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Abstract

Introduction

Parkinson’s disease  (PD) is a neurodegenerative disorder 
primarily affecting the population above the age of 60.[1] It 
involves 0.3% of the general population worldwide.[2]

 PD 
manifests with several motor and non‑motor symptoms.[1] 
Rest tremor, rigidity, bradykinesia, and postural instability 
are its classical motor features. Nearly 90% of PD patients 
suffer speech impairment,[3] but only 5% of them receive any 
therapy for speech‑related issues.[4] One‑third of PD patients 
who are aware of their speech problems describe it as the most 
disabling feature of the disease, with many of them losing 
interest to participate in conversations and suffer depression.[5]

The speech abnormalities in PD patients include a reduction 
in speech volume, breathiness in voice, fluctuation in pitch, 
and a rapid rate of word output with incomprehensible speech. 
Major speech impairments can be categorized as hypophonia, 
dysarthria, dysphonia, and tachyphemia. Hypophonia is 
characterized by a soft voice or reduced voice volume, an early 
motor symptom of PD.[1] Dysarthria is related to articulation 
difficulties and dysphonia is related to defective use of the 
voice.[6] In Tachyphemia, an unwanted movement acceleration 
characterized by high speech rate and rapid stammering occurs 
that makes speech unintelligible.[7]

The cause of speech impairment in PD can be understood by the 
speech chain shown in Figure 1. The transmission of a message 
starts with the formation of words and sentences in the brain, 
known as the linguistic level, continues on the physiological 
level with neural and muscular activity, and generates and 

transmits a sound wave at the acoustic level. Speech problem 
in PD starts at the linguistic level where the neural signal 
does not transmit appropriately to the physiological level via 
motor nerves.

Several therapies have been used to address speech 
abnormalities in PD, with most of them having significant 
limitations and none of them providing a long‑lasting 
solution [Table 1]. Levodopa therapy may not improve speech 
in all PD patients.[8] Moreover, it often results in significant 
dyskinesias involving orofacial and respiratory muscles 
involved in speech production.[8] Deep brain stimulation 
lacks a consistent effect on the improvement of speech in PD 
patients.[9] Because of the progressive nature of the worsening 
of speech in PD, vocal cord procedures like vocal fold 
augmentation may not be helpful.[10] Speech therapy, including 
Lee Silverman Voice Therapy (LSVT), requires a huge effort 
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Table 1: Treatment modalities used for the improvement of speech intelligibility in PD patients

Type of therapy Characteristics Limitations
Pharmacological therapy

Levodopa May improve speech loudness and intelligibility.[11] May cause speech complications related to articulation 
like uncontrolled tongue‑rolling and lip‑clicking.[11]

Surgical therapy
Deep Brain 
Stimulation 

May improve several motor activities, including articulatory and 
phonatory components such as loudness.

Overall intelligibility may worsen[9]

Occasionally speech improves after stopping the 
stimulation.[12]

Vocal Fold 
Augmentation 

May improve speech intensity and quality by reducing space 
between the vocal folds by injection of implant materials in it. 

Temporary improvement.

Speech therapy
LSVT An intense intervention emphasizes increasing amplitude and 

recalibrating vocal loudness.[13]
Requires numerous meetings with speech 
therapists (16 sessions of 50-60 min duration each in a 
month along with home practice[14])
Not widely available; only 3-4% PD population 
receive this treatment.[12]

Expiratory 
muscle strength 
training (EMST)

It builds up the muscles[15] that push air out of the lungs for speech.
Improve syllables per breath and voice intensity in PD patients.
EMST150 and The Breather™ are a few available devices used 
for EMST.
Can be done at home.

It requires regular practice by blowing through the 
device as hard as possible for effectiveness.

Game‑based therapy This technique helps patients use voice‑based features including 
pitch and phonation time to control parameters in the game, 
similar to a joystick.
Suitable for in‑home self‑treatment.
It provides immediate feedback via speech recognition and 
patients do not feel dull and monotone.
May provide self‑motivation and autonomy to PD patients.[16]

It requires regular practice
Time consuming.

