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Abstract
Many common cancers such as breast, prostate, and lung cancermetastasize to bones at advanced stages, producing severe pain
and functional impairment. At present, the current pharmacotherapies available for bone cancer pain are insufficient to provide safe
and efficacious pain relief. In this narrative review, we discuss the mechanisms used by cancer cells within the bone tumor
microenvironment (TME) to drive bone cancer pain. In particular, we highlight the reciprocal interactions between tumor cells, bone-
resorbing osteoclasts, and pain-sensing sensory neurons (nociceptors), which drive bone cancer pain. We discuss how tumor cells
present within the bone TME accelerate osteoclast differentiation (osteoclastogenesis) and alter osteoclast activity and function.
Furthermore, we highlight how this perturbed state of osteoclast overactivation contributes to bone cancer pain through (1) direct
mechanisms, through their production of pronociceptive factors that act directly on sensory afferents; and (2) by indirect
mechanisms, wherein osteoclasts drive bone resorption that weakens tumor-bearing bones and predisposes them to skeletal-
related events, thereby driving bone cancer pain and functional impairment. Finally, we discuss some potential therapeutic agents,
such as denosumab, bisphosphonates, and nivolumab, and discuss their respective effects on bone cancer pain, osteoclast
overactivation, and tumor growth within the bone TME.
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1. Introduction

Cancer is the second leadingcauseof death in theUnitedStates and
affects several million people around the world every year.25 In
addition to being a life-threatening illness in and of itself, cancer
frequently presents with many neurological comorbidities such as
pain, depression, and anxiety, all of which culminate in substantially
reduced quality of life. Approximately 75%of patientswith late-stage
cancer experience moderate or severe pain,21,23,31 and at least half
of all patients with metastatic cancer report insufficient pain relief
using existing pharmacotherapies.82 Despite these startling num-
bers, the therapeutic options available to treat cancer pain remain
limited, with significant limitations in both the efficacy and long-term
safety.31,82 For example, given the ongoing opioid epidemic,

healthcare providers are hesitant to prescribe opioid analgesics
due to their potential for addiction, abuse, and misuse, especially as
the long-term prognosis for cancer patients is improving.71

Breast, prostate, and lung cancers are not only among the
most common types of cancer but also have a high likelihood to
metastasize to bone, leading to severe bone cancer pain and
other comorbidities.22,84 In addition, bonemetastases are difficult
to treat and have poor long-term prognosis.84,92,93 The bone
marrow presents a favorable site for cancer metastasis due to its
slower blood flow and high vascularization.22,60 In addition, the
bone marrow is regarded as an immunosuppressive tumor
microenvironment (TME),67 potentially offering a refuge that
shields cancer cells from immune surveillance and antitumor
immunity. As the bone marrow becomes increasingly infiltrated
and populated by locally aggressive cancer cells, they produce
mediators that alter the phenotype and function of resident cells
that occupy this niche, such as bone-forming osteoblasts (OBs),
bone-resorbing osteoclasts (OCLs), and nerve fibers from pain-
sensing sensory neurons (nociceptors).58 As the bone cancer
progresses, it leads to complications referred to as skeletal-
related events (SREs), which can include skeletal fractures, spinal
cord compression/instability, and systemic hypercalcemia and
anemia. SREs themselves are associated with pain, functional
impairment, reduced mobility, diminished quality of life, and
significantly worse overall survival.84,92,93

Importantly, bones are extensively innervated by afferent fibers
from sensory neurons whose cell bodies are located in the dorsal
root ganglion (DRG) or trigeminal ganglion, which extend central
projections to the spinal cord or brainstem to relay this sensory
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information to the central nervous system. In particular, DRG
nociceptors densely innervate both the external and internal
surfaces of long bones, where they are poised to detect
potentially hazardous stimuli such as fractures or neoplasms.
Bone cancer pain is frequently described as a polymodal pain
condition, presenting somewhat uniquely with aspects of in-
flammatory, neuropathic, compression, and ischemic pain, and
for that reason, it is frequently regarded as its own entity.31 In this
narrative review, we discuss the molecular mechanisms that
cancer cells, osteoclasts, and sensory nerve fibers use to interact
with one another within the bone marrow TME to drive bone
cancer pain. In particular, we highlight (1) how tumor cells perturb
and hijack the bone marrow microenvironment and (2) the
mechanisms that osteoclasts use to drive bone cancer pain
through direct mechanisms (eg, production of pronociceptive
mediators that act on nearby sensory nerve fibers themselves)
and indirect mechanisms (eg, bone resorption leading to
increased SREs; Fig. 1). We conclude with a discussion of
potential therapeutic targets for bone cancer pain.

