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Androgen receptor profiling predicts prostate
cancer outcome
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Abstract

Prostate cancer is the second most prevalent malignancy in men.
Biomarkers for outcome prediction are urgently needed, so that
high-risk patients could be monitored more closely postopera-
tively. To identify prognostic markers and to determine causal
players in prostate cancer progression, we assessed changes in
chromatin state during tumor development and progression. Based
on this, we assessed genomewide androgen receptor/chromatin
binding and identified a distinct androgen receptor/chromatin
binding profile between primary prostate cancers and tumors with
an acquired resistance to therapy. These differential androgen
receptor/chromatin interactions dictated expression of a distinct
gene signature with strong prognostic potential. Further refine-
ment of the signature provided us with a concise list of nine genes
that hallmark prostate cancer outcome in multiple independent
validation series. In this report, we identified a novel gene expres-
sion signature for prostate cancer outcome through generation of
multilevel genomic data on chromatin accessibility and transcrip-
tional regulation and integration with publically available tran-
scriptomic and clinical datastreams. By combining existing
technologies, we propose a novel pipeline for biomarker discovery
that is easily implementable in other fields of oncology.
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Introduction

Prostate cancer is the second most common cancer in men, with

worldwide more than one million new patients diagnosed and

300,000 deaths annually (Torre et al, 2015). When the disease is con-

fined to the prostate, patients can be treated with prostatectomy and/

or radiotherapy with a curative intent. However, the disease recurs in

30% of patients, for which there is no cure (Amling et al, 2000).

Androgen receptor (AR) plays a pivotal role in prostate cancer

development and progression, by mediating transcription of pro-

mitotic genes, including UBE2C and cyclin D, resulting in prostate

cancer cell proliferation (Xu et al, 2006; Wang et al, 2009). Upon

androgen stimulation, AR dissociates from its chaperones and

translocates to the nucleus (Brinkmann et al, 1999). Subsequently,

AR binds at distinct genomic regions to mediate expression of

directly responsive genes, ultimately leading to tumor cell prolifera-

tion (Itkonen & Mills, 2012). AR binding requires accessible chro-

matin, which is facilitated by pioneer factors, including FOXA1 and

GATA2 (Bohm et al, 2009). Chromatin-bound AR subsequently

recruits coactivators and corepressors which facilitate or repress its

transcriptional activity, respectively (Shang et al, 2002). Differential

expression levels of AR pioneer factors and coregulators correlate

with clinical outcome (Bohm et al, 2009; Sahu et al, 2011), implicat-

ing deregulation of the androgen-signaling axis in prostate cancer

development and progression.

Androgen deprivation therapy (ADT) abrogates androgen signal-

ing either through diminishing androgen synthesis or through

competitive binding of the receptor, both resulting in a reduction of

transcriptional activity of the AR. Patients with failed salvage ther-

apy or metastatic prostate cancer are treated with ADT as a first-line

palliative treatment (Heidenreich et al, 2014a). Moreover, adjuvant

ADT improves the chances of cure for patients treated with

radiotherapy (Pilepich et al, 2001; Bolla et al, 2009). Still, not all
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radiotherapy-treated patients will benefit from adjuvant ADT

(Roach, 2014). After prostatectomy, there is no conclusive evidence

for benefit from adjuvant ADT (Zincke et al, 2001; Dorff et al, 2011;

Miocinovic et al, 2011; Siddiqui et al, 2011; Briganti et al, 2012;

Schubert et al, 2012; Tsurumaki Sato et al, 2014), but it is not unli-

kely that a subgroup of patients may benefit from adjuvant ADT

after prostatectomy. Early identification of high-risk patients would

be of substantial clinical relevance, so that these patients could be

monitored more closely.

D’Amico et al (1998) developed a classification system based on

clinical parameters (PSA, Gleason and clinical staging) to group

men in low, intermediate, and high risk of relapse after therapy with

curative intent. Limitation of this classification is the lack of integra-

tion with multiple risk factors and genomic data, which could

provide more personalized risk assessment. Besides clinical risk

stratifications, a number of different genomic classifications have

been developed that enable the identification of high-risk patients

(Irshad et al, 2013; Lalonde et al, 2014; Ramos-Montoya et al,

2014). However, no such genomic risk assessment biomarkers are

currently adopted in routine clinical practice.

ADT can keep metastatic disease under control for several years,

but practically all tumors eventually develop resistance to treat-

ment. The majority of ADT-resistant tumors maintain active AR

signaling, rendering this pathway a legitimate target for a second-

line endocrine therapy (Valenca et al, 2015). Numerous novel anti-

androgens and androgen depleting agents are being introduced into

the clinic, including enzalutamide (MDV3100), ARN-509, and the

CYP17 inhibitor abiraterone (Potter et al, 1995; Tran et al, 2009;

Clegg et al, 2012). Unlike older anti-androgens (bicalutamide and

flutamide) (Culig et al, 1999; Scher & Sawyers, 2005), the new

generation of anti-androgens (e.g. enzalutamide) prevent nuclear

translocation of AR and do not exhibit agonistic properties. But

despite clinical implementation of these improved inhibitors of AR

signaling, response is partial and temporal and tumors inevitably

progress into a more aggressive and typically lethal form of prostate

cancer (Antonarakis et al, 2014). Various mechanisms underlying

resistance to abiraterone and anti-androgens are known, including

AR overexpression, AR splice variants that confer ligand indepen-

dent AR transactivation, and alterations in expression and recruit-

ment of AR coregulators (Lamb et al, 2014).