Portable devices
Amplifier It increases vocal loudness.[17] Cumbersome to carry.
Smartphones Apps that provide information on volume, rate, and 

pitch of voice during a conversation and guide users to adjust 
accordingly. 

Only act as an indicator of voice quality but does not 
improve the voice.

Earpiece SpeechEasyPD device works on the principle of delayed auditory 
feedback, which introduces a slightly delayed recording of the 
speech into the ear, and the feedback loop causes the speaker to 
slow down and speak more clearly.
SpeechVive device plays background sounds in the ear while the 
patient talks and turns off when he stops talking. This prompts the 
user to speak louder, slower, and clearer, known as the Lombard 
effect.[18]

Costly (SpeechVive costs $2500 while SpeechEasyPD 
costs around $2500-4500)
Overall, speech naturalness reduces.[19]

Figure 1: Various levels of human speech chain
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from PD patients, which may not be easy. Other therapies, 
such as game‑based therapy and portable devices have got 
their own limitations, including the need for practice, time 
consumption in the former, and a huge expense for the latter. 
On the other hand, artificial intelligence (AI) is a non‑invasive 
and non‑pharmaceutical technique, hence virtually no side 
effects. It can train itself with new data and thus adapt to 
changes over time.

With advancements in sensors and computational technology, 
extracting and analyzing voice data from PD patients has 
become quite comprehensive. Researchers have extracted 
several baseline voice features[20] from PD patients to quantify 
the disorder. It involves several voice‑based tasks, for example, 
phonation, prosody, or articulation for voice recording. Table 2 
shows these tasks and features extracted from each task. The 
speech characteristic varies a lot if PD voice is compared 
with the control group. This helps to design a speech‑based 
assessment of PD. In addition, this helps to understand the 
modification required to make speech intelligible.

The baseline speech features do not capture subtle variations 
in fundamental frequency and amplitude.[21] To overcome 
these issues, researchers have used Mel‑frequency cepstral 
coefficients, perceptual linear prediction, and wavelet 
transform coefficients as voice features.[21] These features 
characterize the speech signal’s time power spectrum envelope, 
representing the vocal tract. These features have better time 

and frequency resolutions, and when combined with baseline 
features, they characterize PD voice much better.[21] This article 
reviews machine learning algorithms (MLAs), a sub‑set of AI 
applications for detection, assessment, and voice rehabilitation 
of PD. We discuss MLAs and their uses in PD diagnosis along 
with various possibilities for their use in speech rehabilitation.

Method

We searched the literature for studies focusing on 
speech/voice disorder in PD and rehabilitation techniques 
till June 18, 2022. We searched PubMed and Engineering 
Village  (Compendex and Inspec combined) database. 
Using search criteria  [“Parkinson disease”/exp OR 
“Parkinson disease” OR  (Parkinsons AND disease)] 
AND  (“speech” OR voice) AND  (rehabilitation OR 
improvement OR “diagnosis”) AND  [machine AND 
learning OR (artificial AND intelligence) OR automatic 
OR neural OR (neural AND network) OR probability OR 
“support vector machine  (SVM)” OR (deep AND neural) 
OR “convolutional neural network” OR “nearest neighbor 
algorithm” OR (decision AND tree)], we got 335 articles in 
PubMed database, and 108 articles in Engineering Village 
database. After careful screening of the title and evaluation of 
abstracts, we used select articles describing the use of AI or 
its various forms in the management of speech abnormalities 
in PD to synthesize this review.

Table 2: The different voice features along with the trend in PD patients as compared to healthy controls[22,23]

Sl. 
No.

Feature Explanation Trend in PD patients as 
compared to healthy adults

A Phonation (sustained phonation of any vowel 
for ≥5-10 sec)

Jitter (%), Jitter (Absolute) It measures variation in fundamental frequency, that is, the 
time period between vocal fold opening.

Higher

Shimmer, Shimmer (decibel), Shimmer A measure of variation in amplitude, that is, the extent of 
vocal fold opening.

Lower

Noise/harmonic ratio and Harmonic/noise 
ratio 

A measure of the ratio of noise to tonal components in the 
voice.