2. Osteoclasts: specialized bone-resident
phagocytes with many functions

OCLs are specializedmyeloid-derived phagocytes that reside on the
surface of bones where they are responsible for bone resorption,
aiding in homeostatic bone turnover under steady-state condi-
tions.94 OCLs are large multinucleated cells that may reach a
diameter of .100 mm. OCLs differentiate from cells of the
monocyte/macrophage lineage through a process that is tightly
regulated by macrophage-colony stimulating factor (M-CSF) and
receptor activator of nuclear factor kappa-b ligand (RANKL)
signaling.7,54,64 Receptor activator of nuclear factor kappa-b ligand
and M-CSF are produced by nearby stromal cells and OBs and are
necessary for osteoclastogenesis, driving the upregulation of
osteoclast-specific genes and fusion of precursor cells to form
mature, multinucleated osteoclasts.7,87 Even once formed, RANKL
signaling promotes continued survival and activation states of
mature osteoclasts and hence is an important target for regulating
osteoclast activity.7,39,87 Skeletal maintenance and homeostasis
under steady-state conditions requires a tight balance betweenOB-
mediated bone formation and OCL-mediated bone resorption.
Pathological overactivation or underactivation of either component
can lead to bone pathologies.32 To perform bone resorption, OCLs
create a local acidic and lytic environment at the bone–OCL interface
within resorption lacuna (Howship lacunae), leading to breakdownof
the bone mineral structure.59 The vacuolar-ATPase (V-ATPase)
proton pump on the osteoclast border along with a chloride ion/
HCO3 exchanger creates a proton and hydrochloric acid-rich
microenvironment to dissolve the inorganic bone matrix. Lysosomal
enzymes such as acid hydrolases released by the osteoclast into the
lacuna break down the collagen fibers and OCLs phagocytose the
degraded materials.13

Given their origin within the monocyte/macrophage lineage of
innate immune cells, it is perhaps unsurprising that OCLs are now
recognized to be highly plastic cells that play important roles in
immunosuppression or immunoactivation, depending on the cellular
context. Under steady-state conditions, OCLs produce immuno-
suppressivecytokines suchas interleukin-10 (IL-10) and transforming
growth factor-b, which induce immunosuppressive regulatory T-cells
(Treg), which also inhibit OCL differentiation. However, like macro-
phages, osteoclasts possess the ability to sense and respond to
infection, tissue damage, and local inflammation, possessing similar
phagocytic and antigen-presenting capabilities. Within this capacity,
pathological inflammation drives macrophages to produce

proinflammatory cytokines such as IL-1b, IL-6, and tumor necrosis
factor, both through direct secretion and indirectly through activation
of proinflammatory T cells.26,49,54,62 Thus, OCLs are uniquely
positioned, both physically and functionally, to participate in both
bone resorption and immunoregulation depending on the status of
the surrounding microenvironment, and they use both of these
capabilities concurrently in many diseases of the bone, including
bone cancer.59

