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Abstract

Genome-wide association studies (GWAS) have implicated 58 loci in coronary artery dis-

ease (CAD). However, the biological basis for these associations, the relevant genes, and

causative variants often remain uncertain. Since the vast majority of GWAS loci reside out-

side coding regions, most exert regulatory functions. Here we explore the complexity of

each of these loci, using tissue specific RNA sequencing data from GTEx to identify genes

that exhibit altered expression patterns in the context of GWAS-significant loci, expanding

the list of candidate genes from the 75 currently annotated by GWAS to 245, with almost

half of these transcripts being non-coding. Tissue specific allelic expression imbalance data,

also from GTEx, allows us to uncover GWAS variants that mark functional variation in a

locus, e.g., rs7528419 residing in the SORT1 locus, in liver specifically, and rs72689147 in

the GUYC1A1 locus, across a variety of tissues. We consider the GWAS variant rs1412444

in the LIPA locus in more detail as an example, probing tissue and transcript specific effects

of genetic variation in the region. By evaluating linkage disequilibrium (LD) between tissue

specific eQTLs, we reveal evidence for multiple functional variants within loci. We identify 3

variants (rs1412444, rs1051338, rs2250781) that when considered together, each improve

the ability to account for LIPA gene expression, suggesting multiple interacting factors.

These results refine the assignment of 58 GWAS loci to likely causative variants in a handful

of cases and for the remainder help to re-prioritize associated genes and RNA isoforms,

suggesting that ncRNAs maybe a relevant transcript in almost half of CAD GWAS results.

Our findings support a multi-factorial system where a single variant can influence multiple

genes and each genes is regulated by multiple variants.

Introduction

Genome-wide association studies (GWAS) have identified dozens of genetic variants (SNPs)

associated with cardiovascular disease risk and related clinical phenotypes (e.g., blood pressure,
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lipid levels) [1–3]. However, these findings do not necessarily translate to understanding of

heritability, likely because we do not fully understand the link between significant loci, causa-

tive genetic variants and complex phenotypes [4]. Moreover, the functional variant and even

the relevant gene close to a significant locus in many cases remain uncertain. The majority of

statistically significant SNPs reside in non-coding regions with poorly defined biological func-

tions and a complex architecture of multiple genes and transcripts [5]. Gene assignment is

largely based on proximity, usually with little consideration for non-coding transcripts in the

locus or the possibility of chromatin looping that places distant regions in close proximity [6],

with regulatory domains often interacting with multiple genomic target regions (9). Addition-

ally, localization to non-coding regions means the mechanisms remain unknown as the func-

tion is not immediately obvious, while implicating epigenetics and other regulatory processes

[5,7]. This uncertainty limits the utility of GWAS findings. To interpret and refine GWAS

results for coronary artery disease (CAD), we use RNA expression, in addition to physical

position, to prioritize the variants and gene(s) most likely to be relevant.

Although largely thought of in a single SNP–single protein-coding gene paradigm, GWAS

variants mark regions with various degrees of complexity often including several protein-cod-

ing and non-coding RNAs (ncRNAs). SNPs located within RNA exons may not only alter the

protein sequence but also influence RNA structure and function in a transcript specific man-

ner [8]. Some of these GWAS loci consist of gene clusters that are coordinately regulated [9],

and almost all include multiple RNA isoforms expressed from a given gene, including splice

isoforms. Within such multi-gene regions, a single variant may affect more than one gene,

both protein-coding and non-coding, via chromatin looping between multiple sites or by regu-

lating DNA accessibility for the entire region [9,10]. Therefore, a critical question for interpret-

ing GWAS associations is which gene(s), and what specific transcript(s), are affected within

each significant locus.

The potential for multiple variants to affect a single gene is also critical to the interpretation

of GWAS. Such interactions between variants, either linear or dynamic (epistasis) and dictated

by linkage disequilibrium (LD), may remain hidden in GWAS because of the restrictive nature

of multiple hypotheses corrections; however targeted analysis of loci reveals multiple interact-

ing variants modulating gene expression [9,11,12]. Failure to identify all main functional vari-

ants in a gene locus and their interactions results in false estimates of the genetic influence of a

locus, and further impedes discovery of dynamic interactions that are sensitive to partial or

confounded estimates [13–18].

Detailed analysis of RNA expression to evaluate GWAS results is increasingly employed to

evaluate co-localization of GWAS and eQTL signals [19–22]. However, most methods rely on

the a priori assumptions that variants are independent of each other (e.g., eCAVIAR), while

COLOC assumes that there is only one functional variant per GWAS locus. These assumptions

do not allow for a multifactorial system, where a single variant can influence multiple genes

and each gene can be regulated by multiple variants. Accordingly, we search for overlap

between variants marking GWAS associations and those marking eQTLs rather than using

existing methods to co-localize signals. Although this approach limits our power to detect

overlap as it requires a single variant appear as a marker in both GWAS and eQTL analysis, we

posit it facilitates functional exploration of a multi-factorial system.

A recent CAD GWAS used 1000 genomes to impute insertions/deletions, rare variants and

common variants that were not directly genotyped as part of a large-scale meta-analysis of 185

thousand cases and controls [1]. While confirming 47 of the 48 previously identified loci, this

study identified an additional 10 at genome-wide significance, bringing the total count of

CAD associated loci to 58. Each of these loci are based on robust statistical associations for one

or more SNPs in the locus. Furthermore, each locus has been assigned one or more genes
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based largely on proximity as part of the GWAS annotation. We consider each of these 58 loci

in detail, using QTL and position to re-prioritize candidate genes and focusing on a subset of

loci, to begin resolving inherent complexities of genomic architecture.

Materials and methods

Data

Our approach systematically utilizes and combines publicly available information based on the

following datasets. Please note each dataset was considered separately; a meta-analysis was not

undertaken.

