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Abstract

Growing evidence suggests that synchronization among distributed neuronal networks underlie functional integration in
the brain. Neural synchronization is typically revealed by a consistent phase delay between neural responses generated in
two separated sources. But the influence of a third neuronal assembly in that synchrony pattern remains largely unexplored.
We investigate here the potential role of the hippocampus in determining cortico-cortical theta synchronization in different
behavioral states during motor quiescent and while animals actively explore the environment. To achieve this goal, the two
states were modeled with a recurrent network involving the hippocampus, as a relay element, and two distant neocortical
sites. We found that cortico-cortical neural coupling accompanied higher hippocampal theta oscillations in both behavioral
states, although the highest level of synchronization between cortical regions emerged during motor exploration. Local
field potentials recorded from the same brain regions qualitatively confirm these findings in the two behavioral states.
These results suggest that zero-lag long-range cortico-cortical synchronization is likely mediated by hippocampal theta
oscillations in lower mammals as a function of cognitive demands and motor acts.
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Introduction

Synchronization is an astonishing omnipresent collective

phenomenon occurring at any scale, ranging from subatomic to

astronomical scales. Synchronization requires the coordination of

systems to operate at unison. Synchronized activity has been

observed, e.g., in the brain between neurons, in the heart, between

laser systems, fireflies and many other natural and manmade

systems [1,2].

The presence of delays has been shown to play a critical role in

dynamical systems [3–10]. Particularly for neuronal systems, non-

negligible delays have been argued to shape spatiotemporal

dynamics [11] and to facilitate synchronization [12–15]. After

extensive theoretical and experimental works the function of

synchronization is not yet fully understood but is becoming

gradually improved.

Synchronization by neural oscillations contributes to the

formation of functional circuits at different spatial scales through

a broad range of frequencies [16–21]. Specific patterns of neural

synchronization have been largely associated with perceptual,

motor skills, and higher cognitive functions, providing insights into

how large-scale integration can be assisted by oscillatory codes in

the mammalian brain [22–27]. The phase relationship of

synchronized elements has been further suggested as a critical

mechanism for the efficiency of such information exchange

between neurons located in distant brain regions [28,29].

In vivo and in vitro experiments suggest that zero-lag neuronal

synchrony occurs in the brain even in the presence of large axonal

conduction delays [30–32]. From a theoretical viewpoint,

modeling zero-lag synchronization in long delayed systems has

typically been a challenging task, and different mechanisms have

been proposed to account for this phenomenon [33–35]. More

recently, Fischer et al. [36] introduced a novel and robust concept

of synchronization via dynamical relaying. This concept suggests

that two distant neuronal populations are able to synchronize at

zero or near zero time lag if a third element acts as a relay between

them. This relay symmetrically redistributes its incoming signals

between the two other regions. Interestingly, this mechanism has

proven to be remarkably robust for a broad range of conduction

delays and cell types [37]. A requirement for achieving synchrony

without time lag is that the involved brain generators oscillate

endogenously or by coupling with other areas. In this context, the

thalamus has been recently proposed as a pivotal region

generating isochronal gamma range synchronization between

distant cortical areas by means of the dynamical relaying

mechanism [38].

Although the main generators of theta oscillations are located

in the hippocampus, this oscillatory activity has been observed in

many cortical and subcortical regions [39–41]. However, none of

them are capable of generating theta activity on their own [19]

despite some models of recurrent excitation predicted the

generation of coherent theta oscillations in neocortical networks
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[42]. Functional coupling between hippocampal and neocortical

theta waves have recently been observed in rodents, likely

revealing binding of cortico-hippocampal systems modulated by

cognitive and behavioral demands [43,44]. Long-range cortico-

cortical synchrony without time lags has been previously

reported between areas subserving related functions [30,45],

but the impact of the hippocampus on cortico-cortical theta

oscillatory dynamics has been unexplored to date. We hypoth-

esize that if the hippocampus acts as a dynamical relaying center

connected to distant regions of the neocortical mantle, then the

hippocampus might induce zero-lag synchronization between

long-distance cortical regions where theta oscillations do not

appear prominently.

The present study tests this hypothesis by modeling local field

potentials (LFP) arising from the combined dendritic activity of a

large number of neurons in the hippocampus and two distant

cortical areas in mice either during spontaneous motor exploratory

behavior (active) or motor quiescence (passive). We found that

zero-lag synchronization between both cortical regions was

mediated by prominent theta oscillations in the hippocampal

formation in the two behavioral states, although it was enhanced

during motor exploratory state, where the hippocampus has been

suggested to play a critical role in sensorimotor integration [46].

