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Abstract: Accessing a plant’s 3D geometry has become of significant importance for
phenotyping during the last few years. Close-up laser scanning is an established method
to acquire 3D plant shapes in real time with high detail, but it is stationary and has high
investment costs. 3D reconstruction from images using structure from motion (SfM) and
multi-view stereo (MVS) is a flexible cost-effective method, but requires post-processing
procedures. The aim of this study is to evaluate the potential measuring accuracy of an
SfM- and MVS-based photogrammetric method for the task of organ-level plant
phenotyping. For this, reference data are provided by a high-accuracy close-up laser
scanner. Using both methods, point clouds of several tomato plants were reconstructed at
six following days. The parameters leaf area, main stem height and convex hull of the
complete plant were extracted from the 3D point clouds and compared to the reference data
regarding accuracy and correlation. These parameters were chosen regarding the demands of
current phenotyping scenarios. The study shows that the photogrammetric approach is highly
suitable for the presented monitoring scenario, yielding high correlations to the reference
measurements. This cost-effective 3D reconstruction method depicts an alternative to an
expensive laser scanner in the studied scenarios with potential for automated procedures.

Keywords: SfM and MVS photogrammetry; close-up laser scanning; plant phenotyping;
organ-level parameterization
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1. Introduction

With the rise of phenotyping, the demand for access to the plants’ 3D shape has become of significant
importance [1]. Various methods using laser scanning [2], time of flight cameras [3,4] or structured
light approaches [5], opening the door to 3D phenotyping, have been published. Close-up laser scanning
has shown its advantage of high accuracy and high resolution [6] combined with direct access to the
point cloud, but requires huge investment costs (100 kC) in advance. Using the 3D shape, descriptive
parameters, like the plant volume or the geometry of single organs, can be extracted. A detailed
parameterization and monitoring of growth or reactions to environmental changes are possible and can
be tracked at the organ level. Furthermore, the effect of occlusion, a huge challenge in 2D phenotyping
approaches [7,8], can be reduced tremendously.

In recent years, with the boost in computational power and the widespread availability of digital
cameras, photogrammetric approaches, like structure from motion (SfM) [9] and multi-view stereo
(MVS) [10], have found their way into phenotyping. These technologies offer non-invasive and
non-destructive ways to measure a huge variety of plant characteristic traits through the creation
of a full 3D point cloud of the plant. Simultaneously, they hold potential for future automatic
measuring processes.

Ivanov et al. [11] were the first to use a photogrammetric approach to build a 3D point cloud of
such a complex medium as a plant. They used a fixed base stereovision system pointing towards nadir,
which was mounted 8.5 m above the ground to create a 3D model of the canopy of maize plants with a
height of 2.5 m. From the model, they were able to derive the leaf position and orientation, as well as the
leaf area distribution. This approach served as a stepping stone for future advances in the field of plant
phenotyping with photogrammetric methods.

Aguilar et al. [12] used the close-range photogrammetric package, PhotoModeler Pro5 (Eos System
Inc., Vancouver, BC, Canada), to measure the volume of several large tomato plants, as it is directly
related to the Leaf Area Index (LAI), which represents the ground area covered by the plant canopy
projected on the ground. The LAI itself is used for determining the optimal plant volume for pesticide
application, as there is an ideal volume for spraying [13]. Around 400 target points of different colors
attached to a plastic net were placed on each of the tomato plants, simulating the plants’ enclosed surface.
Afterwards, the target points were manually marked in PhotoModeler, and their 3D coordinates were
calculated. Using these 3D coordinates, polygon meshes were computed, and from these, ultimately,
the plant volume was calculated. A correlation of R2 = 0.75 between the measured volumes and
manually-derived reference volumes was found, whereby the correlation between LAI and manual
volume was found to be R2 = 0.817.