CARDIoGRAMplusC4D Consortium GWAS results (Nikpay et al). GWAS variants,

annotated genes, and effect alleles were taken from Supplementary Tables 2 (CAD meta-analy-

sis additive association results for 48 loci previously identified at genome-wide significance)

and 4 (Association results of the 10 novel CAD loci including the dominant model) [23]. For

these analyses CAD had been defined broadly as those participants with a diagnosis of myocar-

dial infarction, acute coronary syndrome, chronic stable angina or coronary stenosis > 50%.

1000 genomes. Genotypes for calculating LD between SNPs of interest were downloaded

from: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_

positions/. Individuals of the ‘EUR’ superpopulation were selected for LD calculations.

CATHeterization GENetics (CATHGEN). Expression, genotypes, and clinical pheno-

types were acquired via dbGaP Project #5358 (dbGaP accession phs000703). Expression levels

had been determined using Illumina HumanHT-12-v3 in RNA from whole blood. We consid-

ered variables recorded in pht003672: age (phv00197199), gender (phv00197207), hypercholes-

terolemia (phv00197204), smoking (phv00197208), number of diseased vessels (phv00197295),

CAD Index (phv00197202) and history of myocardial infarction (phv00197212). Approximat-

ing the definition of CAD used in the CARDIoGRAMplusC4D Consortium GWAS by Nikpay

et al., we defined CAD as history of myocardial infarction and/or vessel occlusion >50%

(CAD Index). We restricted analysis to Caucasians (race (phv00197206)) for sample size con-

siderations (862 Caucasians; 259 African Americans). The approach developed here can be

extended to other ethnic groups as these datasets become available. Data access was approved

by the Ohio State University IRB (Protocol #2013H0096).

Genotype and Tissue Expression Project (GTEx). Tissue-specific RNAseq data was

acquired via dbGaP Project #5358 (dbGaP accession phs000424). For details see Lonsdale et al.

and http://www.gtexportal.org/home/documentationPage [24]. P-values, effect sizes, and

directionality for eQTLs were downloaded directly from the GTEx Portal from the already

completed and published analysis of tissue specific eQTLs. Briefly, p-values reflect the alterna-

tive hypothesis that the slope of linear regression models accounting for tissue specific normal-

ized gene expression with individual genetic variants is non-zero. This analysis included filters

based on overall gene expression, normalized gene expression values, and incorporated covari-

ates including top 5 principal components, covariates identified using Probabilistic Estimation

of Expression Residuals (PEER) factors, sequencing platform (Illumina Hiseq 2000 or Hiseq

X), sequencing protocol (PCR-based, PCR-free), and gender. CAD was defined as recorded

history of heart disease (MHHRTDIS) or heart attack (MHHRTATT) to best approximate the

definition used in the CARDIoGRAMplusC4D Consortium GWAS by Nikpay et al. Data

access was approved by the Ohio State University IRB (Protocol #2013H0096).

Gene information

Transcripts, coding status, GO Ids, number of publications indexed in PubMed, gene/tran-

script expression, GWAS variants, GTEx eQTLs (expression quantitative trait loci) and sQTLs
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(splicing quantitative trait loci) including tissue specific expression, and allelic ratios in DNAse

hypersensitivity sites were obtained for each gene using the package ‘mglR’ implemented in R

(https://cran.r-project.org/web/packages/mglR/index.html). Protein-coding transcripts were

defined as those annotated by BiomaRt as "IGC gene", "IGD gene", "IG gene", "IGJ gene",

"IGLV gene", "IGM gene", "IGV gene", "IGZ gene", "nonsense_mediated_decay", "nontranslat-

ing CDS", "non stop decay", "polymorphic pseudogene", "TRC gene", "TRD gene", "TRJ gene",

"protein_coding", "TEC". The remaining designations were considered non-coding and

include "disrupted domain", "IGC pseudogene", "IGJ pseudogene", "IG pseudogene", "IGV

pseudogene", "processed_pseudogene", "transcribed_processed_pseudogene", "transcribed

unitary pseudogene", "transcribed_unprocessed_pseudogene", "translated processed pseudo-

gene", "TRJ pseudogene", "unprocessed_pseudogene", "unitary_pseudogene", "3prime overlap-

ping ncrna", "ambiguous orf", "antisense", "antisense RNA", "lincRNA", "ncrna host",

"processed_transcript", "sense intronic", "sense overlapping", "lncRNA", "retained_intron",

"miRNA", "miRNA_pseudogene", "miscRNA", "miscRNA_pseudogene", "Mt rRNA", "Mt

tRNA", "rRNA", "scRNA", "snlRNA", "snoRNA", "snRNA", "tRNA", "tRNA_pseudogene", and

"rRNA_pseudogene". A gene was considered non-coding only if all transcripts were non-

coding.

Linkage Disequilibrium (LD)

R2 was calculated for 1000 genomes ‘EUR’ super population using the ‘ld’ function from the

package ‘snpStats’ implemented in R and using LDlink.

Association testing

Generalized linear models to account for LIPA expression (linear) and CAD (additive logistic)

using different combinations of variants were compared using ANOVA with a likelihood ratio

test (LRT) implemented in R. Gender and age were included as covariates in models explain-

ing LIPA gene expression, while sex, age, hypercholesterolemia, smoking, and number of dis-

eased vessels were included as covariates in models explaining CAD. Bonferroni multiple

hypothesis corrected p-values from the LRT comparing models as well as AICs reflecting

‘goodness of fit’ for individual models are reported.

Differences in LIPA expression between those with or without a history of CAD were calcu-

lated using the wilcox.test function in R.

Allelic Expression Imbalance (AEI)

Allelic RNA expression imbalance (AEI) was assessed using data from GTEx (phe000039.v1.