Lower

B Prosody (Reading sentences, stories, rhythm, or 
maybe conversational speech)

Average fundamental frequency An objective correlates of the pitch, measured in hertz. Lower
Speech rate The number of syllables uttered per second. Lower
Pauses ratio The ratio of all pauses duration to the total time duration. Lower
Intensity The sound pressure level in decibel or average of squared 

magnitude of recorded voice.
Lower

C Articulation (monosyllabic (vowel) or bisyllabic 
phonemes (a mixture of vowels and consonants) 
are spoken at a faster pace repeatedly)

DDK rate The number of/pa/‑/ta/‑/ka/syllable per second. It measures 
the ability to articulate quickly and regularly.

Lower 

DDK regularity The rate of change of DDK rate with time. It indicates the 
ability to maintain a constant DDK rate.

Higher

Voice onset time It measures the average length across/p/,/t/, and/k/consonants 
extracted from all three/pa/‑/ta/‑/ka/syllable repetitions. 

Higher

Vowel space area Measure area of the triangle formed by/a/,/i/, and/u/vowels in 
the F1‑F2 plane (First and second Formant frequency).

Lower

Vowel articulatory index vowel formant centralization. Lower
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Machine Learning Algorithms

MLAs learn functions to find the relationship between input 
and output in supervised learning. Input are features derived 
from the signal, and output can be a discrete (classification) 
or continuous value (regression). The basic idea of machine 
learning is to learn functions or boundaries which can predict 
or classify given test input. MLAs can detect dysarthria 
resulting from neurological dysfunction and compare the 
speech parameters to that of healthy individuals[24] through 
voice assessment with high accuracy. Its ability to detect small 
changes in voice features is better than speech therapists or 
audiologists.[25] The possibility of discriminative assessment 
among patients with PD, progressive supranuclear palsy, and 
multiple system atrophy has been reported.[23] The selection 
of adequate voice features and MLAs make voice a possible 
biomarker for PD diagnosis.

A number of voice features affect the performance of 
MLAs. Narendra et al.[26] have used two feature‑set derived 
consisting of 16 and 39 features, respectively. The results 
show the accuracy of the classifier method is better when 
higher numbers of features are utilized, probably due to the 
fact that more features contain more information. But at the 
same time, it has to be understood that selected features are 
independent; otherwise, the performance of the classifier 
will be affected. Tracy et  al.[27] have ranked 2330 acoustic 
features as per their importance and shown that after the first 
100 features, importance drops drastically, that is, inclusion or 
exclusion of lower‑ranked features does not affect performance 
significantly.

Use of MLAs in the Diagnosis of PD
In recent years, MLAs have been widely used in the diagnosis 
of PD patients. The advantages of MLAs are as follows:

Detection of PD
The parameters described in Table 2 show distinct variations 
from healthy individuals to PD patients,[28] which can be used 
for voice‑based PD classification,[29] and may facilitate early 
detection of PD.[30] Generally, vowels are used for sustained 
phonation, for example, \a\, \e\, \u\, etc., where patients have 
to speak a vowel for 5–10 sec. Skodda et al.[31] and Proença 
et al.[32] have used only two formant frequencies (F1 and F2) 
of the vowels for PD classification. They used geometrical 
calculation to see changes from the control group to PD cases, 
but it does not work in the early stage of PD.

Several MLAs classify patients into PD and non‑PD groups 
by learning a decision boundary in the speech data feature 
space. Random forest (RF) is the simplest method based on 
the decision tree concept,[33] with a reported accuracy of 96.8%. 
A decision tree is a flowchart‑like representation of speech 
features that graphically resembles a tree. The tree’s root is a 
feature connected to other roots through branches. Each branch 
act as an action based on the root (feature) value that can be 
taken to move down in the tree, and the tree’s leaves (endpoints) 

are classes, that is, PD or non‑PD class. Naive Bayes classifier 
is based on Bayes Theorem of conditional probability. SVM 
optimizes class boundary using a few samples known as support 
vectors in a region of feature space where samples belong to two 
different classes. All samples beyond this region are ignored. 
An SVM cannot handle more than two classes. An accuracy 
of 85.25% has been reported[34] using SVM for classification. 
Artificial neural networks  (ANN) is the technique adopted 
from the human brain that can learn any complex decision 
boundary. It consists of multiple layers with several neurons 
acting as an activation function. Åström et  al.[35] have used 
9 Parallel neural networks for classification and achieved an 
accuracy of 91.2% among 8 healthy and 23 PD patients. Sakar 
et al.[21] have combined the tunable Q‑factor wavelet transform 
coefficients as additional features with baseline features for PD 
classification and showed that accuracy improved for all MLAs, 
with a maximum accuracy of 86% using combined features 
compared to baseline features only.

