
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Innovation in plant-based transient protein expression
for infectious disease prevention and preparedness
Frank Sainsbury1,2

Available online at www.sciencedirect.com

ScienceDirect
Addressing new challenges in global health and biosecurity

requires responsive and accessible platforms for the

manufacture of preventative or therapeutic interventions.

Transient protein expression in plants has evolved into a

technology that offers a unique combination of rapid

expression, inherent scalability, and flexibility in gene stacking

with the capability to produce complex proteins and protein

assemblies. Technical developments that have driven the

progress of transient expression in plants include advanced

expression systems, protein engineering and synthetic biology

approaches to transiently, or stably, modify host plants. The

plasticity of transient expression in plants, speed of scalability

and relatively low capital costs, highlight the great potential of

this technology in the future of human and animal health.
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Introduction
Globalisation and climate change have resulted in chang-

ing patterns of the emergence and global spread of

infectious diseases. The majority of emerging infectious

diseases are zoonotic or vector-borne with over 85 such

diseases discovered since 1980 [1]. Notable cases, includ-

ing highly pathogenic avian influenza (H5N1) and severe

acute respiratory syndrome (SARS) among others, have

highlighted the difficulty in predicting zoonotic disease

outbreaks. Vaccination is a crucial tool in combatting

zoonosis and the spread of circulating pathogens, and is

central to the One Health paradigm that acknowledges

the interaction between human and animal health, as well

as the influence of the environmental and social context
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[2]. Addressing infectious disease within this framework

requires, above all, responsive protein production. The

maturation of plant-based transient expression has dem-

onstrated that this technology is able to meet this require-

ment for both human and animal health [3,4].

Around the turn of the century, transient transformation

of plant tissues emerged as an alternative mode of trans-

genesis [5] that has created new opportunities for plant

biotechnology in biologics production [3], metabolic engi-

neering [6] and synthetic biology [7]. Introducing dis-

armed Agrobacteria tumefaciens strains carrying binary vec-

tors into the leaves of whole plants, known as

agroinfiltration, results in T-DNA delivery to all cells

in the area infiltrated with bacterial suspension. This

approach has three considerable benefits for recombinant

protein production in infectious disease prevention and

preparedness: (i) it enables easily scalable and rapid

upstream processes, (ii) it allows straightforward multi-

plexing of gene constructs (gene stacking), and (iii) it

decouples host cell engineering from plant viability and

biomass accumulation (Figure 1). The implications of

these advantages with regard to responsive vaccine pro-

duction, and recent technological advances complement-

ing these features, are the subject of this review.

Transient expression technologies: speed and
flexibility
Among the enabling technologies that have turned plants

into viable hosts for pharmaceutical and therapeutic protein

production, transientexpression inthe leavesofwholeplants

has been the most transformative. Driving the uptake of this

technology in academic and commercial settings was the

development of expression systems derived from the regu-

latory sequences, replication elements, and inhibitors of

post-transcriptional gene silencing of various plant viruses

[8�]. More recently, taking advantage of existing genome-

wide RNA stability data, a systematic analysis of diverse viral

and plant 30 untranslated regions (UTRs)/terminator

sequences demonstrated the additive potential of native,

chimeric or duplicated regulatory sequences in directing

high-level transient expression [9��]. Further opportunities

for increasing expression also now come from the demon-

strated that entirely synthetic, and highly effective, UTRs

can be designed from first principles [10��]. Determining the

optimal combination of regulatory elements for a given

recombinant protein remains empirical, though the ease

and speed with which combinations can be rapidly screened

using transient expression is a significant advantage.
www.sciencedirect.com
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Salient features of transient expression in plants as a vaccine

production host.

