we used the results of updated MS GWAS 625 
summary statistics in European ancestry for this analysis.  626 
 627 
We removed the Extended MHC region (xMHC) region from the summary statistics (defined as 628 
the regions between HIST1H2AA and RPL12P1 genes: chr6: 25,383,722-33,368,421Mb; 629 
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~7.6Mb, GRCh37). We then removed indels and SNPs inconsistent with the 1000 Genomes 630 
Project (phase 3) reference panel and filtered for strand-unambiguous biallelic SNPs with minor 631 
allele frequency (MAF)�>0.01 in the 1000 Genomes European (EUR) reference individuals.  632 
 633 
Cross-trait LD score regression 634 
LDSC (103) bivariate genetic correlations attributed to genome-wide SNPs (rg) were estimated 635 
across 25 human diseases/traits from published GWASs, as mentioned above. We used LD 636 
scores from the ‘eur_w_ld_chr’ file available from 637 
https://alkesgroup.broadinstitute.org/LDSCORE, computed using 1000 Genomes Project (93) 638 
Europeans as a reference panel (104). FDR<0.05 was used to define significant genetic 639 
correlations by adjusting for the number of traits tested. 640 
 641 
Genome-wide polygenic score (GPS) design and optimization 642 
We used PRS-CSx, a Bayesian polygenic modeling framework, to develop genomic prediction 643 
scores (GPS) across diverse ancestries (23). PRS-CSx integrates GWAS summary statistics from 644 
multiple populations, accounting for population-specific linkage disequilibrium (LD) patterns. 645 
Specifically, we utilized GWAS summary statistics from three ancestral groups: African (AFR), 646 
European (EUR), and Admixed American (AMR), and combined them using the ‘meta’ setting 647 
in PRS-CSx. In our study, 70% of the training data consisted of individuals of European ancestry 648 
from the eMERGE cohort (615 MS cases and 53,250 controls) to optimize model selection. To 649 
ensure no overlap between the GWAS discovery cohort and the GPS development dataset, the 650 
eMERGE dataset was excluded from the MS GWAS discovery cohort. We evaluated model 651 
robustness by running PRS-CSx with different values of the global shrinkage parameter: 1, 10�¹, 652 
10�², 10��, 10��, and 10��. The final GPS was selected based on the best-performing 653 
model for the training dataset (Supplementary table S9). The score was standardized to zero 654 
mean and unit variance based on ancestry-matched population controls. In the optimization 655 
dataset, the shrinkage parameter (10−4) explained 2% of the variance (R2), with 1 s.d. of the 656 
score increasing MS risk by 62% (odds ratio (OR)�=�1.62, 95% confidence interval 657 
(CI)�=�1.49–1.75, P�<�5.33�×�10−32) after controlling for age, sex, batch effects, and four 658 
genetic PCs. The final PRS-CSx output included 1,161,784 HapMap3 (105) variants and their 659 
weights.  660 
 661 
PheWAS 662 
The derived polygenic predictors for MS were used to score all 102,138 eMERGE participants 663 
with available genotypes and electronic health record (EHR) data. To test the association of these 664 
polygenic predictors with diseases in a phenome-wide manner, we first harmonized the 665 
diagnostic data by converting all available ICD-10-CM codes to the ICD-9-CM system. A total 666 
of 102,138 genotyped eMERGE participants had 20,783 unique ICD-9 codes, which were 667 
subsequently mapped to 1,817 distinct phecodes. Phenome-wide association analyses (PheWAS) 668 
were conducted using the PheWAS R package (106), which applies predefined control groups 669 
for each phecode. For case definition, at least two occurrences of ICD-9 codes within the case 670 
grouping of each phecode were required. Logistic regression was used to test associations 671 
between the MS polygenic score and each of the 1,817 phecodes, with case-control status as the 672 
outcome. The polygenic score for MS was adjusted for age, sex, study site, and ancestry's first 673 
three principal components (PCs). We applied a Bonferroni correction for multiple testing to 674 
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determine statistically significant disease associations, setting the significance threshold at 2.75 × 675 
10�� (0.05 divided by 1,817). 676 
 677 
MRI analysis 678 
Multiple sclerosis (MS) participants were from the Comprehensive Longitudinal Investigation of 679 
Multiple Sclerosis at the Brigham and Women’s Hospital (CLIMB) study (56). CLIMB is a 680 
natural history observational study of MS in which participants undergo semi-annual 681 
neurological examinations and annual magnetic resonance imaging (MRI). MS lesions and brain 682 
tissue compartments (gray matter, white matter, and cerebrospinal fluid) were segmented using 683 
template-driven segmentation and partial volume artifact correction (TDS+) method (107). 684 
Results underwent quality control and manual correction where necessary (108) 685 
(Supplementary fig. S7). MRI and genome-wide genotyping data were available for 145 MS 686 
patients; 136 of them were European ancestry, 7 were AFR ancestry, and 2 were Hispanics. 687 
Among them, 130 are diagnosed with relapsing-remitting MS, and 15 are clinically isolated 688 
syndrome. GPS score for each participant was calculated using the PLINK command ‘--bfile --689 
score sum –out’ (96), and a regression model was used to test the association between GPS and 690 
MRI, adjusted for age at visit, sex, and top three genotype PCs. 691 
 692 
Colocalization analysis 693 
The COLOC package (version 5.1.0) (109) was applied to test the approximate Bayes factor 694 
(ABF) colocalization hypothesis, which assumes a single causal variant. Under ABF analysis, 695 
the association of a trait with a SNP is assessed by calculating the posterior probability (value 696 
from 0 to 1), with the value of 1 indicating the causal SNP. In addition, the ABF analysis has 5 697 
hypotheses, where, PP.H0.abf indicates there is neither an eQTL nor a GWAS signal at the loci; 698 
PP.H1.abf indicates the locus is only associated with the GWAS; PP.H2.abf indicates the locus is 699 
only associated with the eQTL; PP.H3.abf indicates that both the GWAS and eQTL are 700 
associated but to a different genetic variant; PP.H4.abf indicates that the eQTL and the GWAS 701 
are associated to the same genetic variant. With the posterior probability of each SNP and aiming 702 
to find the casual variants between the GWAS and eQTL, we focused on extracting the PP.H4 703 
value for each SNP in our study.�� 704 
 705 
For MS GWAS, we used the reported lead SNPs of 236 loci. For each locus, we searched for the 706 
eSNPs that are within 500 KB of the lead SNP, and listed eGenes that were paired with the 707 
eSNP. We then obtained the eGenes cis-eQTL output around the lead eSNP within 1 Mbp 708 
window size. In addition, we extracted GWAS summary statistics around the reported 236 lead 709 
SNP. At last, we conducted COLOC for respective pair of eGene-eQTL and eSNP-GWAS for 710 
each cell type, using eQTL summary statistics from the OneK1K cohort (982 PBMC samples, 14 711 
blood cell types, browsable results are available at www.onek1k.org) (63) and ROSMAP (424 712 
DLPFC samples, 6 brain cell types, https://doi.org/10.7303/syn52335732) cohort (62).� 713 
 714 
Immunohistochemistry staining for STAT3 and Glutamate decarboxylase 1 (GAD1)+Glutamate 715 
decarboxylase 2 (GAD2) 716 
For validation immunostaining, a six μm formalin-fixed paraffin-embedded (FFPE) tissue 717 
section from the dorsolateral prefrontal cortex (Brodmann Area 9) of an MS individual was 718 
obtained from the New York Brain Bank at Columbia University. The tissue was stained with 719 
NeuN (1:100, 488 channel, Invitrogen, cat.# PA5-80745), STAT3 (1:100, 488 channel, Abcam 720 
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cat.# ab20181), and GAD1+GAD2 (1:100, 647 channel, Wako cat.# 01919741). The FFPE 721 
tissue section was deparaffinized using CitriSolv (d-limonene, Decon Laboratories, Inc. cat.# 722 
1601H) as a clearing agent for 20 minutes. The section was rehydrated and prepared for staining 723 
through a series of graded ethanol washes. Heat-mediated antigen retrieval was performed with 724 
citrate buffer (pH=6, Sigma-Aldrich catalog no. C9999) using a microwave (800W, 30% power 725 
setting) for 25 minutes. Following this, the section was blocked for 30 minutes at room 726 
temperature (RT) using a Bovine Serum Albumin-blocking medium (BSA, 3%, Sigma-Aldrich, 727 
catalog no. A7906) to minimize non-specific antibody binding. The section was incubated 728 
overnight with the primary antibodies (anti-STAT3 and anti-GAD1+GAD2) at 4°C. After 729 
washing, the tissues were incubated for one hour with fluorochrome-conjugated secondary 730 
antibodies (1:500, Alexa Fluor 488 and 568, Invitrogen, catalog no. A21206, A21202, A21447) 731 
to bind to the primary antibody for protein detection and signal enhancement. After washing, the 732 
slides were again incubated in 3% BSA for 30 min and stained with the NeuN-conjugated-647 733 
antibody. After incubation, the section was washed and treated with True Black Lipofuscin 734 
Autofluorescence Quencher for 2 minutes at RT to minimize endogenous autofluorescence. An 735 
anti-fading DAPI mounting agent (347 channel, Invitrogen, catalog no. P36931) was used to 736 
coverslip.  737 
 738 
Images were acquired using the Nikon Eclipse Ni-E immunofluorescence microscope at a 739 
magnification of ×20), and approximately 44 pictures were acquired from the MS individual. 740 
The captured images were analysed using CellProfiler (110) software. An extensive pipeline has 741 
been developed to automatically segment the Neurons and detect STAT3 expressed by GAD1+ 742 
and GAD2+ cells (111). DAPI and NeuN was defined as the primary object using the 743 
“IdentifyPrimaryObjects” module. The Robust Background method was used for thresholding. 744 
The typical diameter for DAPI objects was set to range between 15 and 80 pixels and between 30 745 
and 80 pixels for NEUN objects. Then, the 'RelateObjects' module was applied to filter NEUN 746 
objects positive for DAPI objects (NEUN+DAPI+). The module “IdentifyPrimaryObjects” was 747 
used to segment GAD1/GAD2+ cells, using the Robust Background as the thresholding method, 748 
with a typical diameter ranging from 30 to 80 pixels. The segmented GAD1/GAD2+ objects 749 
were related to NEUN+DAPI+ filter GAD1/GAD2+NEUN+DAPI+ objects. The STAT3 750 
intensity was measured within the GAD1/GAD2+NEUN+DAPI+ objects. 751 
 752 
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Figures: 1006 
 1007 