3. Cancer cells drive osteoclast overactivation,
leading to “the vicious cycle” of bone destruction

Many studies have established that osteoclasts play a key role in
bone cancer progression and bone cancer pain. Under steady-
state conditions, bone is turned over through a balanced cycle of
bone resorption and bone formation through the reciprocal
actions of OCLs and OBs, respectively. However, as tumor cells
populate the bone marrow microenvironment, they deregulate
the normal bone remodeling cycle, pushing the balance towards
osteoclast-mediated bone resorption, thereby facilitating further
cancer cell invasion of the bone tissue, a model that is termed the
“vicious cycle.” 1,59,75 Osteolytic tumor (eg, those that promote
bone destruction) cells increase osteoclast activity through
secretion of proinflammatory cytokines such as IL-1b, IL-6, and
TNF, and chemokines such as chemokine C-C motif ligand 2
(CCL2), which act directly on osteoclasts. In addition, tumor cells
increase osteoclastogenesis through secretion of parathyroid
hormone-related protein, a paracrine regulator of osteoclasto-
genesis that induces RANKL secretion, a critical regulator of
osteoclast differentiation.10,50,61,89,98 In fact, osteolytic cancer
cells engage in osteomimicry in many respects, mimicking OBs,
the normal positive regulator of OCLs under homeostatic
conditions.4,45,68 In return, osteoclasts, both increased in
numbers and in activation, degrade the bone matrix and facilitate
local invasion of cancer cells into the bone tissue while
concurrently releasing growth factors, chemokines, and cyto-
kines that also promote tumor growth, thus completing “the
vicious cycle.” 4,10,59 Thus, osteolytic cancer cells drive a self-
serving cycle of osteoclast proliferation and hypertrophy at the
bone-tumor interface, leading to accelerated bone destruc-
tion.43,59 This accelerated bone destruction leads to decreased
bone mass and increased fragility, increasing the likelihood of
subsequent nerve compression and SREs such as fractures,
thereby indirectly producing bone cancer pain,44,97 as opposed
to direct engagement of nociceptive nerve fibers by osteoclasts
through the production of pronociceptive mediators (Fig.
1).1,22,44,56,97

Dysregulation of OCLs is also observed in osteoblastic tumor
types (eg, those involving ectopic or excessive bone formation). In
contrast to osteolytic cancers, osteoblastic cancer cells increase
OB activity and decrease OCL formation and/or activity.90

Endothelin-1 (ET-1), a 21-amino acid peptide released from
endothelial cells under steady-state conditions and hyperse-
creted by tumor cells, is a known regulator of OB function and a
potent contributor to cancer-induced nociception.33,66,99 In
cocultures of human osteoblastic prostate cancer cells with
bone slices, osteoclastic bone resorption is significantly attenu-
ated, an effect which could be rescued after application of an ET-
1 neutralizing antibody. ET-1 was also shown to regulate
osteoclast motility and bone resorption in a concentration-
dependent manner.2,19,96 Thus, in primarily osteoblastic cancers,
such as metastatic prostate cancer,90 ET-1 may negatively
regulate osteoclast function while directly contributing to cancer-
induced nociceptor sensitization.
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4. Osteoclasts produce pronociceptive mediators to
drive bone cancer pain

4.1. Extracellular acidity as an activator of nociceptors

In addition to producing bone cancer pain indirectly through
accelerated bone destruction and increased risk of painful SREs,
osteoclasts also directly engage nerve fibers from nociceptive
sensory neurons to produce pain through multiple mechanisms.
Both overactivation of osteoclasts and local tumor growth creates a
highly acidic extracellular TME that extends far beyond the resorbing

lacunae, activating acid-sensing channels such as those present on

the local peripheral terminals of nociceptors, such as transient

receptor potential channel-vanilloid subfamily-1 (TRPV1) and acid-

sensing ion channels (ASICs), including ASIC1a, 1b, and 31,31,53,97

(Fig. 1). In mice, inhibiting the osteoclast proton pump (V-ATPase)

with an inhibitor of H1 secretion, bafilomycin A1, reduced pain

behaviors in mice inoculated with intratibial multiple myeloma cells or
Lewis lung cancer (LLC) cells, suggesting that the V-ATPase
contributes to bone cancer pain.36,88Moreover,mice lacking TRPV1,
a nonselective cation channel expressed in nociceptive neurons that