Results

Zero-lag long-range synchronization emerged between the

anterior (frontal) and posterior (occipital) cortical regions when

the amplitude of theta oscillations was prominent in the

hippocampus. The cortico-cortical zero-lag correlation was

approximately 45% higher in the active (when exploring) than

in the passive state (when quiet), as revealed by our experimental

and modeling results. The theta oscillations recorded in the

hippocampus (relay element) were delayed by ,30 ms which is a

strong signature of the dynamical relaying phenomenon [36–38].

In the following, we show results obtained from numerical

simulations and LFP recorded data. We start with analyzing the

neuronal population dynamics and show how theta frequency

emerges in the system. Next, we simulate synchronization patterns

within the neocortical-hippocampal circuit in passive and active

states. Finally, we compare the simulations with the experimental

data.

Modeling theta oscillations generated in the
hippocampus

We modeled the hippocampus and the frontal and occipital

cortices. Each area contains 500 sparse and randomly connected

neurons described by the Izhikevich model. This model uses two

variables: the membrane potential v and a recovery variable u,

associated with slow ion channels. We assume that, within each area,

80% of the neurons project excitatory synapses (AMPA) and 20%

inhibitory synapses (GABA). Synapses are mathematically described

in equation (4) (see Materials and Methods section). Each neuron in

the hippocampus (cortical areas) is assumed to receive 35 (50) synaptic

inputs from randomly chosen neurons of the same area with

negligible conduction delay. The connectivity between areas is

considered even sparser. Neurons of a given area are innervated by

three excitatory synapses with long conduction delays (8–20 ms) from

each of the other areas. The ultimate goal of the model is to compare

the neuronal activity of the three areas during the active moving and

passive quiescent motor behavioral states. The active state is modeled

by assuming a ,6% larger external driving over the hippocampus

with respect to the cortical areas. This is obtained by increasing the

Poisson rate of the external driving.

The capacity of the rodent hippocampus to generate theta

oscillatory activity is well documented [19,47–49]. Our model

assumes that the hippocampus is mainly composed of neurons

operating in a burst regime whose activity is modulated by slow

theta oscillations (frequency range from 6.5–7.5 Hz) and an

interspike frequency of 35–45 Hz. We consider that most neurons

in the cortical areas fire in the regular spiking regime. Diversity

within each population is added to the internal neuronal

parameters of the model (see Materials and Methods section).

The spiking activities of the different regions are illustrated in

Fig. 1. Time traces of ten randomly chosen neurons, eight

excitatory (black) and two inhibitory (gray), are plotted in Figs. 1

A–F, corresponding to the hippocampus (A & D) and the visual (B

& E) and frontal (C & F) cortical regions, respectively. In panels A–

C, neurons are completely disconnected from each other, at both

global and local levels. The lack of correlation between neuronal

activities was due to the assumed random initial conditions. When

neurons are coupled within each population, keeping the inter-

population coupling strength equals to zero, hippocampal neurons

start to synchronize, as displayed in panel G. This synchronization

pattern gives rise to a theta oscillation reflected in the time

evolution of the average membrane potential shown in panel G.

On the contrary, cortical neurons do not fire synchronously, as

illustrated in panels E and F, resulting in an almost flat time trace

of the average membrane potential (panel G). This behavior is also

evident in the raster plots shown in panel H. To determine the

level of synchronization, we computed the auto-correlation

function as the number of spike coincidences of neurons belonging

to the same population (bins of 2 ms), subtracted from the number

of coincidences expected by chance, as shown in Fig. 1 I. A

coherent behavior was observed in the hippocampus, but not in

the cortical areas.

Dynamical relaying in the theta range
Results from our model predict the emergence of zero-lag

synchronization between frontal and occipital cortices, but not

between the cortical regions and the hippocampus when the long-

range connection is switched on (this will be discussed later). The

proposed reduced model, as will be shown below, captures the

main features observed experimentally. A large-scale integration is

maintained by interconnecting the cortical populations and the

hippocampus via long-range fibers, with large conducting delays.