1008 
 1009 
Fig. 1. MS GWAS study design. 1010 
Top panel: four cohorts used in the meta-analysis. Middle panel: meta-analysis and the three methods 1011 
used. METAL provides a computationally efficient tool for meta-analysis of genome-wide association 1012 
scans in European ancestry, MR-MEGA (middle) can identify risk variants with heterogeneous effects 1013 
due to population stratification introduced by ancestry differences, whereas random-effect (bottom) is 1014 
better suited for risk variants with homogeneous effect direction across different ancestries. The red 1015 
dashed lines indicate p-value threshold of P < 5 × 10−8. Bottom panel: downstream analyses and their 1016 
examples.  1017 
 1018 
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 1019 
 1020 
Fig. 2. Circular presentation of loci associated with multiple sclerosis identified in  European 1021 
ancestry. 1022 
The −log10(P) for genetic association with multiple sclerosis are arranged by chromosomal position, 1023 
indicated by alternating blue and green points. Association P-values are truncated at P�<�1�×�10−30. 1024 
Genome-wide significance (P�<�5�×�10−8) is indicated by the red line. Genes showing coloc effects 1025 
with DLPFC cell types are highlighted in red, and the genes showed coloc effects in PBMC cell types are 1026 
highlighted in blue, and the shared coloc genes annotated with black. The inner circle indicates MS-loci 1027 
that co-localize with DLPFC QTL, colored by cell type. Color keys representing cell types are indicated 1028 
in the plot center. Chromosomes are indicated by numbered panels 1–22. 1029 
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 1030 