When performing transient protein expression in plants each plant is a

disposable and biodegradable bioreactor [14��]. Therefore, scaling up

production simply requires agroinfiltration of a greater number of

plants. Expression characteristics remain the same, meaning that both

upstream decisions and processes, such as the co-expression from

multiple constructs and/or the inclusion of cell physiology modifying

accessory proteins are translatable to all scales of production. The

flexibility afforded by transient expression is such that there are

multiple ways in which constructs can be combined for co-expression;

in multicistronic vectors, by mixing A. tumefaciens cultures, or by

using multiple compatible plasmids. Furthermore, the use of mature

plants in which the biomass has already accumulated, permits the

modification of host cell physiology to an extant not compatible with

viable growth and development, such as strong suppression of post-

transcriptional gene silencing (i) and modifiers that lead to wholesale

modification of the host proteome (ii).
In a landmark study, Medicago Inc. demonstrated that

transient expression could be used to produce a virus-like

particle (VLP) vaccine against Influenza H1N1 within

three weeks of identification of the circulating pandemic

strain [11]. This represents a fourfold to eightfold reduction

of the time it takes to make Influenza vaccines by the

traditional egg-based method. The responsiveness of

plant-based transient expression for the production of

vaccines represents a competitive advantage [12] that

has attracted industry and government agencies to explore

the capabilities of this approach. In 2007, the Defense

Advanced Research Projects Agency (DARPA) of the

USA began investing in the development and proof-of-

concept operation of commercial scale facilities for the
www.sciencedirect.com 
manufacture of vaccines via agroinfiltration in plants. Holtz

et al. provide a detailed insight into thedesign andoperation

of one such facility [13��], scaled to produced tens of

millions of vaccine doses per month [3,13��]. The commis-

sioning of these exemplar facilities highlighted how rapidly

manufacturing sites for transient plant-based expression

can be established as well as how smooth the scaling of

upstream processes is, demonstrating the responsiveness of

plant-based vaccine production. The key to the scale-up

advantages of plant-based expression lies in the fact that

each plant is a single-use bioreactor [14��]. Expression

conditions remain the same at all scales, allowing for direct

translation of constructs and combinations of constructs

tested at small scale.

The co-delivery of multiple expression constructs by

agroinfiltration is remarkably simple. The simplest

approach is to mix A. tumefaciens cultures containing

individual constructs. This provides great flexibility in

testing combinations of genes and expression cassettes for

the assembly of protein complexes or co-expression of

host cell engineering constructs to enhance expression.

However, it has been shown that co-expression is more

efficient when using a multicistronic construct delivered

by a single A. tumefaciens culture, ensuring co-expression

in all transformed cells [15]. An alternative approach is the

delivery of T-DNA from binary vectors with compatible

replication origins from a single culture [16]. This has the

advantage of minimising the size of each construct when

multiple expression cassettes are required, potentially

simplifying cloning steps.

In some cases, it may be necessary to modulate expression

levels of individual constructs to optimise yields. For exam-

ple, some multicomponent VLPs require coat proteins in

varying stoichiometry. The most straightforward method to

regulate expression from individual constructs is via relative

dilution of the A. tumefaciens suspension carrying that con-

struct. However, at a certain dilution not all cells are trans-

formed by each strain, which limits co-expression from

multiple constructs [15]. Protein expression from individual

expression cassettes can be controlled at a translational level

via point mutations in the 50 UTR [17] or via engineered

mRNA stability using mutant or chimeric 30 UTRs [9��,18].
Ideally, the capacity to tune expression levels is predictable.

Since the impact of different regulatory sequences is protein

coding sequence-dependent, intimate knowledge of

elements within an expression cassette can be a distinct

advantage. In a particularly elegant example, the levels of

individual proteins among four Bluetongue virus coat pro-

teins were controlled by single mutation to the 50 untrans-
lated region to modulate translationand optimise yield of the

complete VLP [19]. An alternate approach is to use protein

engineering to achieve the same effect. This was demon-

strated by the production of African horse sickness virus

VLPs where mutations to increase the stability of 1 out of

4 structural proteins resulted in increased VLP yields [20].
Current Opinion in Biotechnology 2020, 61:110–115



112 Plant biotechnology
Structurally authentic vaccines
Transient expression in plants is particularly good for the

production of complex protein assemblies, such as VLPs

[21,22]. The design, production and analysis of VLP

vaccines produced in plants have been facilitated by high

resolution biophysical characterisation, such as that pro-

vided by X-ray crystallography and cryo-electron micros-

copy (cryo-EM) (Figure 2). Cowpea mosaic virus was the

first plant virus used for epitope display [23] and as early

as 1996, X-ray crystallography was used to probe the

conformation of Human rhinovirus 14 epitopes presented

using this platform (Figure 2a). The structure revealed

that the epitope was linearised in vivo, probably explain-

ing why the epitope-specific antibodies raised by the

particles were not neutralising [24].