GTEx_v8_ASE.expression-matrixfmt-ase.c1). Candidate variants were subsetted from each

individual file, and the deviation of the “REF_RATIO” from the “NULL_RATIO” was plotted

for each variant in a given tissue type. Tissue types with 5 or more samples were considered.

Tissue specific eQTLs

eQTLs reported by GTEx for LIPA were clustered by their LD (R squared calculated from

1000 genomes) using heatmap.2 from the gplots package in R. The p-value reported by GTEx

for each eQTL was used to shade the coloring of a tissue specific bar alongside the heatmap

using the ColSideColors argument within the heatmap.2 function. In this way tissue specific

LD blocks could be visually assessed.

Power calculations based on tissue specific gene expression (median transcripts per million)

and sample size were performed for a mock genetic variant assumed to have a MAF of 0.05
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and effect size of 40% (i.e. no minor alleles is 20% less than the median tissue specific gene

expression and two minor alleles is 20% greater than the median expression). It was assumed 5

million genetic variants were tested. Calculations were executed using the powerEQTL.

ANOVA function from the power.EQTL package in R. Results were plotted using barplot

function in R.

Results and discussion

Expanding candidate gene lists using QTL and position

As many functional variants marked by GWAS likely have regulatory functions affecting RNA

expression or processing, the same SNPs appearing in GWAS may also mark expression

Quantitative Trait Loci (eQTLs) or splicing Quantitative Trait Loci (sQTLs) for their target

gene. To assign GWAS variants to target genes, we determine for each of the GWAS SNPs

whether it appears as an eQTL or sQTL reported by GTEx, searching all available tissues. Rec-

ognizing that often multiple SNPs exist over a genomic region as significant GWAS variants,

we consider each one individually in assigning candidate genes and separately assess concor-

dance. We opt not to use COLOC and other existing tools that search for overlapping signal

between GWAS variants and QTLs because they make assumptions about the genetic model

that are not in line with the multi-factorial system we test here [25]; namely, these methods

assume a single causative variant or that each variant acts independently. Instead, although we

recognize it limits the overlap we are able to detect and biases our sample to variants that are

ideal markers (i.e. frequent), we search for exact matches between GWAS and QTL marker

variants. In addition to evaluating associations with gene expression and splicing, we consider

the physical position of each GWAS variant as SNPs within the RNA sequence are expected to

impact RNA folding, stability, function, etc. Specifically, we consider the corresponding gene

for any transcript that physically overlaps the GWAS variant regardless of strand, thus incor-

porating coding, non-coding, and antisense genes. Using these three approaches (cis-eQTLs,

cis-sQTLs, position), we expand the list of potential candidate genes for the 58 GWAS loci

from 75 to 245 (Fig 1A, S1 File, comprehensive table is included in S3 File, S1 Fig).

This phenomenon of expanding a GWAS based candidate gene list by incorporating genes

for which the GWAS variant serves as an eQTL/sQTL or on the basis of physical proximity is

not unique to the CAD phenotype nor the particular GWAS published by Nikpay et al and

their means of annotating genes. We considered two additional phenotypes of insulin resis-

tance and blood pressure with recent large-scale GWAS studies and found these approaches

also significantly expanded the range of candidate genes (Fig 1 and S4 File) [26,27].

In an effort to identify those loci where a target gene(s) is clearly supported by functional

markers, we consider the agreement between the gene assignment given by GWAS studies and

that derived by eQTL and sQTL analysis as well as by physical position. We group each of the

58 GWAS loci as follows: GWAS annotation is supported by QTL-based re-prioritization or

position and no other candidate genes are introduced (Tier 1); QTL-based reprioritization or

position introduces new genes, while supporting all (Tier2A), some (Tier2B), or none

(Tier2C) of the genes annotated by GWAS so that multiple genes are implicated; no eQTLs or

sQTLs are identified and no gene or annotated RNA transcript physically overlaps the SNP,

accordingly annotation by GWAS is not supported (but also not negated) and no other genes

are implicated (Tier 3), see Fig 1, S2 Fig, S3 File.

Tier 1: No new candidate genes introduced–GWAS annotation supported. For 7 loci,

QTL-based reprioritization and/or position supports the GWAS annotation without introduc-

ing new candidate genes, supporting all or some of the gene(s) annotated by GWAS (Table 1).
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Fig 1. Summary of CAD GWAS loci. (A) For each of the 58 loci identified by GWAS, number of candidate genes

annotated by GWAS and additional genes added by eQTL, then sQTL, and finally position based reprioritization, if
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For four of the loci (16-ADTRP, 32-LIPA, 38-FLT1, 42-FURIN, 8-ABCG8), GWAS annota-

tion of candidate gene assignment is supported by both QTL and position. In one instance,

locus 42—rs17514846 (FURIN, FES), more than one gene is annotated by GWAS and sup-

ported by our reprioritization. rs17514846, which falls in an intron of FURIN, serves as an

eQTL and an sQTL for FES in 23 tissues and an eQTL for FURIN in 3 tissues, two of which

(aorta and tibial artery) overlap with FES. In aorta and tibial artery, rs17514846 is associated

with decreased expression of FES as opposed to increased expression of FURIN–a possible

example of competing interactions between regulatory and promoter regions. Evidence for

multiple candidate genes in a locus may represent a paradigm in which a single SNP exerts an

impact through more than one gene.

In some instances the same variant in the same tissue is associated with both expression

and splicing. For example, rs141244 in blood is associated with increased expression of LIPA

and decreased splicing, a scenario that is consistent with greater stability of the un-spliced

transcript. Thus, in considering potential mechanisms of action for the variant, it is important

to evaluate not only the implications of increased levels of LIPA mRNA, but also increased lev-

els of the un-spliced transcript.