Figure 1.Direct and indirect mechanisms of osteoclasts underlying the pathogenesis of cancer pain. (A) Direct mechanisms by which OCLs produce pain include
the induction of local acidosis, mediated by the action of V-ATPase, which activates acid-sensing receptors on peripheral nociceptor terminals in the bone tumor
microenvironment, including TRPV1, ASIC1b, and ASIC3. OCLs also release chemokines, such as CCL2, at the absorption lacuna, which activate CCR2
receptors on local nociceptor terminals. OCLs’ sustained activation of nociceptors leads to peripheral sensitization, central sensitization, spinal glia activation, and
severe pain. In addition to factors released by osteoclasts, tumor cells release a host of factors that contribute directly to nociceptor sensitization and nerve
sprouting, including cytokines (IL-1b and tumor necrosis factor), VEGF ligands, NGF, G-CSF, and GM-CSG (not shown). Tumor cells also increase the acidity of
the extracellular environment, further activating proton-sensing nociceptors. (B) Indirect mechanisms by which OCLs produce bone cancer pain include tumor-
induced induction of osteoclastogenesis, osteoclast hypertrophy, and accelerated osteoclast absorption of bone. This leads to decreased bone mass, enabling
further tumor invasion of the bone tissue, and increased likelihood for skeletal-related events such as bone fracture and nerve compression, leading indirectly to
bone cancer-related pain. NGF, nerve growth factor; VEGF, vascular endothelial growth factor.
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can be activated by heat, capsaicin, and protons,80 exhibited
reduced LLC-induced bone cancer pain compared with WTmice.88

Acid-sensing ion channels are neuronal proton-gated cation
channels that are also proposed to be responsible for detecting
extracellular acidosis in bone cancer states.101 ASIC1a and
ASIC2 subunits are primarily expressed in the central nervous
system, whereas ASIC1b and ASIC3 are highly expressed by
peripheral sensory neurons, including nociceptors.97 ASIC3 is
activated in bone cancer and found in peripheral nociceptive
nerve fibers in the bone TME.3,97 Interestingly, mRNA and protein
expression for ASIC1a, 1b, and 3 subunits were all upregulated in
rodent bone cancer models,63,97,104 suggesting possible role in
bone cancer pain. Interestingly, a selective ASIC3 antagonist,
APETx2, was able to markedly reduce bone pain in a murine
intratibial multiple myeloma model and decreased excitability of
DRG neurons cocultured with human multiple myeloma cells,36

providing functional evidence for the role of ASIC3.

4.2. Nociceptor sensitization in bone cancer pain

Osteoclasts also release chemokines such as CCL2, which
activates C-C chemokine receptor type 2 (CCR2) receptors on
local peripheral nociceptor terminals (Fig. 1).89 In addition, tumor
cells also release a variety of proinflammatory cytokines such as
IL-1b and tumor necrosis factor, which also act on their receptors
that are present on peripheral nociceptor terminals.5 The
continual activation of nociceptor afferents present within the
bone TME causes spontaneous pain and leads to sensitization of
both peripheral and central nociceptors (termed peripheral
sensitization and central sensitization), leading to increased
sensitivity to sensory stimuli and hallmarks of neuropathic pain
such as mechanical allodynia (eg, pain evoked by a normally
innocuous stimulus such as light touch).24,46,56 Implantation of
fibrosarcoma cells into and around the calcaneus bone in mice
leads to the development of spontaneous activity in a subset of C-
nociceptors and increased firing in response to heat stimulus at
early stages.11 Notably, this study also demonstrated a time-
dependent alteration in nerve fiber sprouting, with increased
epidermal nerve fiber density in the skin overlying the implanted
tumor at early stages, but a sharp loss of epidermal nerve fibers in
later stages, indicative of neuropathy.11

ET-1 is present in many human cancer types that have a high
incidence of metastasis to bone, including prostate, lung, and
breast cancers, and has also been demonstrated to contribute to
C-nociceptor sensitization. ET-1 is upregulated in animal models
of cancer-induced hyperalgesia and allodynia,65,72,86 and antag-
onists selective for the ET-1 receptor, ETA, were shown to
attenuate cancer pain in mice66,72,86 and humans.14 ET-1 has
also been shown to contribute to peripheral sensitization in
murine bone cancermodels. Inmice implantedwith fibrosarcoma
cells into and around the calcaneus bone, ET-1 injected into the
receptive fields of C-nociceptors innervating the hind paw evoked
an increase firing rate in control and tumor-bearingmice, whereas
application of the ETA receptor antagonist BQ-123 attenuated
tumor-evoked spontaneous activity and sensitization to heat in C-
nociceptors of tumor-bearing mice.33 Thus, ET-1 seems to
contribute to peripheral sensitization in a variety of cancers,
including bone cancer. Notably, activation of ETB receptor was
also shown to produce local analgesic effect.47