Our simple motif depicted in Fig. 2 A, is sufficient to reproduce the

two behavioral states. In the model, the difference between the two

states is on the Poisson rate of the external driving. Both states

present zero-lag synchronization between cortical areas as

revealed by the mean-voltage time traces represented in Figs. 2B

and C, as well as in the raster plots (Figs. 2D and E). In the

network, cortical activity becomes locally synchronized due to

theta oscillations generated in the hippocampus, when both the

internal and long-range connections between the different areas

are active. Raster plots also reveal the presence of two different

groups of neuronal activity in each area: one of excitatory neurons

(black) and the other of inhibitory ones (gray). Unlike neural

assemblies in the two cortical areas that synchronize at zero-lag,

neural activity in the hippocampus was phase locked, but shifted

with the activity in cortical neurons.

Large-scale motifs
Our choice of motif is not arbitrary. From a physiological point

of view, recurrent connections among the three involved areas are

expected. From the modeling point of view other options could be

considered. One possibility is to couple bidirectionally only the two

cortical areas, as suggested in ref. [33]. However, in this scenario

Synchronization via Hippocampal Dynamical Relaying
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the out-of-phase solution is the one that appears more often [37].

Moreover, for our parameter values, the two areas do not

synchronize (Figure 3 A–C). It is worth stressing that theta

oscillations are not observed either in these cortical areas. We have

also tested a motif with unidirectional coupling between the

hippocampus and the cortices, keeping the two cortical regions

bidirectionally connected. As shown in Figure 3 D–F, this motif

does not yield zero-lag synchronization among the cortical areas

when using the same parameter values. The motif that yields the

most robust results is the one chosen in the present study, as

depicted in figure 3 G–I.

Zero-lag synchrony is enhanced during motor
exploratory behavior

The reduced model proposed here is justified due to the

remarkable equivalence with the experimental data in neocortical-

hippocampal neuronal systems during both behavioral states.

Although our simulations might only reveal a keen difference for

the two states, we demonstrate that noticeable differences are

present. With both simulated and experimental data, we

proceeded as follows. First, the LFP time traces (for the

experimental data) and the ensemble average membrane potential

(in the simulations) were filtered around the dominant frequency

of theta oscillations recorded in the hippocampus (6.5–7.5 Hz).

Next the cross-correlogram of the resulting signals of two different

areas was performed within a 300-ms window with delays varying

from 2300 to 300 ms. The time series were shifted by 50 ms to

account for the experimental data variability; the procedure was

repeated to cover the 60 s time series. The delay corresponding to

the maximum of each cross-correlogram window reflects the best

suitable coupling delay between the two areas. This delay was used

to compute a normalized peak density of the sliding window cross-

correlogram. The result represents the probability of finding the

best coupling between different areas occurring at a given time

delay.

Following this procedure, we compared the simulated and

experimental data for the two behavioral states. A wider and less

precise phase locking in the passive condition was observed in both

cases. Results in the active state appeared to be more coherent,

with higher values of cross-correlograms (Fig. 4). In particular, the

two cortical areas were mostly synchronized at zero-lag whereas

the hippocampus was typically delayed by 15–30 ms in the active

state, and by 15–45 ms in the passive state. The maximum

correlation with zero-lag occurred with a ,45% larger probability

in the active state than in the passive state, the latter showing a

Figure 1. Dynamical characterization of the hippocampus and cortical regions during the generation of theta oscillations. Panels A, B
and C show the voltage v time traces of 10 randomly chosen neurons (8 excitatory in black and 2 inhibitory in grey) of each population in the absence
of local and long-range connections. Panels D, E and F show the same time traces of neurons locally connected within each population. Panel G
shows the ensemble average voltage v of each area: Frontal cortex (F), Visual cortex (V) and the Hippocampus (H). Panel H shows raster plots. Panel I
shows an average number of coincident spikes of neuron pairs of the same population, obtained from the auto-correlation function and subtracted
from the mean number of coincidences over the delay window. The upper figure in panel I displays cortical groups while the bottom figure stands for
the hippocampus. External driving to each neuron is given by 100 independent excitatory neurons spiking according to a Poisson distribution with
average rate r = 16.3 Hz.
doi:10.1371/journal.pone.0017756.g001
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larger variability in its activity pattern [50]. Synchronization levels

between the hippocampus and the cortical areas were also more

consistent during active exploration when compared to motor

quiescence. Simulations were in remarkably good agreement with

our experimental LFP recordings. However, cross-correlograms

between the hippocampus and the cortical areas peaked at the

same time delay value in the model due to the symmetry assumed

in the conduction delays between these areas. We obtained even

closer results to the experimental ones in the simulations when

considering asymmetric conduction time delays (of the order of

few ms) between the hippocampus and the cortical areas (Figure 5).