Cryo-EM and cryo-electron tomography require far less

material and simplified sample preparation than what is

required for crystallography, and these techniques are

now being used to show the precision with which authen-

tic VLPs of human and animal viruses are assembled

following transient expression in plants. Single particle

analysis was used to demonstrate the structural authen-

ticity of Poliovirus type 3 VLPs made transiently in plants

and engineered to be more stable than wild-type VLPs

(Figure 2b) [25��]. Stability is a significant challenge,

especially in resource-poor settings where there may be

difficulties maintaining the cold-chain during vaccine

distribution, and the protective immunity afforded in

mice by these plant-made Poliovirus VLPs is promising

[25��]. Cryo-EM has also been used to determine the

structure of a plant-made VLP vaccine against Atlantic
Figure 2

(a) (b) 

High resolution biophysical characterisation of VLPs transiently expressed in

(a) X-ray crystallography structure of the chimeric Cowpea mosaic virus dis

(b) Cryo-EM reconstruction of the stabilised mutant of Poliovirus type 3 VLP

(c) Cryo-EM reconstruction of the Atlantic Cod Nervous necrosis virus VLP 

protrusions flexible P domain [26].

(d) Influenza reconstructed by cryo-electron tomography generated from a 

hemagglutinin in purple [27]. (i) Discoid particles comprising >65% of partic

particles in the preparation (a small number of star-shaped hemagglutinin ro

hemagglutinin trimers are separated by approximately 200 nm, which is aro
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Cod Nervous necrosis virus that confers protective immu-

nity in sea bass (Figure 2c) [26]. Tomographic imaging of

Influenza hemagglutinin-based VLPs transiently

expressed in plants also showed that these enveloped

virus VLPs are morphologically similar to Influenza vir-

ions, although the distance between hemagglutinin tri-

mers was slightly greater on the VLP (Figure 2d). The

authors hint at a relationship between this distance and

immunogenicity, and show that the VLPs preserve native

interactions with immune cells [27]. Similar plant-made

particles have completed Phase II clinical trials [28].

Given the structural basis for immunogenicity of subunit

vaccines including VLPs, cryo-EM is sure to become a

more commonplace approach in the quality control and

structure-based development of vaccines transiently

expressed in plants.

Heterologous modifiers of host cell
physiology
Host plant cells can be considered as a production chassis,

in which physiological conditions can be optimised to

favour recombinant protein quality and quantity. Tran-

siently expressed modifiers of physiology are a means to

synthetically recondition the production chassis without

the lengthy process of generating recombinant plant

lines. Various biomolecules have been employed to tran-

siently engineer host plants including protein, RNA

species leading to RNAi, and plant hormones. An advan-

tage of transient modification of cells in mature plants is

that it allows for tailoring of host cell physiology that

would otherwise be unsustainable in transgenic plants.

For example, strong suppressors of post-transcriptional
(c) i. iii.

ii.

(d)

203 Å
176 Å
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 plants.

playing an epitope from Human rhinovirus 14 in red [24].

 to 3.6 Å [25��].
to 3.7 Å for shell domain (in blue) and lower resolution for the trimeric

tilt series of images of individual particles showing trimeric

les in the preparation, (ii) spherical particles comprising �30% of

settes were also observed), (iii) close-up of discoid particle showing

und two times the spacing found on the native virion.
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Transient host cell modifications to improve the yield and quality of

recombinant secretory proteins.

(a) Prevention of recombinant protein degradation by endogenous

proteases (cyan) through the co-expression of protease inhibitors

(magenta).

(b) Modulation of the pH in the secretory pathway via the co-expression of

the Influenza M2 ion channel. The pH gradient of the secretory systems

changes from around neutral in the endoplasmic reticulum (blue) and

gradually decreases through to the trans-Golgi (red) before generally

raising again in the unbuffered apoplast. Insert shows the pH change in

the cis-Golgi and trans-Golgi mediated by M2 co-expression [38].

(c) Glycoengineering through the co-expression of glycosyltransferases

designed to insert into certain locations within the secretory pathway using

chimeric or plant-derived transmembrane domains (green), diverting the

synthesis of glycans towards the desired profile.
gene silencing are developmentally lethal in their wild

type form, yet commonly used to improve transient

recombinant protein expression [29,30].