Osteolytic tumor cells have also been shown to release
ligands of vascular endothelial growth factor (VEGF) receptor 1
(VEGFR1), including VEGF-A, VEGF-B, and PLGF-2. Interest-
ingly, intraosseous implantation of osteolytic sarcoma cells in
mice produced robust pain, peripheral nerve remodeling, and

nociceptor sensitization, including increased TRPV1 expres-
sion in distal branches of the sciatic nerve. Notably, this was
due to cancer cell release of VEGF ligands binding to VEGFR1
on sensory afferent fibers, as sensory neuron-specific deletion
of VEGFR1 and pharmacological blockade of VEGFR1/VEGF
signaling suppressed cancer pain and attenuated peripheral
nerve sprouting into the tumor stroma.74 In addition, bone
cancer cells also sensitize nerve fibers and induce peripheral
sprouting through the release of granulocyte-colony-
stimulating factor (G-CSF) and granulocyte-macrophage
colony-stimulating factor (GM-CSF), whose receptors are
present on local peripheral nociceptor afferents.
Granulocyte-colony-stimulating factor and GM-CSF activation
of their receptors led to peripheral sensitization and pain
behaviors, as well as increased nerve sprouting and acceler-
ated tumor growth. In mice, loss of this signaling axis through
pharmacologic inhibition of G-CSF or GM-CSF signaling led to
reduced bone cancer pain, reduced peripheral nerve sprout-
ing, and attenuated tumor growth. Furthermore, sensory
neuron-selective knockdown of GM-CSFR using RNA in-
terference attenuated bone cancer pain and intratumoral nerve
sprouting, providing direct evidence of a tumor-nerve signaling
mechanism.73 Notably, whether this also altered osteoclast
numbers, osteoclast activity, or bone destruction was not
tested, but it is likely that G-CSF or GM-CSF may also alter
osteoclastogenesis, as has been demonstrated in a non-
cancer model in mice.48 In addition to understanding nerve
sprouting in the context of cancer pain, it is noteworthy that
nociceptive sensory neurons have been shown to contribute to
tumor growth and progression in a variety of preclinical cancer
models.55,69,70,103 Thus, nerve sprouting has important
implications for both cancer pain and cancer progression.
Cancer-induced sensory nerve sprouting has been observed
in a variety of preclinical models,6,41,42,51 and is controlled by a
variety of factors that also contribute to peripheral sensitization
and pain, including bradykinins, endothelins, and growth
factors.42,57 In particular, nerve growth factor (NGF) released
from macrophages and cancer cells seems to play a critical
role in nerve sprouting, engaging its receptor tropomyosin
receptor kinase A, which is present on sympathetic and
nociceptive sensory nerve fibers.41,42 In a mouse model of
prostate cancer-induced bone pain, administration of an anti-
NGF neutralizing antibody preemptively (eg, before nerve
sprouting) or at late stages could attenuate nerve sprouting
and cancer pain.42 Phase 2 clinical trials with intravenous
administration of tanezumab, an anti-NGF monoclonal anti-
body, provided significantly improved pain scores over a 16-
week period in patients with metastatic cancer concurrently
taking daily opioids, validating efforts aimed at further de-
velopment of anti-NGF therapies.77

Interestingly, central sensitization resulting from bone
cancer in the periphery also leads to activation of spinal
microglia and astrocytes, which sustain central sensitization
and augment bone cancer pain pathogenesis,91,95,102 as well
as chronic pain in a variety of other injury conditions.17,40 In a
rat model of CIPB in which MRMT-1 mammary tumor cells are
administered through intratibial injection, the receptive field
size and ratio of wide dynamic range (WDR) and nociceptive-
specific neurons was significantly increased, a change that
reflects local plasticity indicative of central sensitization. 81

Tumor-bearing animals exhibited an increased number of
WDR neurons in the superficial dorsal horn (SDH), increasing
the probability of response to low-threshold peripheral inputs,
likely contributing to the clinical features of allodynia.81 In rats,
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the emergence of cancer-induced behavioral hypersensitivity
closely parallels altered plasticity in the superficial SDH.27,95