Discussion

Although a large body of studies has evaluated the hippocam-

pal-neocortical circuitry underlying theta oscillations [44,51–65],

the mechanisms responsible for inducing coherent activity in these

regions remain elusive to date [65]. The present study gives a step

further by suggesting that these interactions may facilitate

communication between distant cortical regions. By borrowing

concepts from the dynamical relaying framework, we have studied

the impact of hippocampal theta oscillations on cortico-cortical

functional coupling in mice during motor quiescent, and while

actively exploring the environment. Modeling results showed that

zero-lag synchronization between distant cortical regions increased

simultaneously with hippocampal theta oscillations in both

behavioral states, although cortico-cortical coherence was mainly

enhanced during motor exploratory behavior. LFPs recorded from

the same brain regions and during the same behavioral states

qualitatively confirmed these results. Overall, these findings

suggest that the observed zero-lag cortico-cortical synchronization

is likely modulated by the hippocampus in lower mammals as a

function of cognitive demands and motor acts.

The role of hippocampal theta oscillations in long-range
synchronization

The numerical results obtained from the simple model suggest

that theta oscillations are critical for a long-range integration

between the hippocampus and the cortical areas, especially when

the animal is exploring the environment. We speculate based on

the dynamical relaying mechanism that theta oscillations should

participate if the hippocampus acts as the relay station that

putatively facilitates zero-lag synchrony between distant cortical

areas. Interestingly, our results suggest the possible coexistence of

dynamical relaying in different frequency bands, for example in a

gamma range [37], which could be mediated by the thalamus [38]

or other cortical areas [66]. A better understanding of the

synchronization in distinct frequency bands is however necessary.

Dynamical relaying and phase relation
A typical fingerprint of the dynamical relaying mechanism in

neuronal systems connected via significant delays is the zero-lag

Figure 2. Modeling neuronal dynamics underlying passive and active behavioral states. Panel A represents the simple motif connecting
the brain regions F, V and H. Each neuron is driven by an independent Poisson process of rate r = 16.3 Hz (r = 15.4 Hz) for the active (passive) state. In
panels B and C, the ensemble average voltage for the passive and active states are plot respectively. Panels D and E include the corresponding raster
plots.
doi:10.1371/journal.pone.0017756.g002
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synchrony coexisting with the out of phase synchrony between the

relay element and the other two areas [36–38]. The novelty of our

study with respect to others lies in the inclusion of the occipital

cortex in addition to the frontal cortex and the hippocampus. The

occipital cortex represents the major source of visual inputs to the

hippocampus, and is a key cerebral structure for the formation of

spatial memories. Evidence shows that theta-burst stimulation of

the thalamocortical pathways leads to a long-term enhancement of

granule cell excitability in the hippocampus, preceded by a

concurrent potentiation of the visual cortex response. The theta

Figure 3. Zero-lag cortico-cortical synchronization for different motifs. Simulation results for the ensemble average voltage of the cortical
regions are shown for two external drives corresponding to the active (r = 16.3 Hz) and passive (r = 15.4 Hz) states. Regardless of the behavioral state,
we found that the two cortical areas (frontal and visual) do not synchronize at zero-lag when mutually connected without the hippocampal relay
(panels A–C). Neither we observed zero-lag synchronization when only the hippocampus drives them (panels D–F). The cortical feedback to the
hippocampus (as depicted in panel G) is critical to promote zero-lag cortico-cortical synchronization, as depicted in panels H and I.
doi:10.1371/journal.pone.0017756.g003

Figure 4. Spatio-temporal synchronization obtained from the experimental and numerical data. We plot here the density of spikes in
the sliding window of filtered time series cross-correlation (see Materials and Methods section). The window has 300 ms length and is shifted by
50 ms steps and analyzed over the 60-s of continuous artifact-free LFP recordings for each behavioral state and animal (n = 4), separately. Results are
normalized in a frame of 2110 to 110 ms. Experimental data correspond, in this example, to an individual mouse, although other mice presented
qualitatively similar results. Simulations show high agreement with experimental results for both active and passive behavioral states.
doi:10.1371/journal.pone.0017756.g004

Synchronization via Hippocampal Dynamical Relaying
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power in the dentate gyrus increases after tetanization-driven high-

frequency rhythms in V1. This sequence of events has been

suggested to facilitate the induction of synaptic plasticity in the

hippocampus of the freely behaving rat [67]. Theta oscillations

recorded over posterior neocortical regions during wakefulness

have been further postulated as reliable markers of the

homeostatic process of sleep regulation in the rat, suggesting that

theta waves might have independent cortical generators over the

parieto-occipital regions [68].