 1031 
Fig. 3. Overlap of the genetic architecture of multiple sclerosis with other diseases/traits.  1032 
(A) The number of SNPs that reached genome-wide significant (P�<�5�×�10−8) and were shared 1033 
across 12 autoimmune diseases.  1034 
(B, C) Percentage of non-major histocompatibility complex SNPs of MS severity, 12 inflammatory/4 1035 
neurodegenerative/4 psychiatric/3 BMI-associated diseases/disorders/traits that are not statistically 1036 
significant (NS), or significant in the same direction (SD) or the opposite direction (OD) in the current 1037 
236 MS risk variants using two P-values cut-off (p<0.05 and 0.001). Cell types are ordered alphabetically 1038 
from left to right.  1039 
(D) The comparison of 45 MS risk variants with other 24 diseases/traits, the colors represent effect 1040 
directions and p values. White color denotes SNPs that were not detected in the corresponding 1041 
phenotypes. 1042 
(E) Genetic correlation estimated across MS and other 24 diseases/traits. The areas of the squares 1043 
represent the absolute value of corresponding genetic correlations. After FDR correction for 325 tests at a 1044 
5% significance level, genetic correlation estimates that are significantly different from 0 are marked with 1045 
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an asterisk (*.01 < pFDR < .05; **.001 < pFDR < .01; ***pFDR < .001). The blue color denotes a 1046 
positive genetic correlation, and the red color represents a negative genetic correlation. 1047 
 1048 