Interestingly, sustained treatment with gabapentin, a potent
modulator of spinal calcium channel activity leading to
decreased neurotransmitter release from afferents, was
shown to reverse these pathological changes in plasticity,
suggesting that gabapentin may be of therapeutic value for
cancer-induced bone pain.28 In theory, therapeutics targeting
osteoclasts, nociceptors, cancer cells, or any other cell type
that leads to reduced input from peripheral afferents is likely to
aid in attenuating the pathological changes that occur in
central sensitization, such as glial cell activation and neural
plasticity in the superficial SDH. In mice, intrafemoral injection
of 2472 osteolytic sarcoma cells induced robust bone de-
struction, spontaneous pain, and astrocyte activation. In-
terestingly, administration of osteoprotegerin (OPG), a soluble
decoy receptor of RANKL, sharply reduced osteoclasto-
genesis, bone destruction, cancer-induced pain behaviors,
and spinal astrocyte activation.37 This study also nicely
demonstrates the difficulty in parsing out the relative contri-
butions of tumor cells, osteoclasts, and activated spinal glial
cells to nociceptor activation and pain in bone cancer because
each of these components are intricately linked and it is difficult
to alter one without reciprocally influencing the others.

Other cells within the myeloid cell lineage such as microglia and
macrophages have been demonstrated in preclinical studies to
contribute to pain pathogenesis, but seem to do so in a sexually
dimorphic manner (eg, differently in males and females).17,18,52,78

For example, intrathecal (eg, spinal) administration of microglial
inhibitors such as minocycline and propentofylline, or microglial
ablation using MAC-1-saporin toxin, is sufficient to attenuate nerve
injury-induced pain in male but not female mice.78 In the absence of
microglia, femalemice use amechanismdriven by adaptive immune
cells.78 Sex dimorphismmay be dependent on the pathological pain
condition in question, however, as microglia have been found to
contribute to bone cancer pain. In female rats, intratibial inoculation
with Walker 256 mammary gland carcinoma cells led to robust
mechanical and thermal hypersensitivity as well as spontaneous
pain, which was accompanied by robust activation of spinal
microglia. In this model, inhibition of spinal microglia with intrathecal
minocycline significantly attenuated mechanical and thermal hyper-
sensitivity, suggesting microglia may contribute to bone cancer pain
in both males and females in this model.95 Similarly, macrophages
seem to contribute to the genesis of pathological pain in several
models,18 but may do so using distinct signaling mechanisms in
males and females.52 At present, sexual dimorphism in the
contribution of osteoclasts to cancer pain has not been demon-
strated, nor havemale- or female-specific pronociceptive osteoclast
signaling mechanisms been identified. Thus, it will be interesting to
follow this line of research to see whether osteoclasts, like microglia
and macrophages, contribute to bone cancer pain or other chronic
pain conditions in a sexually dimorphic manner.

5. Therapeutic targets for bone cancer pain: effects
on cancer pain, bone destruction, and tumor growth

5.1. Food and drug administration (FDA) FDA-approved
treatments for bone cancer pain

A limited number of therapeutic strategies directly targeting
osteoclasts have been developed for primary or metastatic
bone cancer to limit bone destruction and attenuate bone
cancer pain (Table 1). Bisphosphonates such as pamidronate,
clodronate, and zoledronic acid are the clinical gold-standard

treatment for metastatic bone cancer pain.22,29 Bisphospho-
nates are selectively taken up by activated osteoclasts and
interfere in cellular metabolism, leading to osteoclast apoptosis
and a subsequent reduction in osteoclast-mediated bone
resorption and tissue acidosis.29 Thus, when effective,
bisphosphonates reduce both bone cancer-induced SREs
and pain, but efficacy is highly variable across tumor types,85

with only 50% of patients showing reduced SREs. In addition,
bisphosphonates exhibit minimal antitumor properties, and
30% to 50% of patients taking bisphosphonates develop
further metastases.92,100 There are also serious complications
associated with long-term use of bisphosphonates, including
renal insufficiency and bisphosphonate-related osteonecrosis
of the jaw, and hence, it is recommended that they are not used
for more than 2 years.83,100