Santos et al. [14] used a consumer-grade camera mounted on a tripod to take images of basil and
Ixora plants. The images were processed in an SfM approach called Bundler [15] to compute the
camera’s intrinsic parameters and relative poses [16] in order to compute sparse 3D point clouds of
the plants. A patch-based MVS (PMVS) approach [17] was utilized to densify the sparse point cloud
using the relative camera poses from the SfM model. Leafs and nodes were automatically segmented
and classified afterwards [18]. They could show that these methods were able to effectively reconstruct
the full three-dimensional shape of plants with a sparse canopy.
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Paulus et al. [5] investigated the applicability of several low-cost 3D imaging systems for the
task of plant phenotyping. The Microsoft Kinect and the DAVIDlaser scanner were compared to the
high-precision close-up Perceptron v5 laser scanner, which served as a reference method. From the
volumetric shape of sugar beet taproots, their leaves and the shape of wheat ears, plant parameters were
extracted and compared to the reference measurements. They showed that low-cost sensors were as
suitable as high-cost sensors, like the Perceptron v5, depending on the parameter of interest and the
required level of detail.

Jay et al. [19] used SIFT keypoints to find homologous points between overlapping image regions.
They applied an SfM approach named MicMac (MicMac 2007, IGN, Paris, France) to compute 3D point
clouds from sunflowers, Savoy cabbages, cauliflowers and Brussels sprouts organized in crop rows. Their
motivation was to assess the applicability of the image-based SfM approach for high-throughput
phenotyping in outdoor scenarios where a variety of uncontrolled factors, like leaf movement through
wind and inhomogeneous lightening conditions, complicate the data acquisition. Image acquisition
followed the classical remote sensing method in that the camera is pointed towards nadir and linearly
moved along a translation axis alongside the crop rows. Images are taken regularly after a certain
baseline length between successive images has been reached. After the point cloud construction, plant
and background were separated using criteria, like height and the Excess Green Index. Afterwards, plant
height and leaf area were measured and compared to reference measurements, yielding high correlations
for every species.

As the application of the SfM and MVS 3D reconstruction concept for plant phenotyping grows, it is
important to gain knowledge about the potential measuring accuracy for parameter extraction. Accuracy
evaluation then requires a high number of reference measurements, which possess higher accuracy and
resolution than the SfM/MVS measurements. In the present study, the commercial photogrammetric
software, Pix4DMapper (Pix4D SA, 1015 Lausanne, Switzerland), based on SfM and MVS techniques,
was used to non-invasively and non-destructively monitor the growth process of a set of tomato plants
for a six-day period. Colored 3D point clouds of the plants were reconstructed solely from image sets
taken with the DSLR camera Canon EOS 450D. From the point clouds, several plant parameters at the
organ level important for phenotyping were extracted. For accuracy and error evaluation, reference data
for the same tomato plants were created using the high accuracy close-up triangulation line scanner,
Perceptron v5 (Perceptron Scan Works V5, Perceptron Inc., Plymouth, MI, USA), combined with an
articulated measuring arm (Romer Infinite 2.0 (1.4 m), Hexagon Metrology Services Ltd., London,
U.K.). Reconstructing highly detailed and accurate 3D point clouds, the Perceptron has been found to
be a high-precision non-invasive phenotyping tool [6]. This is the first time a photogrammetric method
has been compared to a reference method at this high level of detail and accuracy. The applicability
of the photogrammetric approach is evaluated using the means of linear regression and the RMSE
(root-mean-square-error) and MAPE (mean-absolute-percentage-error) indicators.
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2. Method

2.1. Experimental Setup

Five three-week-old tomato plants were monitored over a period of 6 days, resulting in 30 point clouds
per method. The BBCHscale [20] value, determining the developmental stage of the plants, was 14/15
at the beginning of the monitoring and reached 17/18 at the end of monitoring.

The plants were stored in a greenhouse for optimal nourishment. In each case, the plant itself grew in
a nourishment cube of a standardized size (100× 100× 100 mm) made from rock wool. To reduce plant
movement due to wind and to avoid measurement uncertainties due to high temperature and humidity,
the plants were moved to a prepared measurement table outside the greenhouse. Direct sunlight radiation
was minimized by window coverages, and the temperature was modest at about 20–25 ◦C. A joint in the
table ensured an identical positioning and orientation of the plant throughout the monitoring period.