Tier 2: New candidate genes implicated. Variants in 50 loci are associated with expres-

sion of one or more genes or physically overlap with another gene in addition to all (39 loci),

some (7 loci), or none (4 loci) of the genes annotated by GWAS. Loci where additional candi-

date genes are introduced are classified as Tier 2 (S3 File). Candidate genes for these 50 GWAS

loci are expanded by an average of 4.3 genes per locus for a total of 170 genes: 116 from eQTL

based reprioritization, 17 from sQTL based reprioritization, 5 from physical position, and 32

from some combination of these features (S3 Fig).

While about a third of the loci (21) have two or fewer candidate genes, others have substan-

tially more: e.g., locus 33—rs12413409 and rs11191416 (CYP17A1-CNNM2-NT5C2) are asso-

ciated with expression of twelve genes. Importantly, these multi-gene eQTLs cannot be

explained solely by co-expression between genes. These eQTLs are often associated with

expression of different genes in different tissues. Notably, ncRNAs are candidate genes for 33

of the 58 loci expanded from 6 loci prior to re-prioritization. For no loci are all candidate

genes non-coding.

For Tier 2C loci, there is no evidence to support the GWAS annotation. For example, locus

46—rs1122608 and rs56289821 LDLR is annotated by GWAS, a gene well-recognized for its

role in lipid metabolism; yet, rs1122608 falls within an intron of SMARCA4 and is both an

eQTL and sQTL for SMARCA4 as well as an eQTL for CARM1 and YIPF2 but not LDLR. The

alternative SNP identified by GWAS, rs56289821, also does not point to LDLR but rather

implicates RGL3, SLC44A2, and again SMARCA4. These 4 Tier 2C loci critically require future

work, both mechanistic and computational, to explore relevant gene targets.

implicating genes other than those annotated previously by GWAS (See S1 Fig for further details about the approach

and S3 File for a comprehensive table). Tier 1 (n = 7) denotes those loci where a GWAS annotated gene is supported by

QTL-based re-prioritization or position and no other candidate genes are introduced; Tier 2 (n = 50) where QTL-

based reprioritization or position introduces new associated genes while supporting all candidates at this locus

(Tier2A), only some including the GWAS gene (Tier2B) or new genes except the GWAS genes (Tier2C); and Tier 3

(n = 1) where no eQTLs or sQTLs are identified and no gene physically overlaps the SNP, accordingly annotation by

GWAS is not supported and no other genes are implicated. (B) Corresponding figure for recent large scale GWAS for

insulin resistance. (C) For each of the 245 candidate genes displayed along the x-axis (names available in S1 File), the

number of transcripts assigned to the gene, the number of antisense transcripts (note: antisense genes are not included

among the 245 candidate genes unless their expression is associated with or they physically overlap a GWAS variant),

GO terms, Papers indexed in PubMed, cis-eQTLs and sQTLs published in v8 of GTEx. Blue bar highlights those genes

with only non-coding transcripts.

https://doi.org/10.1371/journal.pone.0244904.g001
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Table 1. Tier 1 CAD GWAS loci.

Locus SNP OR Risk Allele (Freq) Gene eQTL Tissue(s) sQTL Tissue(s) Position

16 rs6903956 1.65a (1.44–1.90) A (0.08a) ADTRP Testis ADTRP (intron)

32 rs11203042 1.04 (1.02–1.06) T (0.45) LIPA Adipose (subq)

Adipose (visceral) Colon (transverse) Heart (atrium)

Lung

Pancreas

Skin (sun exp)

Spleen

Thyroid

Blood

Adipose (subq)

Fibroblasts

Lung

LIPA (intron)

32 rs1412444 1.07 (1.05–1.09) T (0.37) LIPA Adipose (subq)

Adipose (visceral)

Adrenal Gland

Artery (aorta)

Brain (cerebellum)

Colon (sigmoid)

Colon (transverse)

Heart (atrium)

Heart (LV)

Lung

Skeletal Muscle

Nerve

Pancreas

Skin (not sun exp)

Skin (sun exposed)

Spleen

Stomach

Thyroid

Blood

Adipose (subq)

Adipose (visceral)

Adrenal Gland

Artery (aorta)

Artery (tibial)

Brain (spinal cord)

Breast

Fibroblasts

Lymphocytes

Lung

Tibial Nerve

Pancreas

Skin (sun exposed)

Small Intestine

Spleen

Stomach

Blood

LIPA (intron)

38 rs9319428 1.04 (1.02–1.06) A (0.31) FLT1 Nerve (tibial) FLT1 (intron)

42 rs17514846 1.05 (1.03–1.07) A (0.44) FES Adipose (subq)

Adipose (visceral)

Adrenal Gland

Artery (aorta)

Artery (tibial)

Fibroblast

Colon (transverse)

Esophagus (musc.)

Heart (atrium)

Lung

Nerve (tibial)

Pancreas

Pituitary

Prostate

Skin (not sun exp)

Skin (sun exposed)

Stomach

Thyroid

Blood

Adipose (subq)

Adipose (visceral)

Artery (aorta)

Artery (tibial)

Breast

Fibroblasts

Colon (sigmoid)

Esophagus (GEJ)

Esophagus (musc.)