Beyond bisphosphonates, denosumab is currently the only
other clinically approved biological treatment targeting osteo-
clasts for bone cancer metastases and bone cancer pain.100

Denosumab is a monoclonal antibody that works by inhibiting
RANKL signaling that is required for osteoclastogenesis and
maintenance of osteoclast activity, thereby interrupting osteo-
clastogenesis and subsequent bone resorption.35 In reviews of
phase III clinical trials of patients with bone metastases,
denosumab delayed the onset of SREs and development of
moderate/severe pain by about 1 month in comparison with
zoledronic acid (regarded as the most effective bisphospho-
nate).20,76 These effects were paired with increased quality of life
and decreased use of opioids for pain management. Because
denosumab has been established to have better outcomes
compared with bisphosphonates in pain and SREs, it will likely
continue to gain popularity as an osteoclast-targeting therapeutic
for metastatic bone cancer.

5.2. Prospective bone cancer pain therapeutics emerging
from preclinical studies

In addition to the currently used therapeutics with demonstrated
clinical efficacy, several promising approaches to control bone
cancer pain and/or SREs have emerged from preclinical studies
(Table 1). As a step towards providing palliative care (eg, pain relief)
for patients with poor long-term prognosis, some prospective
therapeutics targets have focused on targeting nociceptors. For
example, in canineswith bone cancer, intrathecal administration of
the TRPV1 super agonist resiniferatoxin (RTX) significantly reduced
pain, lameness, and required treatment unblinding and/or
adjustment of analgesic protocol significantly later than control
animals.8,9 Intra-articular injection of RTX has also shown efficacy
in reducing pain and functional impairment in canines with
osteoarthritis, providing a potential rational for administration into
the bone TME in canines with bone cancer.38 Although these
studies focused on cancer pain and functional impairment as their
endpoint, nociceptors have been shown to contribute to tumor
progression in many preclinical models,55,69,70,103 and thus, it is
possible that RTX or other nociceptor ablation approaches could
also confer antitumor properties. However, at present, it is
unknown whether RTX alters tumor progression or osteoclast
resorption, so its effectiveness must be taken in the context of
palliative care. In addition to ablative strategies, selective strategies
targeting targets on peripheral terminals within the bone TME have
also been proposed. APETx2, a selective antagonist for ASIC3
receptor, reduced bone pain in a murine model of multiple
myeloma bone pain, warranting further investigation.36

In the presence of a pro-osteoclastogenic microenvironment,
osteoclasts have also been demonstrated to upregulate the
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checkpoint inhibitory molecule programmed cell death ligand-1
(PD-L1), which signals through its receptor programmed cell
death protein-1 (PD-1). Notably, PD-L1/PD-1 signaling promotes
an immunosuppressive environment, dampening activation of T-
cell subsets required for antitumor immune responses. Thus,
therapies targeting checkpoint inhibitory pathways such as the
PD-L1/PD-1 signaling axis have emerged as a gold-standard
cancer immunotherapy treatment of choice.30,54 Recently, anti-
PD-1 therapy with the clinically used monoclonal antibody
nivolumab was demonstrated to reduce bone cancer pain and
osteoclast formation in a murine model of bone cancer.89 In
addition, mice lacking PD-1 exhibited reduced bone cancer pain
after intrafemoral inoculation with LLC cells. Interestingly, Pd12/2

mice also exhibit pain hypersensitivity and reduced osteoclast
numbers at baseline.16,89 Within the bone TME, PD-L1 promoted
RANKL-induced osteoclastogenesis through JNK activation and
CCL2 secretion. In addition, CCL2 directly activated CCR2-
expressing DRG nociceptors, as evidenced by attenuated bone
cancer pain after systemic administration of the CCR2 antagonist
RS504393.89 Given that anti-PD-1 therapies are already used
clinically in patients with various cancers, thismay be an attractive
new therapeutic option for patients with primary or metastatic
bone cancer that could aid in pain control and bone destruction.