It is broadly accepted that hippocampal theta oscillations play a

crucial role in sensorimotor integration [46] and memory

formation [26,69]. For this endeavor, a precise spiking time is

needed. In the context of theta rhythms, the oscillatory phase

coupling has recently been proposed to enhance the efficiency of

spike-time dependent plasticity [70]. The coordination of neuronal

assemblies over distant regions could be critically dependent on

the increased oscillatory phase coupling [71], playing a role in the

cortico-hippocampal circuit for memory formation. For both

sensorimotor integration and memory formation, the hippocam-

pus requires inputs from other regions typically involved in the

automatic and voluntary control of attention. Accordingly,

memory recollection has been supported by a distributed

synchronous theta network including the prefrontal, mediotem-

poral and visual areas [72]. Based on our findings, we speculate

that an enhancement of long-range cortico-cortical synchroniza-

tion patterns mediated by the hippocampus might facilitate the

integration of these top-down and bottom-up control mechanisms

of attention.

Local field potentials recorded from hippocampus and
neocortex: the role of volume conduction

Zero-lag synchronization between cortical regions simulta-

neously to hippocampal theta oscillations could be due to

hippocampal-volume conducted theta. Although concerns about

volume conduction are significant in the present study, converging

evidence also points against this possibility. For instance, Katzner

and colleagues [73] found that the major part of the LFP recorded

signal (.95%) spreads within 250 mm from the recording

Figure 5. Effects of an asymmetric delay time in the inter-population couplings. If the delay time between the hippocampus and the visual
area (T in the figure) is slightly different from that between the hippocampus and the frontal area (20 ms), the maxima of the cross-correlations
between the hippocampus and the cortical areas become different, as shown in the experiments (Fig. 4, upper panels).
doi:10.1371/journal.pone.0017756.g005
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electrode, suggesting that the origin of LFPs is more local than

often recognized. Moreover, as recently reviewed by Pesaran [74],

simultaneous LFP recordings have been extensively used to

evaluate the relationship between distant areas including, for

instance, the prefrontal and visual cortices [75], the prefrontal and

parietal cortices [76] or the hippocampus and the prefrontal cortex

[51].

Theta waves recorded in the frontal cortex could be volume-

conducted from the olfactory bulb rather than intrinsically

generated in the frontal region. Although this hypothesis is

conceivable, previous studies have provided strong evidence of

theta synchronization patterns between the frontal cortex and the

hippocampus [51]. Due to the course-grained nature of our

experimental data, we do not have access to the individual

neuronal spike time. However, after a filtering procedure it

becomes clear that the hippocampus is delayed with respect to the

cortical areas.

Final remarks
We have studied the occurrence of zero-lag synchronization

between distant cortical regions. Using a simple model where two

cortical areas are both directly connected through the hippocam-

pus we find that the activities in these regions become

synchronized in the theta range in freely behaving mice. Our

results suggest that the hippocampus might act as a relay element

that mediates zero-lag synchronization between the cortico-

cortical regions, during active and passive behavioral states.

Simulated and experimental data showed that this zero-lag

synchronization between two distant remote cortical regions

occurs simultaneously with prominent theta oscillations in the

hippocampus in both behavioral states, but it is significantly

enhanced during exploratory motor behavior. These findings

could provide an alternative explanation to the observed zero-lag

relationship between distant cortical regions by hippocampal

theta.