2.2. Reference Data through High-Accuracy Laser Scanning

The reference data were acquired using the articulated measuring arm Romer Infinite 2.0 combined
with the close-up triangulation line scanner Perceptron v5. The system provides a point-to-point
resolution of 14 µm with an accuracy of 45 µm. The measuring field has a depth of 110 mm and a mean
width of 105 mm. This scanning combination has shown its applicability for 3D imaging of various
plants, like grapevine [21], barley [6] and sugar beet [5]. The scanning field was manually moved over
the plant (Figure 1A), resulting in a huge amount of single 3D scan lines. These were automatically
combined to an occlusion-free and very dense point cloud of the plant. A point cloud consisted of
3–10 million points, dependent on the size and developmental stage of the plant. Data acquisition took
about 10–15 min per plant.

Figure 1. Both reconstruction methods: scanning the plant with the Perceptron v5 (A); the
paths of the camera during image acquisition (B); the photogrammetric 3D reconstruction of
the plant and the environment (C). Estimated camera positions are marked as red dots with
attached image thumbnails.
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2.3. Structure from Motion and Multi-View Stereo Using Pix4DMapper

The camera used for the image acquisition was a Canon EOS 450D (Canon Inc., Tokyo, Japan). It has
a CMOS sensor with a pixel count of 12.2 MP and a dimension of 22.2 mm × 14.8 mm. The focal
length is about 18 mm. The photogrammetric software Pix4DMapper was used to derive the 3D point
clouds of the tomato plants. Pix4DMapper is based on SfM and MVS techniques employing keypoint
matching [22,23] and bundle block adjustment. Processing runs semi-automatically with a working
capacity of up to 1000 images. The PC used for processing worked with a Win7 64-bit system with
8 GB of memory and 8 cores of 3.7 GHz.

The quality and detail of the point cloud (Figure 1C) is determined by image quality and image
content. To produce sharp edges without any image artifacts, the aperture, focus and exposure time
were set in a balanced way to attain the largest depth of field possible without introducing motion
blur. Room lights were switched on to reach an optimal image brightness. The heterogeneous texture
of image content is an important prerequisite for keypoint detection and correct keypoint matching, the
success of which determines the quality of the camera calibration and relative image orientation. Several
texture-rich objects were placed around the table to increase the heterogeneity of the scene.

The images were taken by hand, i.e., without a tripod, from a standing position using an image
dimension of 3088 × 2056 pixels. To compensate for occlusions, two camera angles and heights were
utilized. The camera was first held at a tilt of about 45◦ downwards from the horizontal at a height of
about 50 cm over the top point of the plant. Focus was manually set and kept fixed. The depth of focus
was increased by a small aperture to take sharp images. The user moved around the plant in a circular
fashion, taking a new image every time the image content between the former and the current image had
reached an overlap of about 70%. The whole time, the tilt of the camera and the initial distance of 50 cm
were maintained as well as possible. The image overlap was estimated using the camera’s viewfinder.
Once the full circle had been closed, a second image set was taken in the same way with a different angle
and height. The camera angle was horizontal and at a height at about the middle height level of the plant
(Figure 1B). Again, the full circle around the plant was closed.

In this way, about 40–70 images per plant were recorded. During the monitoring phase, the plants
grew about 10–15 cm in height while their canopy developed significantly, as well. Image acquisition
took about 2–3 min per plant, regardless of the plants’ growth stadium, as the amount of images necessary
to image the whole plant did not change drastically. This corresponds to a mean acquisition speed of
about one image every three seconds. The image sets were separately processed with Pix4DMapper,
yielding colored 3D point clouds of the plant and close-by objects (Figure 1C). A point cloud consisted
of about 15 k points at the beginning and of about 55 k points at the end of monitoring.

2.4. Point Cloud Preparation

Ahead of the parameter derivation, the point clouds of both sensors have to be processed. The
preparation procedures and the methods of parameter derivation will be described in the following
chapter. The point clouds were processed using Geomagic Studio 12 (Raindrop Geomagic Inc.,
Morrisville, NC, USA).
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The laser scanning point clouds were cleaned from outliers manually. The point clouds were
rasterized, resulting in a point-to-point distance of 0.5 mm to achieve a homogenous point distribution.
Irrelevant objects were manually removed.