Heart (atrium)

Heart (LV)

Lung

Salivary Gland

Nerve (tibial)

Prostate

Skin (not sun exp)

Skin (sun exposed)

Small Intestine

Spleen

Thyroid

Blood

FURIN (intron)

FURIN Artery (aorta)

Artery (tibial)

Esophagus

54 rs7212798 BCAS3 BCAS3 (intron)

57 rs11830157 KSR2 KSR2 (intron)

(Continued)
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Tier 3: No genes implicated. The remaining GWAS locus, locus 55—rs663129 (MC4R,

PMAIP1), classified as Tier 3, did not show any association with expression of nearby genes

and is not physically overlapping any transcripts (S3 File). This locus and 3 others (locus 27—

rs2954029 (TRIB1), locus 54—rs7212798 (BCAS3), and locus 57—rs11830157 (KSR2)) that

are without any eQTL associations may have more subtle or context-dependent effects on

gene expression that remain undetectable in GTEx. In particular, non-polyadenylated tran-

scripts are not in GTEx as poly-dT priming was used, leaving countless ncRNAs as additional

candidates. Furthermore, these SNPs may affect gene expression in trans (although we do not

find such evidence in the GTEx trans-eQTL dataset) or exert their effect without altering RNA

levels measured by RNAseq (e.g. by controlling the chromatin structure or co-translationally

alter RNA modifications). Additionally, variants affecting RNA functions and processing

(structural RNA SNPs) [8,29], may not be visible as eQTLs, or they may selectively affect trans-

lation by changing polysomal loading [30].

Given GWAS variants are expected to mark functional variants rather than themselves

being functional, we test SNPs within a 1MB window in LD (R2 > 0.8) with each of the 4

GWAS variants lacking annotations, expanding the number of SNPs to 200. Using this

approach, we find significant eQTLs, but no significant sQTLs, for three of the four loci. For

locus 57, we were unable to find additional candidate SNPs with an R2 > 0.8 to mark the

haplotype.

Survey of CAD GWAS candidate genes

The genomic loci for each these 245 candidate genes often harbor multiple protein-coding and

non-coding transcripts arranged on both the sense and antisense strands (S2 File). They

express an average of 9 transcripts per gene and a maximum of 189 (TEX41- locus 10—

rs2252641, rs17678683), with 47% of all transcripts being non-coding (Fig 1B). More than half

of the gene loci (161) also contain one or more antisense genes (i.e., located on the opposite

strand and overlapping).

With a median of 26 publications and a maximum of 27,497 (APOE), only a handful of

these 245 candidate genes have been well studied to date (Fig 1B). Twenty percent (51) of

genes do not have a single paper indexed in PubMed. There are on average 20 gene ontology

(GO) terms, which are manually curated based on the literature, assigned to each gene; how-

ever, 62 (25%) of the candidate genes have no associated GO terms. We find those genes with-

out GO terms and with limited publications do not have fewer markers of functionality

(eQTLs, splicing QTLs, etc.), but are almost exclusively non-coding, indicative of a recognized

bias in the literature toward protein-coding genes (Fig 1).

Each implicated locus displays an astoundingly complex architecture with multiple candi-

date genes implicated by RNA expression and physical location, each with a number of over-

lapping coding and non-coding transcripts including those in antisense orientation. The

complexity of these loci emphasizes the need for targeted molecular studies and computational

Table 1. (Continued)

Locus SNP OR Risk Allele (Freq) Gene eQTL Tissue(s) sQTL Tissue(s) Position

08b rs6544713 1.05 (1.03–1.07) T (0.32) ABCG8 Colon (transverse) ABCG8 (intron)

Tissue names in grey font indicate GWAS SNP is associated with a decrease in gene expression (eQTL) or normalized intron-excision ratio (sQTL), while those in black

font are associated with increased expression/normalized intron-excision ratio as reported by GTEx.
a values reported from original publication [28] in Han Chinese population. rs6903956 was not significant in Nikpay et al. [1].
b ABCG8 and ABCG5 were both annotated by GWAS. ABCG5 was not supported by QTL or position.

https://doi.org/10.1371/journal.pone.0244904.t001

PLOS ONE Interpreting coronary artery disease GWAS results

PLOS ONE | https://doi.org/10.1371/journal.pone.0244904 February 22, 2022 9 / 20

https://doi.org/10.1371/journal.pone.0244904.t001
https://doi.org/10.1371/journal.pone.0244904


approaches to determine the relevant gene and transcript(s). The distribution of PubMed arti-

cles and GO ids across candidate genes suggests that this targeted work has touched on only a

handful of genes thus far, with more recent studies beginning to focus on ‘neglected’ CAD can-

didate genes [31].

Allelic RNA expression imbalance reveals functional variation

To evaluate potential functionality for each of the 58 GWAS loci, we ask whether each candi-

date SNP is associated with allelic expression imbalance (AEI), a specific indicator of cis-acting

regulatory variation. By comparing expression of the two alleles at a heterozygous variant, vari-

ous external/trans-acting influences on gene expression are shared and the cis-acting effect of

the heterozygous variant can be isolated. In the absence of a functional variant altering RNA

expression, the anticipated distribution between the alleles is 0.5 (ratio = 1) [8,32].

Using data released by GTEx, we evaluate AEI at each of 104 candidate variants across 54

tissue types. Only 55 of the SNPs are represented in the data. The remainder likely are in inter-

genic regions and poorly captured by RNA sequencing, while obtaining accurate AEI ratios

requires rather robust expression (>30 RPM) [33]. Of the 55, many are present in only a few

samples making it difficult to infer differential expression. However, several SNPs show sur-

prisingly robust data–thousands of samples and dozens-hundreds of counts for each allele. A

majority of these SNPs fail to reveal allelic expression imbalance, with near normal distribution

of deviation from the expected ratio, suggesting no correlation between the GWAS variant and

allelic expression imbalance. This implies that the GWAS candidate SNPs represented in the

data are actually relatively poor markers for functional cis-acting variants in the locus; how-

ever, splicing events generating RNA isoforms with similar turnover are one example where

allelic expression imbalance would fail.

A number of SNPs do display consistent allelic expression imbalance (Fig 2). Locus 3 –

rs7528419 (SORT1), which falls in the 3’UTR of CELSR2 exhibits AEI in 53/57 liver samples.