1049 
Fig. 4. Workflow for the analaysi of MS GPS. 1050 
(A) The MS GPS was developed using GWAS summary statistics from the IMSGC, All of Us (AoU), and 1051 
UK Biobank (UKBB). Optimization was performed using 70% of European ancestry participants from 1052 
eMERGE-III. GPS performance was validated in the remaining 30% of eMERGE-III participants of EUR 1053 
and all AMR and AFR.  1054 
(B, C, D) PheWAS results are shown for European (N = 23,121), African-American (N = 15,863), and 1055 
Latino (N = 5,224) participants. The analysis includes combined data from eMERGE participants with 1056 
both genotype and phenotype information. Logistic regression was used, adjusting for age, sex, batch, and 1057 
ancestry. Effect estimates and two-sided P-values were reported. Red horizontal lines indicate the 1058 
phenome-wide significance threshold, adjusted for multiple testing (P = 2.8 × 10��). The Y-axis 1059 
represents -log10(P-value), and the X-axis displays system-based phecode groupings. Upward-pointing 1060 
triangles indicate increased odds for a given phecode, while downward-pointing triangles indicate 1061 
reduced risk. 1062 
(E) Boxplot diagram depicts the genetic effect of rs438613 with a significant association with white 1063 
matter volume. The scatter plot displays the pattern of MS GPS in relation to white matter volumes. 1064 
 1065 
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 1066 
Fig 5. Overlap of the results from PBMC/DLPFC eQTL and GWAS of MS.  1067 
(A) Heatmap reports the PP.H4 of the Coloc method, which assumes that GWAS and eQTLs share a 1068 
single causal SNP. The rows report the overlap for individual gene and SNP pairs; the columns report the 1069 
PP.H4 score in each of our cell types. The color of each square is based on the code found to the right; the 1070 
darker color denotes higher confidence that the same variant influences susceptibility and gene expression 1071 
in that cell type. The top bar chart shows the number of colocalized eGenes with high confidence 1072 
(PP.H4�>�0.8) in each cell type. 1073 
(B) Cartoon illustration summarizes the colocalization effects of neurons compared to the 18 cell types 1074 
included in our analysis, colored by cell type. 1075 
 1076 
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 1077 
 1078 
Fig. 6. Examples of COLOC results.  1079 
(A, B) The locus-compare scatter plot for the association signals at STAT3 and IL7 in the inhibitory 1080 
neurons. 1081 
(C, D, E) Expression quantitative trait loci (eQTL) box plots of associations between genotype rs1026916 1082 
and STAT3 expression in inhibitory neurons using snucRNAseq data from Fujita et al. (CUMC study 1), 1083 
Mathys et al. (MIT cohort), and our in-house multiome datasets (CUMC study 2).  1084 
(F) Immunohistochemistry of DLPFC in human MS brain tissue, stained for STAT3 (green), GAD1/2 1085 
(red), and NeuN (yellow), with DAPI (blue) to visualize nuclei. Expression of STAT3 was observed in 1086 
NeuN+GAD1/2+ neurons. White triangles highlight the colocalization of DAPI, STAT3, GAD1/2, and 1087 
NeuN. Scale bar, = 50 μm. 1088 
 1089 
 1090 
 1091 
 1092 
 1093 
 1094 
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 1095 
Tables: 1096 
 1097 
Table 1. GWAS meta-analysis uncovers 38 additional MS susceptibility variants in EUR, one in 1098 
AFR and two in AMR.  1099 
Locus CHR BP 