Many recombinant candidate vaccines, such as viral gly-

coproteins and secretory immunoglobulins are expressed

in and targeted to the secretory pathway of plants [31].

These complex proteins have specific requirements for

protein maturation and stability and various parameters

contributing to their accumulation have been targeted for

improvement by transient modification (Figure 3). Unin-

tended proteolysis is often cited as a concern for plant-

based expression and the identification of specific pro-

teolytic activities in the plant secretory pathway allowed

rational inhibition of these activities by the co-expression

of protease inhibitors (Figure 3a) [32]. This strategy can

result in a 1.4-fold increase in recombinant antibody

production [33] and consideration of inhibitors regulated

in response to plant–pathogen interactions is also unco-

vering effective protease inhibitors for the protection of

recombinant proteins [34�]. RNAi constructs have also

been used to knock down proteolytic activities [35],

which has led to a 1.6-fold increase in interleukin 10 accu-

mulation in whole plants [36]. The continued identifica-

tion of specific proteases directly involved in the degra-

dation of recombinant proteins in the secretory pathway

increases the potential impact of transient or stable

knock-down approaches [37]. An alternative approach

to improving protein stability is to modulate the pH of

the secretory pathway via the expression of proton chan-

nels (Figure 3b). The co-expression of Influenza M2 ion

channel significantly raises the pH in the late stages of the

secretory pathway of plants, mirroring the strategy of the

influenza virus to prevent premature conformational

change of the hemagglutinin [38]. This approach led to

increased accumulation of acid-labile isotypes of hemag-

glutinin, and it was subsequently shown that M2 expres-

sion results in a broad remodelling of protease activities in

the secretory pathway [39]. Another important aspect of

protein maturation in the secretory pathway is glycosyla-

tion. Transient glycolengineering is the process by which

additional glycosyltransferases are co-expressed

(Figure 3c) [40,41,42�]. This strategy has been used to

generate numerous human-like N-linked glycan profiles

including branched glycans [43] and O-linked glycans

[44] that do not normally form in plants. In theory, it also

includes transient knock-down of endogenous glycosyl-

transferases, which has been achieved in numerous stable

plant lines [42�].

In addition to transiently tuning host cell physiology by

the recombinant expression of modifiers, innovations in

chemically regulating plant development or modifying

the response to agroinfiltration have been reported. For

example, the selected application of plant hormones has

been used to rebalance the proteome from an antibacte-

rial response to favour recombinant protein accumulation
www.sciencedirect.com 
[45]. Hormones have also been used to modify plant

architecture, increasing biomass and recombinant protein

yield [46]. The over expression of recombinant proteins

puts enormous stress on the cell and the co-expression of
Current Opinion in Biotechnology 2020, 61:110–115
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stress-tolerance proteins or the inclusion of an antioxidant

in the infiltration media can also increase yields of recom-

binant proteins from transient expression [30]. As expres-

sion levels are reaching a greater proportion of soluble

protein, attention is turning towards the improvement of

host cell chassis within whole plants to consistently

produce not only high yields, but also high quality recom-

binant proteins.

Conclusions
In the years since transient expression systems changed

the way whole plant hosts were used to make recombi-

nant protein, the capability of transient expression in

plants to produce complex antigens in high yields and

with short timelines has been unequivocally demon-

strated. The flexibility of this technology as discussed

here, together with the speed and ease of scale-up,

presents a platform uniquely positioned to respond to

emerging infectious diseases. While even the highest

yielding systems have a large production footprint [12],

the construction of production facilities require relatively

low capital expense [14��] and can be constructed rela-

tively fast [13��]. This has been recognised by govern-

ments and governmental agencies, which has in turn

increased commercial viability. In addition to prepared-

ness for human health and biosecurity [47], there is also a

commercial case for the production of veterinary vaccines

and therapeutics [12,48]. Attention is turning to the

improvement of whole plant hosts and much of this

review discusses the transient modifications that can be

made to improve protein expression. However, there is

also considerable effort to improve plants specifically for

recombinant expression through the use of gene-editing

techniques, for example, in glycoengineering [49,50].

The technical and commercial maturation of expression

technologies, along with product-specific host cell tailor-

ing, demonstrates the responsive nature of transient vac-

cine expression in plants, to the potential benefit of global

health and biosecurity.
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