AR chromatin binding and expression of AR-responsive genes

were found to deviate between androgen-sensitive and androgen-

resistant cell lines (Wang et al, 2009). Although AR binding profiles

in cell lines have been studied extensively, the genomic behavior of

AR in human prostate specimens remains largely understudied. AR

chromatin binding profiles found in treatment-resistant prostate

tumors were also observed in prostate cancer cell lines, and high-

lighted genes correlated with survival (Sharma et al, 2013).

Recently, AR binding sites were identified that differentiated normal

prostate tissue from cancer, which associated with the onset and

progression of prostate cancer (Chen et al, 2015). Still, no thorough

assessment of AR binding between primary versus resistant tumor

specimens has been performed to date.

By comparing chromatin accessibility (Formaldehyde-Assisted

Isolation of Regulatory Elements (FAIRE)-seq) and AR chromatin

binding profiles (Chromatin Immunoprecipitation (ChIP)-seq) in

primary versus ADT-resistant tumors, we identified a distinct gene

set that enables stratification of patients with prostate cancer on

outcome. With this, our study illustrates that progressive disease

yields prognostic information in primary lesions and provides a

prognostic gene signature to identify patients with prostate cancer at

risk of metastatic relapse after local–regional treatment.

Results

Genomics-based pipeline for biomarker discovery and validation

By combining existing technologies, we here propose a genomics

pipeline for biomarker discovery (Fig 1) and showed its application

in prostate cancer, aimed at identification of prostate cancer patients

with a high-risk of metastatic relapse. Firstly, transcription factor

involvement was identified through motif analysis on open chro-

matin regions. Accessible regions were analyzed to reveal enrich-

ment of a binding motif for a certain transcription factor involved in

disease (prostate cancer). Actual transcription factor binding was

mapped with ChIP-seq to identify sites that are differentially bound

between two sample groups. As a proof-of-principle, we assessed

AR chromatin binding profiles in this study. The target genes of the

differential binding regions were subsequently coupled to gene

expression data in cell lines to uncover genuine involvement of the

transcription factor in expression of a distinct gene set. This gene

set was subsequently tested for association with survival data of

patients, and further refined into a minimal gene signature.

Genomewide profiling of accessible chromatin regions in
prostate tissues by FAIRE-seq

We assessed chromatin accessibility in multiple prostate tissue

specimens as well as the changes thereof in prostate cancer devel-

opment and progression. Four normal prostate tissue samples, four

primary tumors, and three ADT-resistant prostate tumors were

assessed, as well as three prostate cancer metastases (Fig 2A).

FAIRE-seq was applied to identify accessible chromatin regions

with gene-regulatory functions on a genomewide scale (Giresi &

Lieb, 2009). FAIRE is based on phenol–chloroform mediated

sample separation, in which accessible chromatin fragments can be

separated from the condensed state, effectively enriching for regula-

tory genomic regions (schematically visualized in Fig 2A). Metas-

tases and prostate adenocarcinomas contained more than 70%

tumor cells with a Gleason score ranging from 7 (3 + 4) to 10

(5 + 5), while all normal prostate tissues were derived from a

healthy region from prostatectomy specimens. Tumor and normal

tissues were validated by our pathologists. Clinicopathological

parameters are shown in Appendix Table S1. The number of FAIRE

peaks identified was highly variable between the tissues, ranging

from 50 peaks up to over 13,000 peaks (Appendix Table S2).

Figure 2B shows four randomly selected representative coverage

profiles of accessible chromatin at promoter regions. Over 50% of

accessible chromatin sites in healthy and tumor specimens were

found at promoter regions (Fig 2C), and average signal for each

specimen showed clear enrichment of reads at transcription start

sites (Appendix Fig S1). Tumor samples showed more enriched

chromatin accessibility at both intron and distal intergenic regions,

as opposed to normal prostate tissue where FAIRE signal was

mainly found at promoters (Fig 2C).
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The number of sequenced reads as well as called peaks was

lower in normal tissue as compared to any of the tumor samples:

three out of four normal tissue samples (75%) had < 25 million

reads sequenced, while nine out of ten tumor samples had above

25 million reads sequenced (90%; P = 0.04, Fisher’s exact test), and

three out of four normal tissue samples had < 1,000 peaks versus

two out of ten tumor samples (P = 0.09, Fisher’s exact test)

(Appendix Table S2). This suggested presence of more condensed

chromatin in normal prostate tissue compared to tumor. To confirm

this, we compared normalized read count (reads per kilobase per

million (RPKM)) in peaks found in at least three FAIRE-seq samples

(N = 3,010). Read counts were significantly lower in normal tissue

as compared to any of the tumor stages (P < 2.2e�16, paired t-test)

(Fig 2D). Normalized read count in advanced disease was lower

than in primary prostate cancer (P < 2.2e�16 for both resistant and

metastatic tissue), but still higher than in normal tissue (Fig 2D).

To further focus on the differences in tumorigenesis, we consid-

ered peaks found in at least two out of four normal tissue samples

and two out of four primary tumors. A much larger number of

accessible chromatin regions are found in primary prostate cancer

compared to normal tissue (Fig 2E). This corresponds to a higher

raw signal in primary and other tumor stages compared to normal

tissue (Fig 2F).