Overall low expression of CELSR2 in liver tissue, however means that these ratios are for the

most part based on low coverage (median total count 13). Despite the relative consistency

from sample to sample, large allelic ratios derived from relatively low counts, as observed here,

raises suspicion for systemic sources of bias, e.g. preferential amplification of one allele. To

evaluate this further, we considered allelic ratios at nearby SNPs in strong LD (R2 > 0.9) and

weak LD (R2 < 0.1). As these SNPs are co-located, systemic sources of bias should affect all

SNPs in the locus while ‘true’ biological AEI would be expected only for those variants in

strong LD with a functional SNP. We observe AEI for those SNPs in strong LD with the

GWAS marker, but not for those in the same region in weak LD, a pattern that is suggestive of

‘true’ biological AEI and a functional cis-acting variant.

Importantly, even one sample without AEI suggests the variant might itself not be func-

tional but rather in high LD with a functional variant and serving as a marker. With only a

few samples not exhibiting AEI, rs7528419 can be considered an excellent marker in tight

LD with the functional SNP. Furthermore, that this pattern is only found in liver suggests

that the regulatory variant is tissue specific. In contrast, the bidirectional ratios observed in

adipose tissue suggests that the SNP is not in tight LD with a variant that is functional in

adipose tissue.

The Locus 14 SNP rs72689147 (GUCY1A3), which falls within an intron of GUCY1A3,

exhibits AEI in 114/121 samples across 10 different tissues. Again, this SNP does not appear to

be functional as not all samples display AEI, but it is a robust marker. While located in an

intron, expression is sufficient to extract allelic ratios; as these are consistently below unity,

this results suggests a gain of function.
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Resolving number of signals in a locus using LD

Focusing on the 7 loci where eQTL-based reprioritization pointed to a single gene as well as

the two examples of AEI discussed above, we find dozens of other significant eQTLs for each

gene. To determine whether these eQTLs represent one or more functional variants, we plot

the effect size (beta) of the variant on RNA expression for each eQTL against its LD (R2) with

the top scoring (most significant p-value) eQTL in each tissue where eQTLs are detectable.

Assuming one functional variant in the locus, the beta for each eQTL should correlate with its

R2 relative to the highest scoring SNP [34].

This approach reveals that the observed eQTLs for a gene often represent more than one

regulatory variant, with the exception of FLT1 in Tibial Nerve–represented by only one cluster

of variants marked by the GWAS SNP (Fig 3). This result is critical to the correct interpreta-

tion of GWAS that would otherwise rely on a single variant rather than considering the com-

bined effect of more than one causative variant.

As an example, we consider the number of distinct eQTLs needed to maximally account for

LIPA expression in blood. The most significant eQTL consists of a group of SNPs in high LD

marked by the GWAS variant (red dot in Fig 3), while two additional clusters of SNPs (marked

by rs1051338 and rs2250781) have equally or even more robust beta and p-values but show rel-

atively poor linkage with the GWAS cluster (R2 ~ 0.5) (Fig 3B). These SNPs are more signifi-

cant eQTLs than predicted by their LD with the trait-associated variant and may mark

additional functional variants in the locus. To test the significance of any additional regulatory

variants, we used a separate dataset (CATHGEN) to evaluate whether including an additional

marker variant in a regression model improves the ability to account for LIPA expression in

blood. Including additional markers improved the eQTL model, while adding a marker in

strong LD with the original variant did not (Table 2), indicating there are likely multiple func-

tional variants, incompletely represented by the GWAS variant alone, that contribute to LIPA

expression in blood.

Testing these additional variants with CAD instead of LIPA expression did not yield signifi-

cant associations (Table 2). However, LIPA expression itself is not associated with CAD except

when rs1412444 is homozygous minor, which may explain the discrepancy. In looking sepa-

rately at the associations between the GWAS variant and LIPA expression and the GWAS vari-

ant and CAD, we find that rs1412444 is associated with increased risk of CAD and increased

expression of LIPA, but counterintuitively those with two minor alleles and CAD exhibit lower

rather than higher expression, a pattern that also holds in GTEx although it is only statistically

significant in CATHGEN (Figs 4 and S4).

Absence of LIPA results in Wolman disease, characterized by lipid deposits and early onset

CAD due to inability to break down lipids in lysosomes and subsequent upregulation of cho-

lesterol production by the liver [35]. Here, congruent with this rare genetic disease, we find

decreased LIPA expression associated with CAD. Unexpectedly this is observed when the

GWAS based variant (rs142444), associated with increased LIPA expression, is homozygous

minor, implying existence of an additional factor associated with the GWAS variant that inter-

rupts the linear relationship between the number of rs142444 minor alleles and LIPA

expression.

Fig 2. Allelic expression imbalance at GWAS variants mark functional SNPs. Deviation in the observed from the expected

ratio for individuals heterozygous for given GWAS variant. (A) Locus 3 –rs7528419 (SORT1) exhibits AEI in 53/57 liver

samples. Subcutaneous adipose, also shown, demonstrates near normal distribution of deviation from the expected allelic

ratio and is representative of the 46 other tissues with at least 5 samples. (B) Locus 14—rs72689147 (GUCY1A3) exhibits AEI

in 114/121 samples across 10 different tissues.

https://doi.org/10.1371/journal.pone.0244904.g002
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Context–tissue specific eQTLs

Genetic variation exists and functions within a context–the surrounding sequence, the tissue

type and its preferred transcription factors, etc. In an effort to resolve the functional variation

behind statistical associations observed in GWAS, it is essential to consider these contexts. As

highlighted by the tissue specific AEI patterns above, if these relationships are not considered

in a context specific manner (e.g., on a tissue by tissue basis), many robust effects will remain

hidden. In an effort to evaluate some of these contextual features, we consider tissue specific

eQTLs.

eQTL analysis may focus the search on a relevant tissue. However, eQTLs are detectable

only where expression and sample size are sufficiently high; accordingly tissue-specific differ-

ences in eQTLs reflect overall patterns of tissue selective expression and sample size, in addi-

tion to the influence of genetic variation (S5 Fig).