Noise reduction and surface smoothing filters were applied to the Pix4dMapper point clouds in a way
that geometrical features remained sharp and features of smaller scale, like tiny branches or leaves, were
maintained. The point clouds were visually controlled for missing parts (e.g., from occlusions) after
computation. Figure 2 shows a laser and a Pix4Dmapper point cloud in their entirety before preparation.

Figure 2. (A) A shaded and artificially-colored laser scanning point cloud; (B) a
photogrammetric point cloud in real colors. The difference in point density is clearly visible.

Remaining outliers and false object points clearly distinguished through their texture (white and grey
points at leaf and stem borders; Figure 3) were manually removed. Irrelevant objects visible in the point
clouds, e.g., the table and nourishment cube, were manually removed until only the plant itself remained.

Initially, the Pix4DMapper point clouds are arbitrarily scaled. They were thus manually scaled to
units of millimeters. The metric scaling factor was derived through the known value of a geometrical
feature in the point cloud, e.g., the length of an object, and its real millimeter value. We either used the
measuring table’s length or width in millimeters, as at least one side was always fully visible in the point
cloud. The scale factor is the ratio of the feature in millimeters and in the pixel system of the original
point cloud. The original point cloud coordinates were multiplied with the deduced scale factor to reach
a scaling in millimeters. In this way, an individual scale factor was determined for every point cloud.

Figure 3. Close-up view of a photogrammetric point cloud before (A,B) and after
(C) preparation (leaves only). The point size was enhanced for visualization.
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2.5. Parameter Extraction

Four parameters were extracted from the point clouds: single leaf areas, cumulated leaf area, main
stem height and volume of the convex hull of the whole plant. Stem height and leaf areas were derived
using Geomagic, while the convex hull was calculated using MATLAB 2009b routines (The MathWorks
Inc., Natick, MA, USA). The parameter extraction was identical for both methods.

Main Stem Height: The height of the main stem is an important indicator for the growth response of
plants after fertilizer application [24] or under varying CO2 rates in the environment [25]. In this study,
the beginning of the main stem was defined as the point where the stem emerges from the plant cube. The
end was defined as the point of intersection of the first lateral branch after the two cotyledon leaves—the
first leaves the seedling develops after emerging from the soil for nourishment—and the stem. For height
determination, points covering the area from the beginning to the end of the main stem were selected,
and a least-square approximation for a cylinder was applied, as it represents a standard approach in
phenotyping [26,27]. The height of the estimated cylinder was taken as the main stem height.

Leaf area: The analysis of the leaf area is important in determining the plant’s developmental
stage [28], chlorophyll production [29] and health status. Furthermore, it serves as an indicator for
mechanical tasks, such as pesticide application [12]. Stem and branch points were manually cut from
the plant model, so that only leaf points remained. These were meshed, whereby the plausibility of
the meshed surface was visually verified by its smoothness. The sum of the meshed areas constitutes
the cumulated leaf area of the plant. Furthermore, 26 single leaf areas from two different plants
were extracted to assess how accurately the approach is able to measure single leaves. Attention was
focused on selecting leaves of different sizes (small, medium, large), forms and crookedness to assess its
general applicability.

Convex hull: The convex hull is defined as the shape of an object created through joining its outermost
points. From 2D images, the convex hull is often used to estimate the surface coverage of plants [30,31].
In 3D, it is used in the close-up range, e.g., in [32] to determine the soil exploration extent of root
systems. It further serves as an estimator for tree canopy biomass [33] and has been used as an effective
indicator for plant drought on barley plants [6].

Tables 1 and 2 illustrate the influence of the cleaning process on the final results. Especially, the leaf
area estimation is affected by false object points on leaf borders.

Table 1. Example of the influence of cleaning on the cumulated leaf area.

Cumulated Leaf Area (mm2)
Pre-Cleaning After Cleaning Difference (%)

Pix4DMapper 50,795.9 48,468.1 4.6
Laser (Reference) 48,661.2 48,404.1 0.5
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Table 2. Example of the influence of cleaning on the convex hull.