To identify transcription factors potentially involved in prostate

cancer development, we performed motif enrichment analysis on

chromatin regions selectively accessible in tumors. In addition, we

analyzed the overlap of accessible FAIRE sites with ChIP-seq data

from a multitude of transcription factors in various cells using the

ReMap annotation tool (Griffon et al, 2015). As expected, multiple

motifs of transcription factors involved in prostate cancer pathobiol-

ogy were found, including ERG (Gasi Tandefelt et al, 2014), AR

(Lonergan & Tindall, 2011), and its pioneer factor FOXA1 (Robinson

& Carroll, 2012) (Table EV1). The motifs are generally conserved

between the individuals (Appendix Table S3). Using the ReMap tool,

we found overlap of FAIRE sites with ChIP-seq signal from a

number of factors from which motifs were found in FAIRE-seq data

(e.g. AR, ERG, SP1, ETS1, and others) (Appendix Fig S2). Moreover,

at these FAIRE regions a weak but statistically significant correlation

was found between motif enrichment and ChIP-seq overlap from

the ReMap tool (Spearman q = 0.30, P = 0.02). CTCF was found to

be an outlier with high score of motif and low degree of overlap,

while AR, MYC, and ERG showed moderate-to-high overlap and

motif score.

Subsequently, mRNA expression and DNA binding for multiple

of these transcription factors were assessed in prostate tumors and

cell lines. For AR, CTCF, ERG, FOXA1, ETV1, and NKX3-1, mRNA

expression was confirmed in four primary tumors (Fig EV1A). Using

publically available ChIP-seq data from LNCaP and VCaP cells, we

could illustrate these factors occupying the FAIRE-seq regions in the

tumors (Fig 2G). As expected, AR binding was enriched at the

enhancer-associated accessible regions, while CTCF occupied both

enhancers and promoters (Taslim et al, 2012). For ERG and CTCF,

we further validated binding at a subset of these regions in

primary tumor specimens by ChIP–qPCR (Fig EV1B–E). Functional
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Figure 1. Genomics-based pipeline for biomarker discovery and validation.
Tissue samples were processed for FAIRE-seq, and transcription factor (TF) motifs in open chromatin regions were analyzed. Selected transcription factor was mapped with
ChIP-seq (in this case androgen receptor) to identify sites that are differentially bound between two sample groups. The target genes of the differential binding regions were
coupled to gene expression and survival data and further refined into a minimal gene signature, which was validated in a number of gene expression datasets.
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involvement of AR was further evidenced by ingenuity pathway

analysis using the list of genes corresponding to the motifs identified

in FAIRE-seq peaks of the primary tumors (Table EV1). This analy-

sis yielded functional networks known to be involved in prostate

cancer, with one network centered around AR (Fig 2H, Appendix

Fig S3).

Distinct genomewide AR binding pattern in primary and resistant
tumors

Since AR and its interactors were enriched at FAIRE-seq regions

(Fig 2G), we next performed AR ChIP-seq on five primary and three

treatment-resistant tumor specimens (Fig 3A). The number of reads

and AR binding events is shown in Appendix Table S4. The total

number of identified AR binding events greatly varied between the

tumor samples (Appendix Table S4), which is consistent with previ-

ous nuclear receptor ChIP-seq in prostate and breast tumor samples

(Ross-Innes et al, 2012; Jansen et al, 2013; Sharma et al, 2013).

Specifically, our AR binding sites varied from 238 up to 17,511 per

tumor sample, which is in the same order of magnitude as in

Sharma et al, with 300–8,500 per tumor sample (Sharma et al,

2013).

Unlike in FAIRE data, the majority (over 90%) of AR ChIP-seq

peaks are present either in intronic or distal intergenic regions

throughout the genome (Figs 2C and 3G), consistent with profiles

identified in cell lines (Yu et al, 2010; Asangani et al, 2014) and

tumors (Sharma et al, 2013). Intra-tumor heterogeneity effect was

limited, as assessed on two independent sections from the same

tumor specimen, with 87% overlap of AR binding sites between the

biological replicates and high correlation of peak read counts

(r = 0.76) (Appendix Fig S4). Overlap of AR ChIP-seq replicates was

comparable to previously described cell line data (Bolton et al,

2007; Jia et al, 2008). AR binding sites selectively enriched in resis-

tant or primary tumors could be observed (Fig 3B), as validated by

AR ChIP–qPCR analyses on additional four primary and five resis-

tant tumors (Fig 3C). Ratios of average enrichment for “resistant

enriched” over “primary tumor enriched” regions were determined,

analogous to what we performed before for breast cancer samples

(Jansen et al, 2013), showing consistent subclassification of patients

in the validation set.

To assess differential AR chromatin binding on a global scale

between treatment-resistant and primary tumors, differential bind-

ing analysis was performed. Peaks present in at least three tumors

(N = 3,138) were considered. In total, 339 genomic regions show

differential AR binding between primary and resistant tumors (for

genomic regions, see Table EV2). Tumors clustered according to

their group identity (primary or resistant) based on these regions

(Fig 3D). Differential AR chromatin binding at these sites is further

evidenced by the difference in average read counts between the

primary and resistant tumors (Fig 3E). To assess the reliability of

differential AR binding events, the samples were shuffled randomly

based on 56 available permutations. Few or no differential peaks

were found when the samples were mislabelled, demonstrating the

robustness of classification and no overfitting (Appendix Fig S5). To

assess whether the identified differential peaks were also relevant in

other clinical datasets, we clustered our data with AR ChIP-seq data

of primary tumors from others (Chen et al, 2015). Three out of four

primary tumors from the other dataset clustered together with the

primary tumors from our study using the 339 identified AR sites

(Fig EV2), suggesting a wider applicability of the differential AR

binding signature.