The selection of features plays an important role in the 
classification accuracy of classifiers. Ashour et  al.[36] have 
shown that the accuracy of SVM improves from 88 to 94% by 
selecting eigenvector corresponding to significant eigenvalues 
compared to principal component analysis which is based on 
autocorrelation to discard highly correlated samples. Mostafa 
et al.[37] used five feature evaluators to rank each feature and 
showed that the accuracy of Decision Tree, Naive Bayes, ANN, 
RF, and SVM classifiers improved by around 10% when the 
best 11 features were selected out of 23 features. Optimal 
feature selection has improved the performance of SVM and 
RF significantly.[33]

Deep neural networks (DNN) is an extension of ANN having 
a higher number of neurons in each layer along with several 
hidden layers, with the capability of in‑built feature extraction 
and feature selection.[38] The major challenge for DNN‑based 
assessment is that it requires a large amount of training data 
because of its increased complexity.

Remote assessment using smartphones
Nowadays, smartphones are equipped with high‑performance 
processors and sensors. Many researchers have reported the 
application of smartphones for PD diagnosis and remote 
assessment. Almeida et  al.[39] have shown an accuracy of 
92.94% in PD classification using a smartphone’s microphone 
speech data, which is closer to 94.55% accuracy achieved 
using a standard microphone. Rusz et al.[22] have shown that 
hypokinetic dysarthria can be detected in the early stages of 
PD using smartphone microphone data. Another significant 
advantage of using smartphones is that it will help screen 
large populations effectively by avoiding the need for speech 
recording at the clinic and facilitating telediagnosis of PD.[29] 
Some challenges to remote assessment using smartphones 
include degraded voice quality caused by noise, reverberation, 
and other non‑linear distortion.[25] Speech enhancement 
techniques can improve voice quality and, therefore, PD 
classification accuracy.[25]
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Severity measurement
Neuro‑fuzzy system (NFS) and support vector regression are 
used for the prediction of the total unified Parkinson’s disease 
rating scale (UPDRS) using sustained phonation task of vowel 
\a\.[40] In design, NFS is similar to ANN, where the activation 
functions are based on fuzzy logic. In fuzzy logic, the output 
is a continuous value between 0 and 1, obtained by applying 
a rule to the input value. This rule varies from neuron to 
neuron, hence called fuzzy. The estimated UPDRS score can 
be useful for severity assessment remotely. Bayestehtashk 
et al.[41] have used all three voice tasks mentioned in Table 2, 
that is, phonation, prosody, and articulation, for UPDRS 
estimation using the regression method. They also showed that 
the reading task provides better estimation than the phonation 
and diadochokinetic (DDK) tasks.

Intelligible Synthetic Speech Generation using 
MLAs

This section overlooks the potential of MLAs to map or 
generate highly intelligible synthetic speech. We surveyed 
studies using these algorithms to treat dysarthric speech 
caused by PD. This algorithm involves getting speech data 
from microphones. The microphone can be both acoustic 
as well as non‑acoustic type. The signals from non‑acoustic 
microphones or sensors do not sound like speech but contain 
vital vocal excitation and articulation information. Authors 
have attempted to map this information to phonetic sounds. 
Supplementary Figure 1 represents the methodology used for 
the conversion of sensor information into highly intelligible 
synthetic speech. It can also be referred to as the “silent 
speech technique,” since speech is produced without voice. 
In the first phase, features are extracted which characterize 
the articulation during speech like tongues, lips, jaws, 
and other vocal muscles movements. In the next step, 
the phonetic sequence is generated using MLAs that map 
articulation features to phonetic sequences or texts. In the 
final step, phonetic sequences/texts are converted to speech 
using natural language processing techniques based on 
the desired rhythm, intonation, and syntactic information. 