Materials and Methods

Modeling theta synchronization in large-scale systems
We aimed at modeling theta synchronization patterns of the

hippocampus, and the frontal and visual cortices supporting the

emergent coherent behavior associated to spontaneous exploratory

motor behavior and motor quiescence, separately. To this end, we

considered three neuronal populations composed of 500 randomly

connected neurons, 80% excitatory and 20% inhibitory, with

excitatory innervating monosynaptic pathways linking any two of

the three regions. We modeled excitatory and inhibitory neurons

of the two cortical areas with the following set of equations [77,78]:

dv

dt
~0:04 v2z5 vz140{uzIsyn ,

du

dt
~a(bv{u) ,

ð1Þ

where v is the neuron’s membrane potential, u is the recovery

variable that accounts for the K+ and Na+ ionic currents and Isyn

the total synaptic current. When the membrane potential reached

the 30 mV value, v is reset to c and u to u+d. For excitatory

neurons, we take the parameters (a,b) = (0.02, 0.2) and

(c,d) = (265,8)+(12,26) s2, where s is a uniformly distributed

random variable within the interval (0,1). According to this

distribution, cortical excitatory neurons operate in the regular

spiking, in intrinsically bursting or chattering modes [79].

For inhibitory neurons, we assume the parameters (a,b) =

(0.02, 0.25)+(0.08,20.05) s and (c,d) = (265,8). These parameter

values correspond to fast spiking and low-threshold spiking firing

modes. With similar computational costs, excitatory neurons of the

hippocampus are described with a slightly modified set of

equations, specifically calibrated to reproduce the hippocampal

CA1 pyramidal neurons dynamics [78]:

dv

dt
~0:01 v2z1:05 vz27{0:02uzIsyn ,

du

dt
~0:02½0:5(vz60){u� :

ð2Þ

In this case, when v reached the value 40 mV, v and u are reset as

described previously, the parameters are (c,d) = (265,50)+(15,10)s.

This choice favors the bursting mode rather than the regular spiking

regime [78,80]. Inhibitory neurons of the hippocampus are also

modeled with the set of equations (1), using identical parameters as

for inhibitory neurons of the cortical regions. Anyway, we have

checked that different distributions of parameters yielded similar

results. Each neuron receives the same number of synapses from

randomly selected neighbors of the same population (50 for the

cortical populations which means a 10% connectivity, and 35 for

the hippocampus, i.e., with a 7% of connectivity), and three long-

range excitatory synapses from excitatory neurons randomly

selected from the other populations. The local connectivity is

composed of both excitatory and inhibitory synapses depending on

the neuron type. Excitatory neurons project excitatory synapses and

inhibitory neurons project inhibitory synapses. Each region

corresponds to a coursed grained brain region, which is recurrently

connected. Such connectivity (depicted in Fig. 2 A) composes a

bidirectional triangular motif of the three regions of interest. The

simple motif connection is satisfied only on the large scale. At the

neuronal level, the connectivity is different.

The synaptic current is given by:

Isyn~{vgAMPA(t){(65zv)gGABA(t), ð3Þ

and the synaptic dynamics are described by:

tAMPA
dgAMPA

dt
~{gAMPAz0:5

X
k

d(t{tk{tk) ,

tGABA
dgGABA

dt
~{gGABAz0:5

X
l

d(t{tl) ,

ð4Þ

where d stands for the Dirac delta function. The summation over

k (l) stands for excitatory (inhibitory) neighbor contributions. tk (tl) is

the time at which excitatory (inhibitory) firings occur in

presynaptic neurons. Conduction delays tk, associated to excit-

atory long-range connections, are assumed to be 8 ms for cortico-

cortical connections and 20 ms for the connections between the

cortical regions and the hippocampus. Synapses are modeled

by exponential decay functions [81] with time constants

tAMPA = 5.26 ms for excitatory and tGABA = 5.6 ms for inhibitory

synapses (other decay times produced qualitatively similar results).

Each population is subject to an external driving given by

independent Poisson spike trains, resulting from 100 excitatory

neurons, at rate r = 15.4 Hz on each neuron in the passive state,

and 16.3 Hz in the active state. The equations were integrated

with the Newton method with time steps of 0.05 ms.

When modeling neuronal dynamics is always desirable to use

simple, but biologically realistic, models. The non-linear equations

Synchronization via Hippocampal Dynamical Relaying
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used in this study are rather simple but allow at the same time for

some flexibility. They were derived and adjusted to fit certain

behaviors: regular spiking, intrinsically bursting, chattering modes,

fast spiking or low-threshold spiking. The population of spiking

neurons approach gives rise to a robust dynamic and the possibility

to compare with experiments at different spatial scales. It has been

shown suitable for studying general dynamical patterns [82,83]

and zero-lag synchronization [37,38]. Utilizing the same neuronal

model with a different set of parameters, arbitrary but specifically

calibrated to reproduce the diverse dynamics of existing neurons,

the isolated hippocampus generates theta rhythms as experimen-

tally demonstrated [49]. In contrast, isolated cortical areas do not

have prominent theta, however, the emergence of these oscilla-

tions witnessed by the presence of the hippocampal relay.