Differential enriched AR peaks are located mostly in intronic or

distal intergenic regions of the genome (Fig 3F), and primary tumor-

associated AR sites are enriched on chromosomes 16 and 19

(Fig 3G). In contrast, resistance-associated AR binding sites are

enriched on chromosomes 3, 7, and 8, while AR binding at chromo-

somes 6, 12, and 17 is diminished. The peaks remain enriched in

treatment-resistant samples even when the background is subtracted

(Appendix Fig S6).

Motif analysis was performed on all AR binding sites (present in

at least two tumors), resistance-associated AR binding sites and

primary tumor-associated AR sites. As expected, AR binding sites

were enriched for AR motifs, as well as for its pioneer factor FOXA1

(Fig 3H, Appendix Fig S7, Table EV3). Motif enrichment of the AR

coregulator HOXB13 was found selectively in peaks enriched in

resistant tumors (Norris et al, 2009).

Genes proximal to altered AR binding sites are AR-responsive in
sensitive and resistant cell lines

We identified distinct AR binding regions between treatment-resis-

tant and primary prostate tumors. Possible direct target genes were

considered as those with AR binding sites within their body or

20 kb upstream from the transcription start site (Wang et al, 2009),

yielding 158 genes (Table EV4). The limited number of target genes

(158) relative to the 339 AR binding sites can be explained by the

▸Figure 2. Genomewide profiling of chromatin accessibility in prostate cancer specimens.

A Overview of the experimental design. Representative examples of H&E-stained slides are shown. DNA and proteins were cross-linked using formaldehyde, followed by
shearing of the chromatin and phenol–chloroform extraction. The organic phase contains compacted DNA (protein–DNA complexes), while DNA recovered from the
aqueous phase represents accessible regulatory regions. DNA from the aqueous phase is further purified and sequenced.

B Snapshots of accessible chromatin regions as assessed through FAIRE-seq in normal prostate tissue (blue), primary tumor (green), treatment-resistant tumor (red),
and metastatic (gray) tissue. Reads are normalized to millions of sequenced reads per sample. Genomic coordinates are indicated.

C Genomic distribution of FAIRE peaks in normal and tumor samples.
D Boxplots depicting normalized FAIRE-seq read counts (RPKM) in different tissues across the peaks found in at least three samples. Read counts in benign tissue (blue)

are lower than in primary tumor (green), therapy-resistant tumor (red) or metastasis (gray) (P < 2.2e�16, paired t-test).
E Venn diagram, visualizing shared and unique FAIRE peaks in normal prostate samples (blue) and primary prostate tumor samples (green).
F Heatmap showing raw read count intensity in FAIRE-seq peaks enriched in either normal or tumor samples. The window represents 5 kb around the FAIRE-seq peak.
G Heatmap showing raw read count intensity of ChIP-seq signal from multiple cell line datasets (Appendix Table S12 for references and GEO accession numbers) at

accessible regions identified in primary tumors (peaks present in at least two specimens) ranked on peak intensity. Top panel depicts promoter regions, and the
bottom panel, all other regions. The window represents 5 kb around the FAIRE-seq peak.

H Ingenuity pathway analyses, illustrating one of the networks based on motifs found in FAIRE-seq peaks that were present in at least two out of four primary tumors.
Genes previously described to be involved in prostate cancer are highlighted in blue (other networks in Appendix Fig S3).

◀
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functional involvement of multiple AR binding sites to regulate the

expression of a single gene, as illustrated at the KLK3 locus

(Appendix Fig S8).

Since genes were identified by alterations of AR binding between

primary and resistant tumors, these genes could be AR-responsive in

either an androgen-sensitive or androgen-resistant context. To

dissect these two possibilities, expression of the 158 putative target

genes was explored using a publically available dataset from LNCaP

prostate cancer cells treated for up to 24 h with androgen R1881,

with samples taken every few hours (Fig 4A) (Massie et al, 2011). A

total of 102 genes out of 158 putative AR target genes were found in

the androgen stimulation dataset, represented by 117 expression

probes. In order to group genes according to their temporal profiles,

we clustered the gene expression data using the Short Time-series

Expression Miner (STEM) program. This software utilizes an algo-

rithm that selects potential temporal profiles, assigns genes to those

profiles and computes enrichment significance for each profile (Ernst

et al, 2005; Ernst & Bar-Joseph, 2006). Three significant gene sets

were found: I. upregulated in response to R1881 (41 genes); II. not

affected by R1881 (49 genes); and III. downregulated in response to

R1881 (12 genes) (Fig 4B and C, Table EV5). The 49 genes of gene

set II were of particular interest, since genes not affected by R1881

treatment could still be associated with acquired ADT resistance.

Therefore, expression of these genes was next assessed in a public

gene expression dataset from LNCaP cells cultured in charcoal-

treated hormone-deprived medium for up to 1 year, mimicking

acquired ADT resistance (Fig 4D and E) (D’Antonio et al, 2008). Out

of 49 genes, 48 were annotated in this dataset, corresponding to 164

probes. While not affected by R1881 treatment (Fig 4B and C), these

genes exhibit differential expression during acquisition of ADT resis-

tance (Fig 4E). Expression patterns of gene sets I and III under

androgen deprivation conditions are shown in Appendix Fig S9.