(GRCh37) 
Lead variant P value OR s.e. RA/OA  RAF Gene 

1 1 2701575 rs375915427 3.15×10-08 1.079 0.014 T/C 0.076 MMEL1, TTC34 
2 1 85748811 rs529392609 2.63×10-10 2.063 0.115 G/A 0.999  
3 1 85764886 rs11161589 6.12×10-12 1.042 0.006 G/A 0.403 CYR61, BCL10 
4 1 92956978 rs113561235 3.60×10-08 1.101 0.018 T/C 0.029  
5 1 92973242 rs79285232 5.85×10-11 1.202 0.028 C/T 0.017  
6 1 93088923 rs72724541 1.26×10-11 1.136 0.019 A/G 0.025 GFI1 
7 1 93291944 rs12042488 1.09×10-11 1.063 0.009 A/T 0.800  
8 1 101289496 rs142860878 1.77×10-08 1.198 0.032 G/C 0.013 AC93157.1 
9 1 101307053 rs12047318 4.93×10-10 1.070 0.011 G/A 0.922 AC93157.1, EXTL2 
10 1 101544143 rs147885102 3.69×10-10 1.052 0.008 T/A 0.718 AC93157.1 
11 1 157660829 rs77191363 7.86×10-09 1.078 0.013 C/G 0.946 FCRL3 
12 2 30478386 rs4952115 4.31×10-09 1.048 0.008 G/T 0.836 LBH 
13 2 61066666 rs1432295 2.74×10-08 1.033 0.006 G/A 0.432 REL 
14 3 101661456 rs74482986 2.46×10-08 1.065 0.011 C/A 0.928 NXPE3 
15 3 121770539 rs2255214 6.19×10-16 1.049 0.006 G/T 0.495  
16 3 159702290 rs9858816 2.64×10-08 1.034 0.006 C/T 0.379  
17 5 40393852 rs1992662 1.67×10-17 1.054 0.006 A/G 0.651  
18 5 118815815 rs28762138 1.46×10-08 1.244 0.039 G/T 0.009  
19 5 158944266 rs7727104 8.17×10-09 1.039 0.007 A/G 0.737 C1QTNF2 
20 6 135749682 rs13218824 4.01×10-08 1.079 0.014 C/T 0.047 AHI1 
21 6 135904197 rs76892387 1.44×10-08 1.085 0.014 G/A 0.044 AHI1 
22 7 56091706 rs6975311* 5.30×10-09 1.039 0.007 G/A 0.727  
23 9 4981602 rs10758669* 2.20×10-08 1.035 0.006 C/A 0.353  
24 10 64384640 rs77051803 3.30×10-08 1.053 0.009 A/G 0.109  
25 11 321235 rs56232455 1.78×10-08 1.042 0.007 A/G 0.443 RP11, IFITM3 
26 11 60783062 rs75064517 6.85×10-09 1.121 0.020 G/A 0.035 CD6 
27 11 60827933 rs11230581 5.55×10-15 1.048 0.006 T/C 0.582 CD6 
28 11 72450091 rs77267834* 2.71×10-12 1.103 0.014 A/T 0.046 ARAP1, ATG16L2 
29 14 88407917 rs12432149 4.08×10-12 1.041 0.006 A/G 0.512 GALC 
30 16 11053656 rs117283010 3.07×10-16 1.131 0.015 A/G 0.062  
31 16 11185464 rs55898143 1.38×10-13 1.081 0.011 T/C 0.085  
32 16 11242497 rs794423 1.62×10-10 1.104 0.015 A/C 0.059  
33 16 11247847 rs80207443 1.60×10-13 1.107 0.014 T/C 0.048  
34 16 11335999 rs814260 9.30×10-09 1.036 0.006 G/A 0.360  
35 16 11398467 rs10852332 4.02×10-09 1.043 0.007 C/G 0.213  
36 17 40508559 rs58905292 1.96×10-09 1.106 0.017 A/T 0.049 STAT3 
37 17 57963873 rs1292052 1.49×10-09 1.072 0.012 C/T 0.890 TUBD1 
38 20 47253487 rs3935549* 1.62×10-08 1.034 0.006 C/T 0.506  
Locus CHR BP 