Parameters responsible for population and inter-population

couplings were chosen to reproduce the dynamical regimes

observed in the experiments. This set of parameters is not

considered unique. Canonical models are also expected to be

useful to study the dynamical relaying mechanisms with the

advantage of being more comprehensible although less biologically

plausible.

Modeling theta synchronization in different behavioral
states

In our model, differences between active and passive states are

attributed to the rate of the uncorrelated external drives. We

assume that when the animal is performing the exploratory task,

not only the regions of interest are active but also many other

regions contribute. On the contrary, during motor quiescence, we

assume that a smaller number of regions are involved, and

consequently the total external driving is considerably weaker. The

possibility that an increased background activity accounts for a

model transition is sustained by the increased scale-free activity

found in the cortex during cognition [84], and is also consistent

with the proposal that the external driving over the thalamus is a

key element to control the engaging and disengaging of a zero-lag

cortical synchronization [38]. The dynamical relaying mechanism

is remarkably robust to reproduce the observed patterns, although

similar results could also be reproduced in other ways. We have

checked, for instance, that using a correlated external driving or by

changing the coupling strength among neurons (either for intra-

population connectivity, for inter-population synapses, or for both

of them) yielded qualitatively similar results (data not shown).

Synchronization measurements from correlation function
Our results described theta synchronization patterns between

the cortical areas and the hippocampus during different behavioral

states in the alert animal. We used correlation analyses to

determine the level of synchrony of the hippocampus-neocortical

and cortico-cortical networks, separately. Data were analyzed

from the time series using both ensemble average voltage and spike

time coincidences. The mean voltage of the time series is filtered in

the dominant frequencies of the spectrum corresponding to the

theta band (from 6.5 to 7.5 Hz), and the cross-correlation function

is computed via a sliding window of 300 ms width, displaced

50 ms from each other over the 60-s of continuous artifact-free

LFP recordings for each behavioral state and mouse, separately.

The cross-correlation between two areas A1–A2 as a function of

the delay d is defined as:

RA1A2(d)~

S½a1(t){Sa1T�½a2(t{d){Sa2T�T=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sa1(t)2T{Sa1T2Sa2(t{d)2T{Sa2T2

q

where a1 and a2 correspond to the LFP time series (ensemble

average membrane potential over a population) in the experiments

(simulations), and the brackets ,?. stand for the time average

computed for each window. The delays corresponding to the

maximum peak of the cross-correlation in each window are

displayed in a normalized histogram window with times ranging

from 2110 to 110 ms. Furthermore, in the simulations, the

number of spike coincidences is measured from the activity of

neurons belonging to the same population (auto-correlation) in 2 s

with 50,000 pairs randomly chosen in bins of 2 ms.

Experimental protocol
All the experiments were carried out according to EU (2003/

65/CE) and Spanish (BOE 252/34367-91, 2005) guidelines for

the care and use of laboratory animals for chronic experiments.

The experimental protocols were previously approved by the

Ethics Committee of the University Pablo de Olavide (permit

number 07/2). Mice (n = 4, 5 months old) were implanted with

electrodes in the CA1 subfield of the hippocampal formation, and

in two distant neocortical regions (frontal and occipital cortex)

under stereotaxic guidance. The reference electrode was located

above the cerebellum (1 mm posterior to lambda on midline).

Following experiments, mice were deeply anesthetized with a

lethal dose of Nembutal. To verify the electrode placement,

sections were mounted on gelatin-coated slides, stained with the

Nissl method, dehydrated, and studied with light microscopy.

LFPs were recorded in the animal’s home cage with a sampling

rate of 200 Hz. 60-s of continuous artifact-free LFP recordings,

selected both during exploratory motor behavior (active state) and

motor quiescence (passive state) in each animal. The running

speed was similar in both groups of mice. The averaged spectral

power was estimated by applying the Welch’s modified period-

ogram method (4-s segments, 1 Hz resolution, 50% overlapping,

and Hanning windowing) to selected LFP recordings in each LFP

derivation. The theta (5–11 Hz) peak frequency was identified as

the maximum spectral power value for each cerebral site and

animal, separately, by using custom scripts written for Matlab v.