Convex Hull (dm3)
Pre-Cleaning After Cleaning Difference (%)

Pix4DMapper 5.301 5.217 1.6
Laser (Reference) 5.131 5.125 0.1

2.6. Estimation of Accuracy and Error Distribution

Accuracy assessment is done by calculating the correlation coefficient R2 between laser
and photogrammetric measurements through the means of linear regression. The RMSE
(root-mean-square-error) and MAPE (mean-absolute-percentage-error) indicators are used for error
estimation. They are calculated using Equations (1) and (2), whereby ref designates the reference
measurement from the Perceptron v5 and act refers to the actual measurement extracted from the
photogrammetric point clouds:

RMSE =
√

mean(ref − act)2 (1)

MAPE = mean

(∣∣∣∣ref − act

ref
∗ 100

∣∣∣∣) (2)

3. Results

All plants were reconstructed in their entirety through the usage of the two complementary perspective
angles during data acquisition (Figure 2B; Figure 3A) with only very filigree parts missing in some cases
(Figure 4C). Fine leaf veins are clearly distinguished texturally from the rest of the leaf.

At the leaf and branch borders, triangulation errors were noticed (grey points at leaf and branch
borders; Figure 3B). All parameters extracted from the Pix4DMapper point clouds yielded high
correlations of R2 ≥ 0.96 to the parameters from the reference point clouds. The parameter single leaf
area (Figure 5A) yielded a correlation R2 = 0.99 to the reference measurements. The RMSE reached
58.49 mm2, while the MAPE lay at 6.41%. The cumulated leaf area (Figure 5B) yielded a correlation
of R2 = 0.99. The RSME for the cumulated leaf area reached 1679 mm2. The MAPE lay at 2.26%.
A correlation of R2 = 0.96 was reached for the main stem height (Figure 5C) with an RMSE of about
1.39 mm and an MAPE lying at 1.87%. The convex hull (Figure 5D) yielded a correlation of R2 = 0.99,
with an RMSE reaching 0.03 dm3 and an MAPE lying at 4.14%.

The relative error between reference and actual measurements mostly remained below 10% for
all parameters. Relative errors over 10% were present only for single leaf area measurements (see
Section 4). Figure 6 shows a histogram of the relative error distributions of all parameters.
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Figure 4. (A) The whole plant; (B) meshed leaves separated from stems and branches;
(C) the measuring of the stem height; and (D) the computed 3D convex hull encompassing
the plant.

Figure 5. Regression analysis, RSME and MAPE results for the extracted parameters.
(A) Single leaf area; (B) cumulated leaf area; (C) main stem height; (D) convex hull.
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Figure 6. Histogram of the parameters’ relative error distribution.

4. Discussion

The results show that the SfM-/MVS-based method is well suited for determining the parameters
inspected here. All extracted parameters highly correlate with the reference measurements, yielding a
coefficient of R2 lying between 0.96–0.99. The MAPE lay under 7% for all parameters, thus lying under
the limit of tolerance of 10%. This error limit was defined in [34] as the error already inherent between
manual measurements. Furthermore, according to [34], detecting morphological changes in the plant
between different measuring dates with a MAPE under this limit is still possible.

Measuring crooked and curled leaves is possible. Reconstructing small leaves in their completeness
depends on their visibility in multiple images, as well as the level of detail and sharpness of the
images. Additionally, small leaves are more sensible to filtering and, thus, more prone to loss of true
area. This is seen in Figure 6, where the single leaf area alone from all parameters bears relative errors
over 10% up to 30%. The level of detail can be increased by lowering the distance of the camera, while
sharpness can be achieved by a wide depth of field. The plausibility of the meshed area was accounted
for through visual inspection, but should be replaced by mathematical smoothness constraints. Holes in
meshed areas can be filled manually and automatically if deemed plausible.

The stem height was measured manually using a cylindrical best-fit primitive, which allowed
measuring even when the stem was only partly reconstructed. The stems beginning and end are defined
by visual cues alone. A mathematical definition of the stems’ beginning and end is needed to make
measuring more objective. Furthermore, as the stem shape usually does not grow completely straight,
the cylindrical form can only approximate its shape and height. More precise ways of parameterization
need to be investigated, e.g., through the approximation of multiple adjacent cylinders or through
circle approximation.
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The convex hull is computed using the full plant without being separated into single plant organs
first. As such, the convex hull is effortlessly extractable through automatic methods to monitor growth
processes and reaction to environmental conditions, such as drought [6].