(GRCh37) 
SNP P value OR  s.e. RA/OA  RAF Ancestry 

1 9 1827489 rs76911648 3.28×10-9 3.169  0.20 G/C 0.035 AFR 
5 5 18904547 rs59061674 4.00×10-8 3.461  0.23 G/A 0.038 AMR 
6 15 77706452 rs113284638 3.82×10-8 2.689  0.18 C/A 0.063 AMR 
Table legend: The gene(s) were assigned on the basis of colocalization results and SNP-to-Gene linking 1100 
strategies. OR, odds ration; RA/OA, risk/other allele; RAF: risk allele frequency using 1000 Genomes 1101 
Project (1KG phase 3) EUR/AFR/AMR populations. *The asterisk highlights the susceptibility loci not 1102 
previously associated with MS. 1103 
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 1104 
Table 2. Performance metrics for the genome-wide polygenic score (GPS) in MS. 1105 

eMEGRE-III 
(Ancestries) 

Case/control OR per SD (95% CI), 
P-value 

AUC (Crude)  PRS Threshold Odds ratio (95% CI), P value 

EUR (30%) 
Genetic Ancestry 

287/22,796 
1.70 (1.52-1.91), 

P=1.37×10-19 
0.7217 (0.6398) Top 20% vs. other 80% 2.62 (2.06-3.34), P=3.71×10-15 

    Top 10% vs. other 90% 3.00 (2.28-3.95), P=3.11×10-15 
    Top 5% vs. other 95% 4.14 (3.03-5.65), P=4.45×10-19 
    Top 2% vs. other 98% 5.05 (3.3-7.75), P=9.45×10-14 
    Top 1% vs. other 99% 7.24 (4.37-12), P=1.60×10-14 
AFR Genetic 
Ancestry 

142/15,600 
1.26 (1.07-1.49), 

P=0.00564 
0.7458 (0.5543) Top 20% vs. other 80% 1.45 (0.99-2.13), P=0.057 

    Top 10% vs. other 90% 1.53 (0.95-2.46), P=0.079 
    Top 5% vs. other 95% 1.70 (0.93-3.11), P=0.087 
    Top 2% vs. other 98% 1.73 (0.69-4.32), P=0.241 
    Top 1% vs. other 99% 2.70 (0.96-7.61), P=0.060 
AMR Genetic 
Ancestry 

55/5,148 
1.46 (1.10-1.94), 

P=0.00857 
0.7524 (0.5526) Top 20% vs. other 80% 1.41 (0.73-2.73), P=0.308 

    Top 10% vs. other 90% 1.52 (0.63-3.66), P=0.346 
    Top 5% vs. other 95% 2.14 (0.74-6.14), P=0.159 
    Top 2% vs. other 98% 5.99 (2.02-17.8), P=0.001 
    Top 1% vs. other 99% 9.87 (2.75-35.5), P=4.44×10-4 
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