Cumulatively, by integrating our AR ChIP-seq data with publi-

cally available datasets of hormonal response and acquired resis-

tance to ADT, we identified two distinct gene sets associated with

“AR response to hormonal stimuli” and “AR response in acquired

resistance.”

Functional and clinical implications of differential AR-binding-
affected genes

The AR binding landscape in tumors revealed two clearly defined

gene sets, one subset of 53 androgen-responsive genes and the

second subset of 49 acquired ADT resistance genes.

To couple “androgen-responsive” and “acquired resistance”

genes with outcome, gene expression data from 131 primary pros-

tate cancers were analyzed (Taylor et al, 2010). Unsupervised hier-

archical clustering was performed on the 53 “androgen-responsive”

and 49 “acquired resistance” genes separately. The “androgen-

responsive” gene set failed to stratify patients on time to biochemi-

cal (PSA) relapse (P = 0.931, HR = 1.03; 95% CI: 0.47–2.26) (Fig 5A

and B), while clustering on “acquired resistance” genes did stratify

patients (P = 0.032, HR = 0.45; 95% CI: 0.21–0.95) (Fig 5C and D).

Ingenuity pathway analysis illustrated the “androgen-responsive”

genes to be involved mainly in cellular metabolic processes and

correspond to genes normally regulated by steroid hormone recep-

tors AR and PGR (Fig 5E). The “acquired resistance” genes were

additionally involved in androgen biosynthesis and contain genes

related to prostatic carcinoma (Fig 5E).

Refinement and validation of gene expression classifier

We identified a set of 49 “acquired resistance” genes that stratify

patients with prostate cancer on outcome. Since this list is likely to

contain false-positive genes that may jeopardize classification, we

identified a core gene set with a prognostic impact through elastic

net regularization with double-loop cross-validation. Patients were

assigned to two risk groups based on their cross-validated prognos-

tic index (Fig EV3), successfully stratifying patients on time to

relapse (P = 0.00084, log-rank test) (Fig 6A). The refined gene set

classifier is composed of nine genes: DNER, EXT2, AMOTL1,

RBM33, ZBTB20, XBP1, PMFBP1, HSD17B14, and KLF9. Apart from

AR (which was differentially enriched proximal to these genes;

Fig 3), other transcription factors may regulate expression of these

nine prognostic genes as well. Therefore, we investigated the over-

lap of the FAIRE-seq peaks (Fig 2) in close proximity of the nine

genes (< 20 kb from the transcription start site) with a large collec-

tion of public ChIP-seq data from the ReMap tool (Griffon et al,

2015). A strong overlap of the identified eight FAIRE-seq peaks was

found with known players in prostate cancer including AR, FOXA1,

ERG, bromodomains BRD2 and BRD3 and, interestingly, MYC

(Appendix Table S5). The latter also occupies a central place in our

functional motif analysis (Appendix Fig S3).

A prognostic index was assigned to each patient based on the

nine genes, calculated as the sum of expression of the nine genes

multiplied by their corresponding Cox regression coefficients

(Appendix Table S6). This prognostic index is independent from

other known prognostic parameters, such as Gleason score,

▸Figure 3. Distinct AR binding profiles in primary and treatment-resistant tumors.

A Overview of experimental design. DNA and proteins were cross-linked using formaldehyde, followed by shearing of the chromatin. Immunoprecipitation for AR was
performed after which isolated DNA fragments were sequenced.

B Snapshots of AR binding events differentially enriched in either primary (green) or resistant (red) tumors. Reads are normalized to millions of sequenced reads per
sample. Genomic coordinates are shown.

C Heatmap illustrating AR ChIP-qPCR validation in independent tumors. Intensity of the color corresponds to ChIP–qPCR enrichment (see scale bar). Binding sites
identified as enriched in either primary or treatment-resistant tumors were tested. Average enrichment in primary tumors was divided over average resistant
enrichment values to determine the ratio, as is visualized in a barplot (bottom panel).

D Differential binding analysis of AR chromatin binding regions, selectively enriched in primary tumors (green) or treatment-resistant (red) tumors.
E Average read counts for AR binding events, selectively enriched between primary (green) or resistant (red) tumors. Data are centered at AR peaks, depicting a 2.5-kb

window around the peak.
F Genomic distributions of AR binding sites shared between tumors or enriched in primary and resistant tumor tissue.
G Distribution of AR binding sites enriched in primary (green) and resistant (red) tumors, by chromosome (%). P-values (one-sided binomial test) for significant

enrichment relative to the entire genome (gray): (a) P = 0.001, (b) P = 0.002, (c) P = 0.003, (d) P = 0.005, (e) P = 9e�13, and (f) P = 2.5e�13.
H Motif enrichment analysis for AR binding sites shared between tumors or enriched in primary and resistant tumor tissue. Top motifs are shown.

◀
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pathologic T stage, lymph node status, and initial PSA (see

Appendix Table S7 for patient characteristics), and is significantly

associated with time to biochemical recurrence when adjusted for

those known prognostic factors (Appendix Table S8). Furthermore,

we tested the ability of the classifier to identify patients that develop

biochemical recurrence within 5 years after prostatectomy using

receiver operating characteristic (ROC) curves. The area under the

curve (AUC) value for the 9-gene classifier was slightly higher as

compared to an AUC value based on clinical parameters only (0.86

versus 0.83), while combining the genomic classifier with clinical

parameters resulted in an AUC value of 0.9 (Appendix Table S9).