To consider how eQTLs for a given gene compare across different tissues, we cluster

genome-wide significant eQTLs reported by GTEx for LIPA in a heatmap organized by their

pairwise LD (R2), using a colored bar at the top of the heatmap to denote tissue type (Fig 5A).

eQTL SNPs generally cluster by tissue, suggesting distinct regulatory variants in different tis-

sues. However, there are two LD blocks that contain eQTLs in more than half of tissues

Fig 3. Number of eQTL signals. Correlation plots show absolute value of beta for variant effects on RNA expression versus R2 with the top eQTL (most significant p-

value), including all significant eQTLs in the given gene-tissue combination. Blue dots represent the top eQTL (most significant p-value), red dots represent GWAS variant

(s). (A) FLT1 in Tibial Nerve: eQTLs are accounted for by a single eQTL marked by the GWAS variant (all eQTLs display a linear correlation with R2). CELSR2 (liver),

GUCY1A3 (tibial artery), and LIPA (blood), correlation between beta and R2 suggests multiple functional variants. (B) At least three distinct LD blocks represented by

LIPA eQTLs in whole blood. Correlations are shown left to right between the absolute value of beta and R2 with rs142444 (GWAS SNP), rs1051338, or rs2250781. Tightly

linked SNPs (D’> 0.9; R2 > 0.9) are shown in the same color.

https://doi.org/10.1371/journal.pone.0244904.g003
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indicative of genetic variation that acts across different tissue types. Variants detected by

GWAS for LIPA appear as a significant eQTLs in a subset of tissues (Table 1), some of which

fit with our understanding of CAD pathology (heart, aorta, adipose), others suggest as yet

unexplained biological consequences (spleen, pancreas) or pleiotropic effects.

Conclusions

We consider each of 58 loci implicated in CAD by GWAS to understand the biological mean-

ing of the underlying statistical associations. In evaluating each of these loci, we find numerous

candidate genes that were not included in the original annotation by GWAS. Many of these

are non-coding. Non-coding RNAs, now well-recognized for their role as regulators, have his-

torically been dismissed and continue to be difficult to study, a trend that is apparent in their

poor representation in the literature, among GO annotations, and as annotated by GWAS

[36]. We find no evidence to suggest these non-coding RNAs are less likely to account for the

observed associations in GWAS and would advocate for their inclusion in further mechanistic

and computational work examining these loci. In addition to broadening candidate gene lists

to include non-coding transcripts, we would urge reconsideration of current assignments,

especially for those loci categorized as Tier2C where expression, splicing, and physical position

do not support the gene annotated by GWAS. LDLR is a particularly prominent example.

Given our understanding of the critical role lipid metabolism plays in CAD, it is counterintui-

tive not to assign a CAD GWAS variant to LDLR when it lies within 15kb of the LDLR locus

[37]. However, RNA expression and splicing data do not support this annotation, instead

Table 2. Assessing multiple regulatory variants for LIPA.

Variable of interest ANOVA p-

value

Model 1 AIC Model 2 AIC

rs1412444 8.8e-16 XP ~ sex + age 3310 XP ~ rs1412444 + sex + age 1778

rs13332328 8.8e-16 XP ~ sex + age 3310 XP ~ rs13332328 + sex + age 1782

rs1051338 8.8e-16 XP ~ sex + age 3310 XP ~ rs1051338 + sex + age 1779

rs2250781 8.8e-16 XP ~ sex + age 3310 XP ~ rs2250781 + sex + age 1800

rs1412444 in context of rs13332328 1.0 XP ~ rs1412444 + sex + age 1778 XP ~ rs1412444 + rs13332328+ sex + age 1781

rs1412444 in context of rs1051338 0.23 XP ~ rs1412444 + sex + age 1778 XP ~ rs1412444 + rs1051338 + sex + age 1777

rs1412444 in context of rs2250781 0.04 XP ~ rs1412444 + sex + age 1778 XP ~ rs1412444 + rs2250781 + sex + age 1773

rs1412444 & rs2250781 in context of
rs1051338

0.19 XP ~ rs1412444 + rs2250781 + sex

+ age

1773 XP ~ rs1412444 + rs2250781 + rs1051338 + sex

+ age

1773

rs1412444 & rs1051338 in context of
rs2250781

0.04 XP ~ rs1412444 + rs1051338 + sex

+ age

1777 XP ~ rs1412444 + rs1051338 + rs2250781 + sex

+ age

1773

rs1412444 1e-3 CAD ~ covariates 387.7 CAD ~ rs1412444 + covariates 385.1

rs13332328 1e-3 CAD ~ covariates 387.7 CAD ~ rs13332328 +covariates 385.3

rs1051338 6e-4 CAD ~ covariates 387.7 CAD ~ rs1051338 + covariates 384.3

rs2250781 4e-4 CAD ~ covariates 387.7 CAD ~ rs2250781 + covariates 383.5

rs1412444 in context of rs13332328 0.79 CAD ~ rs1412444 + covariates 385.1 CAD ~ rs1412444 + rs13332328+ covariates 386

rs1412444 in context of rs1051338 0.36 CAD ~ rs1412444 + covariates 385.1 CAD ~ rs1412444 + rs1051338 + covariates 384.5

rs1412444 in context of rs2250781 0.56 CAD ~ rs1412444 + covariates 385.1 CAD ~ rs1412444 + rs2250781 + covariates 385.9

rs1412444 & rs2250781 in context of
rs1051338

0.11 CAD ~ rs1412444 + rs2250781

+ covariates

385.9 CAD ~ rs1412444 + rs2250781 + rs1051338

+ covariates

385.1

rs1412444 & rs1051338 in context of
rs2250781

0.17 CAD ~ rs1412444 + rs1051338

+ covariates

384.5 CAD ~ rs1412444 + rs1051338 + rs2250781

+ covariates

385.1

ANOVA comparing generalized linear models with different SNP combinations accounting for LIPA expression and CAD (defined as history of myocardial infarction

and/or >50% stenosis of vessel). Covariates in CATHGEN include sex, age, hypercholesterolemia, smoking, and number of diseased vessels.

https://doi.org/10.1371/journal.pone.0244904.t002
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supporting the notion that such genetic variation affects the function of other nearby genes

including SMARCA4, CARM1, YIPF2, RGL3, SLC44A2 [30].