7.4 (The MathWorks Inc., Natick, MA).

Author Contributions

Conceived and designed the experiments: MA JLC. Performed the

experiments: MA MC-G JLC. Analyzed the data: LLG CM MA JLC.

Contributed reagents/materials/analysis tools: LLG CM MA JLC. Wrote

the paper: LLG CM MA JLC.

References

1. Strogatz S (2003) Sync. New York: Penguin Books.

2. Pikovsky A, Rosenblum MG, Kurths J (2001) Synchronization: a universal

concept in nonlinear sciences. Cambridge: Cambridge University Press.

3. Niebur E, Schuster HG, Kammen D (1991) Collective frequencies and

metastability in networks of limit-cycle oscillatorswith time delay. Phys Rev

Lett 67: 2753–2756.

4. Ernst U, Pawelzik K, Geisel T (1995) Synchronization induced by temporal

delays in pulse-coupled oscillators. Phys Rev Lett 74: 1570–1573.

5. Reddy DVR, Sen A, Johnston GL (1998) Time delay induced death in coupled

limit cycle oscillators. Phys Rev Lett 80(23): 5109–5112.

6. Yeung MKS, Strogatz SH (1999) Time delay in the Kuramoto model of coupled

oscillators. Phys Rev Lett 82: 648–651.

7. Atay FM (2003) Distributed delays facilitate amplitude death of coupled

oscillators. Phys Rev Lett 91: 094101.

8. Atay FM, Jost J, Wende A (2004) Delays, connection topology, and

synchronization of coupled chaotic maps. Phys Rev Lett 92: 144101.

Synchronization via Hippocampal Dynamical Relaying

PLoS ONE | www.plosone.org 8 March 2011 | Volume 6 | Issue 3 | e17756



9. Sethia G, Sen A, Atay F (2008) Clustered chimera states in delay-coupled
oscillator systems. Phys Rev Lett 100: 144102.

10. D’Huys O, Vicente R, Erneux T, Danckaert J, Fischer I (2008) Synchronization

properties of network motifs: Influence of coupling delay and symmetry. Chaos
18: 037116.

11. Roxin A, Brunel N, Hansel D (2005) The role of delays in shaping spatio-
temporal dynamics of neuronal activity in large networks. Phys Rev Lett 94:

238103.

12. Dhamala M, Jirsa VK, Ding M (2004) Enhancement of neural synchrony by
time delay. Phys Rev Lett 92: 074104.

13. Wang QY, Duan ZS, Perc M, Chen G (2008) Synchronization transitions on
small-world neuronal networks: Effects of information transmission delay and

rewiring probability. EPL 78: 50008.

14. Wang Q, Perc M, Duan Z, Chen G (2009) Synchronization transitions on scale-
free neuronal networks due to finite information transmission delays. Phys Rev E

80: 026206.

15. Wang Q, Chen G, Perc M (2011) Synchronous Bursts on Scale-Free Neuronal

Networks with Attractive and Repulsive Coupling. PLoS ONE 6(1): e15851.

16. Wang XJ (2010) Neurophysiological and computational principles of cortical
rhythms in cognition. Physiol Rev 90: 1195–1268.

17. Kahana M, Seelig D, Madsen J (2001) Theta returns. Curr Opinion in
Neurobiol 11: 739–744.

18. Kahana MJ (2006) The Cognitive Correlates of Human Brain Oscillations.

J Neurosci 26: 1669–1672.
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82. Zhou C, Zemanová L, Zamora G, Hilgetag CC, Kurths J (2006) Hierarchical

organization unveiled by functional connectivity in complex brain networks.

Phys Rev Lett 97: 238103.
83. Izhikevich08 PNAS- Izhikevich EM, Edelman GM (2008) Large-scale model of

mammalian thalamocortical systems. Proc Natl Acad Sci 105: 3593.
84. Miller KJ, Sorensen LB, Ojemann JG, den Nijs M (2009) Power-Law Scaling in

the Brain Surface Electric Potential. PLoS Comput Biol 5(12): e1000609.

Synchronization via Hippocampal Dynamical Relaying

PLoS ONE | www.plosone.org 10 March 2011 | Volume 6 | Issue 3 | e17756