One of the most widely used prostate cancer risk assessment

classification systems was proposed by D’Amico and colleagues

(D’Amico et al, 1998). It utilizes clinical TNM stage, preoperative

PSA level, and biopsy Gleason score to stratify patients in three risk

groups (low-, intermediate-, and high-risk groups). To assess

whether our 9-gene classifier is independent from the D’Amico clas-

sification, we directly compared the output of D’Amico classification

and our 9-gene signature. Low- and high-risk patients as defined by

the genomic signature were found in all three D’Amico risk groups

(Appendix Table S10), and the prognostic potential of our risk group

stratification was independent of D’Amico classification (Appendix

Table S11). Since there was no difference in survival between

D’Amico low- and intermediate-risk groups in patients from Taylor

et al’s cohort (Fig EV4), we combined low- and intermediate-risk

groups together. The 9-gene expression signature was able to further

0.5Control 24 h

Androgen stimulation

0
1

2
3

4
N

or
m

al
iz

ed
 g

en
e 

ex
pr

es
si

on

0 5 10 15 20
Stimulation, hours

0
0.

2
0.

4
0.

6
0.

8
-0

.2
-0

.4

N
or

m
al

iz
ed

 g
en

e 
ex

pr
es

si
on

0
-0

.5
-1

-1
.5

B C

Gene 
expression
High

Low

N
or

m
al

iz
ed

 g
en

e 
ex

pr
es

si
on

Con
tro

l

3 
wee

k

1 
m

on
th

5 
m

on
th

11
 m

on
th

1 
ye

ar

D Androgen deprivation

Gene 
expression
High

Low

Androgen stimulation with R1881A

Androgen deprivation
(charcoal stripped media)

| | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | |

0 12 h 24 h

0 5 month 1 year

Gene expression
Massie et al. 2011 (GSE18684)

0 5 10 15 20
Stimulation, hoursE

G
en

es
et

 I
G

en
es

et
 II

G
en

es
et

III
G

en
es

et
 II

0 5 10 15 20
Stimulation, hours

Geneset I

Geneset II

Geneset III

Gene expression
D'Antonio et al. 2008 (GSE8702)

LNCaP

LNCaP
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1 nM R1881 and processed for gene expression analyses.
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stratify patients in both low/intermediate- and high-risk groups

(Fig 6B), which further highlights the utility of our 9-gene signature

on top of existing classification tools.

For validation of the prognostic signature, we used an indepen-

dent gene expression dataset from a cohort of 48 patients with pros-

tate cancer (Boormans et al, 2013). We applied the coefficients from

the trained Cox regression to calculate the prognostic index in the

validation set and successfully stratified patients into two risk

groups with significant difference in time to metastasis (P (log-

rank) = 0.049) (Fig 6C). Furthermore, we examined two other inde-

pendent gene expression clinical studies as well as a set of prostate

cancer xenografts. We used principal component analysis (PCA) to

explore whether expression of the nine genes can separate clinical

groups in these datasets, providing new dimensions (principal

components) that summarize expression of the nine selected genes.

Hormone-sensitive and hormone-refractory tumors and xenografts

are separated along either the first or second principal components

(Fig 6D). With this, we provide evidence that our classifier does not

only stratify patients on biochemical relapse (Fig 6A and B) and

metastasis (Fig 6C), but also successfully makes a distinction

between hormone-refractory and hormone-sensitive tumors (Fig 6D).

Since expression of selected genes is associated with outcome,

similar expression differences may be found in metastatic samples.

Therefore, we examined expression levels of the nine individual

genes in six additional cohorts (Appendix Fig S10, Appendix

Table S12) that include benign (normal), primary, and/or metastatic

prostate cancer samples. Directionality of gene expression in poor-

outcome patients in our discovery set was identical as found in

metastatic samples as compared to primary lesions for all six inde-

pendent cohorts, indicating robustness and consistency (Appendix

Fig S10). These data indicate that potential drivers of poor outcome,

as identified in primary prostate cancers, are possibly preserved in

the metastatic setting.

Discussion

According to current clinical guidelines, endocrine therapy for pros-

tate cancer is prescribed as an adjuvant treatment after radiother-

apy and in the metastatic setting with a palliative intent

(Heidenreich et al, 2014b). The rationale for not applying endo-

crine therapies in the adjuvant management of prostate cancer after

prostatectomy is provided by multiple clinical trials, which illus-

trated limited to no clinical benefit of blocking AR function on

disease-free survival of the entire population (Zincke et al, 2001;

Dorff et al, 2011; Miocinovic et al, 2011; Siddiqui et al, 2011;

Briganti et al, 2012; Schubert et al, 2012; Tsurumaki Sato et al,

2014). Yet, since ~30% of patients with prostate cancer do develop

a relapse later in life, it is believed that a distinct subgroup of

patients may derive benefit from ADT or other subsequent treat-

ment in the adjuvant setting. Above all, patients with high risk

of relapse are in need of closer monitoring postoperatively. To

date, no genomic biomarkers are clinically applied that may aid in

identifying high-risk patients.

Here, we combined existing approaches and technologies

(FAIRE-seq, ChIP-seq, expression analyses, and survival data) as a

potential “genomics pipeline” for biomarker discovery. FAIRE-seq

analyses in prostate cancer specimens led to the identification of a

large set of transcription factor motifs, including AR and multiple of

its interaction partners. As a proof-of-principle, we studied the

genomic behavior of AR. General applicability of such a genomic

pipeline remains to be determined, and future studies should be

aimed at assessing genomic features of other hits from the motif

analyses to illustrate whether this approach is also applicable for

other factors apart from AR.