Along the same lines of denosumab in targeting regulatory
molecules of OCLs, inhibitors of CSF1 and its receptors have also
shown therapeutic potential. CSF1R inhibitors such as pexidarti-
nib (PX3397) have shown clinical efficacy in several clinical trials of
soft tissue cancers and have been shown to reduce pain in
mouse and rat cancer-induced bone pain models. In the murine
and rat prostate cancer-induced bone pain model, there was a
marked reduction in pain as well as reduced tumor growth,
reduced formation of new tumor colonies, and attenuated tumor-
induced bone resorption by osteoclasts.79 Pexidartinib has
advanced to phase 2 clinical trials in patients with metastatic
prostate cancer in bone, but these trials have yet to yield results.12

Further research on the therapeutic potential of CSFR1 inhibitors

for primary ormetastatic bone cancer pain is warranted, given the
positive results in preclinical and early clinical trials thus far.

5. Conclusions

As cancer therapies continue to prolong lifespan, developing
increasingly safe and effective long-term therapies to treat cancer
pain becomes of paramount importance. Even for patients with
poor long-term prognosis, the ability to provide palliative care to
patients suffering from intensely painful bone cancer pain is
critical to improve their quality of life. Osteoclasts are critical
players in the development and progression of bone cancer pain
through indirect mechanisms involving bone destruction and
SREs, and direct mechanisms involving nociceptor activation by
inflammatory mediators and extracellular acidosis. In addition to
contributing to bone cancer pain pathogenesis, osteoclast
overactivation also promotes tumor growth. Thus, targeting
osteoclasts in patients with bone cancer has the potential to
provide synergistic pain relief while concurrently slowing tumor
progression, and a number of therapeutics show promise.
Bisphosphonates and denosumab are 2 common biologics that
are approved to target osteoclasts in the context of bone cancer,
but even these therapies are restricted to palliative care. Other
potential therapeutics, such as resiniferatoxin and APETx2, target
nociceptors directly and have started moving to phase I clinical
trials or have shown efficacy in animal models. Finally, PD-1
antagonists such as nivolumab and CSFR1 inhibitors such as
pexidartinib are relatively new to the field of bone cancer pain but
show promising results in preclinical models that warrant further
investigation. The ideal agent is one that can provide multifaceted
pain relief, inhibition of osteoclast overactivation, and possesses
antitumor properties, and further studies aimed at understanding
reciprocal interactions between cancer cells, osteoclasts, and
nociceptors are likely to generate new therapeutic targets and
mechanistic insights.

Table 1

Therapeutic strategies to treat primary or metastatic bone cancer pain.

Treatment Model Mechanism of action Effects on
nociception/
pain

Effects on osteoclast
numbers/activity

Effects on
tumor growth

Reference

FDA-approved treatments
Bisphosphonates
(clodronate,
pamidronate, and
zoledronic acid)

Bone cancer patients Absorbed by mature OCL,
induce OCL apoptosis

↓ ↓ — 22,29

RANKL inhibition
(denosumab and
osteoprotegerin)

Bone cancer patients Blocks osteoclastogenesis
through inhibition of RANKL
signaling

↓ ↓ — 15,20,35,76

Prospective treatments
TRPV1 antagonist
(resiniferatoxin)

Murine and canine models Ablation of TRPV1-expressing
neurons and/or their
projections

↓ — — 8,9,34

ASIC3 antagonist
(APETx2)

Mouse multiple myeloma
model

Inhibits ASIC3 channels on
peripheral nociceptor terminals

↓ — — 36

Anti-PD-1 therapy
(nivolumab)

Murine bone cancer model
(LLC)

Inhibits PD1-mediated
osteoclastogenesis; promotes
antitumor immunity; and
decreases CCL2 secretion

↓ ↓ ↓ 89

Anti-NGF therapy Murine bone cancer model and
phase 2 clinical trials

Inhibits NGF released from
cancer cells and macrophages,
and reduces nerve sprouting

↓ -/? — 42,77

CSFR1 inhibitor
(pexidartinib)

Murine and rat cancer-induced
bone pain models

Multitargeted tyrosine kinase
inhibitor that inhibits
phosphorylation of CSF1R

↓ ↓ ↓ 79

ASIC, acid-sensing ion channel; NGF, nerve growth factor; RANKL, receptor activator of nuclear factor kappa-b ligand; TRPV1, transient receptor potential channel-vanilloid subfamily-1.
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