Using allelic ratios built from tissue-specific RNA sequencing data available through GTEx,

we were able to identify two loci where the GWAS variant served as a robust marker for a func-

tional cis-acting regulatory variant. Locus 3 –rs7528419 (SORT1) falls in the 3’UTR of

CELSR2, exhibits AEI exclusively in liver, and is in nearly perfect LD with rs12740374 which

Fig 4. LIPA expression, CAD, and genotype. Comparison of LIPA expression in CATHGEN for those with and without CAD based on rs142444 genotype.

LIPA exhibits higher expression only in those without CAD in the homozygous minor group (p-value = 0.02).

https://doi.org/10.1371/journal.pone.0244904.g004
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was shown by Musunuru et al. through a series of molecular experiments to create a C/EBP

binding site increasing expression of SORT1, a multiligand sorting receptor which they con-

comitantly showed to be associated with LDL-C and VLDL levels [38]. This work revealed a

single functional variant for a single target gene with a substantial effect size, the authors esti-

mated a ~40% difference in MI risk. Our work suggests additional eQTLs not explained by

their LD with the LD block marked by GWAS variant rs7528419. As we begin to identify func-

tional variation behind GWAS associations, an important next step will be resolving additional

functional variants within the loci that may modify these associations and better account for

disease risk [39].

This work emphasizes that the linear presentation of GWAS results as a single variant tied

to a single gene fails to capture the complexity of these loci. Many loci contain several SNPs

identified by GWAS, and for each of these, multiple candidate genes are implicated by RNA

expression and splicing associations as well as physical proximity. LD alone rarely accounts for

the observed eQTLs, suggesting multiple functional variants within these loci. Although some

GWAS associations may ultimately implicate single variants that alter expression of individual

genes, this work indicates that true genetic effect size of a gene locus is accounted for by a

multi-factorial system that allows for multiple functional variants regulating one or more

genes. Important next steps in accounting for the genetic basis of disease will be in establishing

causality for genetic variation, which even with computational efforts such as these to direct

our understanding will require molecular biology experimentation to definitely address. It will

also require looking beyond single nucleotide polymorphisms to copy number variation,

methylation, and other forms of genetic variation, which have been shown to have consider-

able impacts on disease risk. Ultimately considering how functional variation of all kinds can

in combination can be used to predict disease risk will likely machine learning approaches that

can more effectively incorporate multi-factorial data [40,41]. The approach presented here

must be expanded to include functional variants that are undetectable by RNAseq of whole tis-

sues, including cell type specific expression, effect on RNA-protein interactions, distribution

in sub-cellular domains, alteration of translational processes, and of course variants that

change protein functions.

Supporting information

S1 Fig. Expanding candidate genes process. Flowchart portraying process of expanding can-

didate gene list from 75 to 245 using eQTL, sQTL, and physical position.

(TIF)

S2 Fig. Tier assignment process. Flowchart portraying process of assigning tiers to CAD

GWAS loci.

(TIF)

S3 Fig. eQTL, sQTL, position Venn diagram. Venn diagram showing overlap in candidate

genes derived from eQTL, sQTL, and position-based re-prioritization.

(TIF)

S4 Fig. LIPA expression, CAD, and genotype in GTEx. Comparison of LIPA expression in

GTEx for those with and without heart disease based on rs142444 genotype. LIPA exhibits

higher expression in those without heart disease only in the homozygous minor group (p

Fig 5. Tissue specific eQTLs for LIPA. Heatmap of LD for those SNPs reported by GTEx as genome-wide significant

eQTLs for LIPA. Lighter-colored squares in the heatmap represent LD blocks, with SNPs clustered by R2 and not by

genomic position. Colored bars at top eQTLs in each tissue with more significant p-values denoted by darker color.

https://doi.org/10.1371/journal.pone.0244904.g005
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value = 0.22).

(TIF)

S5 Fig. Power calculations for tissue specific eQTLs. Barplot displays power to detect a hypo-

thetical LIPA eQTL with minor allele frequency 0.05 and effect size 40% (i.e. no minor alleles

is 20% less than the median tissue specific gene expression and two minor alleles is 20% greater

than the median expression) across different tissue types. About half of the tissues have greater

than 80% power to detect such a variant.

(TIF)

S1 File. Fig 1 Gene names. Gene names corresponding to bar plot presented in Fig 1B.

(DOCX)

S2 File. Example locus. Example of a locus (LIPA) implicated by GWAS taken from ensemble.

org. There are numerous annotated protein-coding and non-coding transcripts in close prox-

imity and overlapping one another.

(DOCX)

S3 File. 58 CAD GWAS loci. Table of 58 GWAS loci including tier designation, SNPs consid-

ered, GWAS annotation, and genes introduced by eQTL, sQTL, and position. Also includes

additional text describing Tier 3 loci and the expanded search for candidate genes.

(DOCX)

S4 File. Additional phenotype–blood pressure. Bar charts showing the distribution of tier

assignments for each of the GWA studies considered. Tier assignments for each of the 903 loci

identified in a recent blood pressure GWAS [27].

(PDF)
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