We illustrate that prognostic biomarkers for the survival of

patients with prostate cancer can be identified through the assess-

ment of AR/chromatin interaction landscapes in tumor samples. By

comparing AR binding patterns in primary tumor tissue specimens

with those found in tumors that have an acquired resistance to treat-

ment, a reprogramming of the AR interactome was observed. This

reprogramming has far-reaching consequences, in which a distinct

and unique gene set with acquired AR-responsive features provides

prognostic potential for the survival of patients with prostate cancer,

independent of classical prognostic parameters and clinical risk

stratification system (D’Amico). Differential AR binding sites were

clearly enriched for specific chromosomes, and a strong enrichment

of resistance-associated AR binding sites was found at chromosome

8. Chromosome 8 has previously been implicated in prostate cancer

progression, containing multiple oncogenes, including Myc (El

Gammal et al, 2010). A selective enrichment of AR binding sites at

distinct chromosomal regions could yield direct biologically relevant

information on prostate cancer progression and may uncover

drivers in ADT resistance.

Since the gene set identified in tumors with an acquired resis-

tance yields prognostic potential in both cohorts of patients with

primary prostate cancer, these data indicate that the AR-driven

processes that were identified in the samples with an acquired resis-

tance may already be active in the primary tumor, driving prostate

tumor progression and metastasis formation. The expression of the

acquired-resistance classifier in primary lesions may be used to

identify patients with high risk of relapse after radical prostatec-

tomy. Identification of high-risk patients is of clear clinical benefit,

since it would enable closer monitoring of these patients. Since our

classifier is based on differences between primary and resistant

tumors, it remains to be determined whether these high-risk patients

would be likely to respond to ADT or would be better treated with

nonhormonal therapeutics.

AR is generally considered as the main driver in prostate

cancer tumorigenesis and tumor progression. This notion is also

further emphasized by the fact that all targeted therapies in pros-

tate cancer treatment are directly aimed in a functional inhibition

of AR activity. Nonetheless, analogous to recent finding in breast

cancer (Robinson et al, 2011; Mohammed et al, 2015), other tran-

scriptional regulators could potentially play a role in prostate

cancer development and progression. AR ChIP-seq differential

binding analysis yielded HOXB13 motif as selectively enriched in

resistant tissue, suggesting a role of HOXB13 in resistant prostate

cancer as found by others (Jeong et al, 2012). In addition, motif

analyses on accessible chromatin regions by FAIRE-seq identified

motifs for a large range of other transcription factors previously

linked to prostate cancer development and progression, including

CTCF, SP1, FOS, and ETS domain family of transcription factors

(Shemshedini et al, 1991; Lu et al, 2000; Taslim et al, 2012;

Chen et al, 2013). A subset of these transcription factors were

previously defined as “druggable,” including ETS family members
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ETV1 (Rahim et al, 2014) and ERG (Nhili et al, 2013) as well as

specific protein (SP) transcription factors (Safe et al, 2014). Out of

the entire nine-gene signature, the three transcription factors

(XBP1, ZBTB20, and KLF9) are previously described in relation to

prostate cancer, while the other genes are not. KLF9 has been

suggested to play a role in the progression of prostate cancer to a

castration-resistant stage (Shen et al, 2014). XBP1 on the other

hand is highly expressed in primary tumor, while hormone-

refractory tumors show weak XBP1 expression (Takahashi et al,

2002; Cuperlovic-Culf et al, 2010). Furthermore, XBP1 is represented

in the 150-core gene set of Sharma et al, while ZBTB20 is found

in the gene set of Chen et al, and both signatures were based on

AR binding in prostate specimens (Sharma et al, 2013; Chen et al,

2015). All these proteins may be of particular interest for new

treatment options in prostate cancer, and future studies are aimed

to further elucidate the potential roles of these transcription

factors in prostate carcinogenesis as well as their therapeutic

potential in this setting.

In summary, using integrative genomics of FAIRE-seq, AR ChIP-

seq, publically available transcriptomic data and patient survival

data, we successfully determined a minimal gene signature for the

outcome of patients with prostate cancer. Even though the prognos-

tic potential of these genes is apparent, future clinical trials should

determine whether these genes could be informative for selective

response to treatment of prostate cancer.

Materials and Methods

Clinical samples

Fresh frozen postoperative prostate needle biopsies from normal

(pathologically validated tumor-free region of the peripheral

zone) and tumor samples were obtained from prostatectomy

specimens at the Netherlands Cancer Institute (Amsterdam, The

Netherlands). The androgen-blockade-resistant tumor samples

[transurethral resection of the prostate (TURP)] and lymph node

metastases were obtained from the Erasmus University Medical

Center (Rotterdam, The Netherlands). The hematoxylin and eosin

(H&E) slides of all these cases were reviewed by our patholo-

gists. See Appendix Table S1 for clinicopathological parameters.

This study was performed in accordance with the Code of

Conduct of the Federation of Medical Scientific Societies in the

Netherlands and has been approved by the local medical ethics

committees.