Data acquisition was done manually with a user taking images by hand without the use of a tripod,
making the approach very adaptable and space-saving. Expert knowledge for the data acquisition is not
necessary. The SfM approach calculates the cameras intrinsic parameters automatically and, in this way,
avoids the long camera calibration phase before acquisition often necessary for stereo systems, as used
in [35]. It is a very quick in the field method taking 2–3 min for data acquisition per plant. The
Perceptron v5 is superior in point resolution and accuracy, but the time needed for data acquisition
increases with plant size and complexity due to the limited working distance of 110 mm. The here
depicted 3D reconstruction method is a cost-effective method amounting to 6500 C for the commercial
Pix4DMapper software and to about 2500 C for a high-end camera. In comparison, the laser scanning
system amounts to about 100 kC. We stress that while a specific commercial software was used for
the point cloud derivation, at least similar if not equal results could probably be achieved by using
alternative solutions, as demonstrated in [10], where the general accuracy and completeness of six MVS
algorithms was investigated on several challenging 3D objects. Alternative software, like Bundler/PMVS
(see e.g., [14]) or Agisoft Photoscan [36] are potential candidates. Likewise, open source software, like
CloudCompare [37] and Octave [38] pose well-suited alternatives for parameter computation, point
removal and scaling procedures.

A difficulty is the post-processing character, as the completeness and the quality of the point cloud
can only be assessed after computation. During the data acquisition, it is therefore important to take
images with sufficient content overlap and from complementary perspectives to avoid occlusion and to
reconstruct the plant completely. False white and grey object points predominantly exist on leaf and stem
borders. These are probably due to false matches caused by the homogeneous texture of the white foil
of the nourishment cube and white paper towels placed underneath the cube. These could be removed
through color filtering.

The amount of time invested per plant in post-processing procedures amounts to 10 to 20 min for
point cloud generation, 5 min for manual scaling and 5–10 min for error removal and separation into
plant organs. Data acquisition using the Perceptron laser scanner amounted to 10–15 min in contrast.
However, as the working distance of the scanner is only 110 mm, the time needed for a full scanning
will grow with the plant’s size and canopy complexity. Images, on the other hand, capture more parts of
the plant in a shorter period of time. There will be a plant size for which scanning the object is no longer
feasible, and SfM/MVS methods require less time for data acquisition and 3D reconstruction. In [18,21],
the feasibility of automatic geometry-based segmentation and classification algorithms for plant organ
parameterization was already demonstrated. These could further be improved through the integration of
the color information of the photogrammetric point clouds. In combination with methods for automatic
coordinate system transformation of the point cloud (e.g., image geotagging, usage of measuring arms)
and color filters for error removal, these approaches could reduce the need for supervised post-processing
and enhance the amount of throughput that phenotyping often requires [1]. The color information should
further be utilized for detecting plant reactions to environmental stress factors, like drought.
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Future works should focus on extracting additional morphological parameters, like LAI, leaf
length/inclination and stem diameter, which can probably be extracted from the point clouds with a
similar accuracy. The limit of detectable details should be studied, as well. While only one kind of plant
was used, the morphology of the plants changed drastically over the period of monitoring. In this period,
they grew from a relatively open and simple canopy with some larger leaves, into a complex and denser
canopy with varying leaf sizes and branch thicknesses. Our results demonstrate that the reconstruction is
possible even under changing plant morphologies. The approach should nevertheless be tested on plants
with even more complex and denser morphologies.

5. Conclusions

We show that the here presented photogrammetric approach depicts a reliable tool for high accuracy
phenotyping at the organ level. A correlation of R2 ≥ 0.96 to high accuracy reference data was reached.
The data acquisition is very simple and can be handled by non-trained personal, while the approaches
flexibility holds potential for application in a variety of scenarios. It thus poses a suitable alternative to
expensive and stationary tools for the studied scenarios.
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