Utilizing a similar but more straightforward methodology, 
words are predicted from dysarthric speech using MLAs.[42] 
A message is formed from these words by mapping words 
combination to the most frequently used sentence. At the 
final stage, the sentence is converted to clear synthetic 
speech.

A novel approach is proposed for voice rehabilitation, which 
predicts phonetic sequence based on myoelectric  (EMG) 
signals placed in the neck area using NFS.[43] In a similar 
work, Janke et al.[44] have implemented a facial surface EMG 
system. They have used several MLAs and showed that DNN 
is the best choice for mapping sensor data to articulated 
phonemes.

A variety of non‑acoustic sensors can be used as sensor input. 
These can reveal speech attributes such as low‑energy consonant 
voice bars, nasality, and glottalized excitation, which are not 
captured by acoustic sensors.[45] The non‑acoustic sensors 
are highly noise‑robust as they do not depend on air pressure 
variation instead vibration from the skin. These sensors can be 
placed in several places, including around the throat, behind 
the neck, jawline, and temple [Supplementary Figure  2]. 
Table 3 shows the merits and demerits of various types of 
non‑acoustic sensors.

Voice features can be extracted from parallel recorded voices 
using close‑talk microphone (placed close to the mouth) as 
an acoustic sensor and throat microphones  (touching the 
neck area) as a non‑acoustic sensor for classification.[47] 
Although acoustic sensors have been widely used for PD 
voice rehabilitation, the use of non‑acoustic sensors is yet to 
be explored.

Some researchers have developed devices consisting of 
magnetic sensors and magnet‑implant in the mouth. The 
received magnetic data is mapped to phonemes using signal 
processing techniques since each phoneme has specific facial 
and tongue movements. Gilbert et al.[48] have developed such 
devices and claimed to achieve speech recognition accuracy 
above 90%. These devices may be helpful for PD patients if 
they can articulate but cannot speak loud enough.

Table 3: Types of non‑acoustic sensor with their advantages and disadvantages

Microphone Advantages Disadvantages
Bone conduction 
microphone 

Captures low‑frequency information.
Fairly robust noise.

Narrowband speech.
Position‑dependent performance.[46]

Throat microphone Skin‑attached piezo‑electric sensors.
Measures vocal cord vibration effectively.
Significantly more robust to environmental noise.

Lacks intelligibility and sounds unnatural.
Lacks higher frequency contents.

Electroglottography Measures vocal fold contact area.
Detect glottal activity.
The recognition rate is high when EGG is combined with speech.

Vocal tract characteristics are not 
captured.

Physiological 
microphone

Pick up sounds from the body skin.
Better quality and intelligibility than a close‑talk microphone.

Capture unwanted air combined 
vibrations.

Non‑audible 
Murmur 

Placed on the neck (behind the speaker’s ear) can detect very quietly uttered speech.
Noise robust.
Recognize the whispered and murmur sounds effectively.

Affected by body tissues and lip 
radiations.
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The major advantage of MLAs lies in their ability to generate 
intelligible speech without any physical side effects or harm 
to PD patients. Many improvements are expected with the 
ever‑evolving new architectures in MLAs. Nowadays, MLAs 
are being used in all fields of life, making hardware employing 
MLAs easily available and accessible by the general public. 
With the increased demands for MLA‑supported hardware, it 
is expected that costs will keep falling in the future.

Conclusion

Speech abnormalities start from an early stage of PD, and 
these changes become very obvious as the disease progresses. 
At an early disease stage, minor speech abnormalities are not 
perceivable by humans over a short period, but MLAs can 
automatically assess several speech features and quantify the 
progression in speech abnormalities as well as the stage of 
PD. PD speech rehabilitation techniques using MLAs may 
prove superior to medical and surgical therapies as well as to 
other external aid devices and mobile apps. An amalgamation 
of MLAs and advanced sensors for speech rehabilitation of 
PD patients at any disease stage may reduce the burden on 
audiologists or speech therapists.
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Supplementary Figure  1: A  methodology used for synthetic speech 
generation

Supplementary Figure 2: Skin area representing sensors placement for 
speech production