Formaldehyde-assisted isolation of regulatory elements

FAIRE experiments were performed as previously described (Giresi

& Lieb, 2009). Briefly, fresh frozen tissues were cross-linked with

1% formaldehyde for 20 min. Cells were washed, and nuclei were

isolated as described (Zwart et al, 2013). Subsequently, chromatin

was sonicated and cleared by centrifugation. The soluble chromatin

was subjected to three consecutive phenol–chloroform–isoamyl

alcohol (25:24:1) extractions. The samples were reverse-cross-linked

overnight at 65°C and purified by ethanol precipitation. Purified

samples were treated with RNase A and proteinase K and repurified

by PCR purification kit (Roche).

RNA isolation and mRNA expression

Total RNA was isolated after treatment with RNA-Bee reagent

(Tel-Test, Inc.), and cDNA was synthesized from 500 ng RNA using

SuperScript III Reverse Transcriptase (Invitrogen) with random

hexamer primers. qPCR was performed with SYBR Green (GC

Biotech) on a Roche LightCycler. Primer sequences for mRNA

expression analysis are listed in Appendix Table S13.

Chromatin immunoprecipitation (ChIP)

Chromatin immunoprecipitations were performed as described

before (Jansen et al, 2013; Zwart et al, 2013). A total of 10 lg
(ChIP-seq) or 5 lg (ChIP–qPCR) of antibody was used, with 100 ll
(ChIP-seq) or 50 ll (ChIP–qPCR) of Protein A magnetic beads (Invit-

rogen). Antibodies used were AR-N20 (sc-618; Santa Cruz), CTCF

(07-729; Millipore), and ERG (sc-353; Santa Cruz). Primer sequences

for qPCR analysis are in Appendix Table S13.

Solexa sequencing and enrichment analysis

DNA was amplified as described (Jansen et al, 2013). Sequences were

generated by the Illumina HiSeq 2000 Genome Analyzer (using 50-bp

reads) and aligned to the Human Reference Genome (assembly hg19,

February 2009). Reads were filtered based on MAPQ quality: Only

reads with MAPQ above 20 were considered to eliminate reads from

repetitive elements. Enrichment over input control was determined

using DFilter (Kumar et al, 2013) and MACS peak caller version 1.4

(Zhang et al, 2008). Only peaks called by both algorithms were used

for the analysis. MACS was run with the default parameters, except

P = 10�7 for ChIP-seq data. DFilter was run with bs = 100, ks = 50

for FAIRE data and bs = 50, ks = 30, refine, nonzero for ChIP data.

Read counts, number of aligned reads, and number of peaks are

shown in Appendix Tables S2 (FAIRE) and S4 (ChIP).

The raw and processed data are deposited in the Gene Expression

Omnibus database (http://www.ncbi.nlm.nih.gov/geo/; accession

No. GSE65478).

Data analysis

Motif analyses were performed using Cistrome (cistrome.org),

applying the SeqPos motif tool with default settings (region width:

600 bp; P-value cutoff: 0.001). Genomic distributions of binding

sites were analyzed using the cis-regulatory element annotation

system (CEAS). Differential binding analysis (DBA) was performed

as described (Ross-Innes et al, 2012), considering all peaks that

were found in at least three specimens, without control read

subtraction and using a false discovery rate (FDR) below < 0.10. For

integration with gene expression data, binding events were consid-

ered proximal to the gene when identified in a gene body or within

20 kb upstream from the transcription start site. Publically available

ChIP-seq data for a number of factors in prostate cancer cell lines

were used, and details are summarized in Appendix Table S12.

Expression analyses and survival data

Time-series gene expression was analyzed using Short Time-series

Expression Miner (STEM) (Ernst & Bar-Joseph, 2006) to identify
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gene sets that show significant temporal expression profiles. Default

parameters were used, except for the minimum expression change

set to 0.5 (based on the difference from 0). Two datasets of gene

expression in LNCaP prostate cancer cells were used: GSE18684 and

GSE8702. Details of the publically available gene expression data-

sets that were used in this study (GSE21034, GSE3933, GSE35988,

GSE3325, GSE32269, GSE29079, GSE41408, GSE6811, GSE28680,

GSE21887) are summarized in Appendix Table S12. These datasets

were selected based on the availability of gene expression data from

frozen tissue, relatively large sample sizes, measured on compre-

hensive gene expression platforms and clearly defined clinical

groups. Clinical parameters (where available) of the gene expression

datasets are summarized in Appendix Table S7. Cox regression

regularized by an elastic net penalty from the glmnet package in R

(Friedman et al, 2010) was used in order to select the optimal set of

genes that are significantly associated with survival. Average

centered probe levels were used. Double cross-validation was

performed to assess the overall predictive ability of the procedure.

In the outer loop, leave-one-out cross-validation was used. In the

inner loop, regularization parameter lambda of the elastic net and

the set of active covariates were determined with 10-fold cross-

validation. Then, Cox regression was fitted with the selected variables

and prognostic index estimated for the left-out sample. The final set

of covariates for constructing Cox model was selected based on the

average lambda value. In the validation cohort, prognostic index for

each patient was defined as a sum of gene expression values multi-

plied by their corresponding coefficients derived from the Cox

regression. Patients with prognostic index below or equal to zero

were assigned to the low-risk group, while patients with the prog-

nostic index above zero were assigned to the high-risk group. Dif-

ferences in survival were assessed using log-rank test. Prognostic

index was also used as a covariate in multivariate Cox regression

analysis. The clinical parameters used in the multivariate analyses

included pathologic Gleason score, T stage, lymph node status, and

pretreatment PSA.

Expanded View for this article is available online:

http://emmm.embopress.org
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