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Intracranial aneurysms are local dilations of the cerebral blood vessels; people with intracranial aneurysms have a high risk to
cause bleeding in the brain, which is related to high mortality and morbidity rates. Accurate detection and segmentation of
intracranial aneurysms from Magnetic Resonance Angiography (MRA) images are essential in the clinical routine. Manual
annotations used to assess the intracranial aneurysms on MRA images are substantial interobserver variability for both aneurysm
detection and assessment of aneurysm size and growth. Many prior automated segmentation works have focused their efforts on
tackling the problem, but there is still room for performance improvement due to the significant variability of lesions in the
location, size, structure, and morphological appearance. To address these challenges, we propose a novel One-Two-One Fully
Convolutional Networks (OTO-Net) for intracranial aneurysms automated segmentation inMRA images.3e OTO-Net uses full
convolution to achieve intracranial aneurysms automated segmentation through the combination of downsampling, upsampling,
and skip connection. In addition, loss ensemble is used as the objective function to steadily improve the backpropagation
efficiency of the network structure during the training process. We evaluated the proposed OTO-Net on one public benchmark
dataset and one private dataset. Our proposed model can achieve the automated segmentation accuracy with 98.37% and 97.86%,
average surface distances with 1.081 and 0.753, dice similarity coefficients with 0.9721 and 0.9813, and Hausdorff distance with
0.578 and 0.642 on these two datasets, respectively.

1. Introduction

Intracranial aneurysms are abnormal projections that occur
on the walls of cerebral arteries. Such hemorrhage is
common among relatively young people, with a higher
mortality and incidence rate and about 3% in healthy adults
[1]. 3e main threat comes from subarachnoid hemorrhage
(SAH) caused by the rupture of an intracranial aneurysm [2],
which accounts for more than 85% [3, 4]. According to the
survey, SAH is a catastrophic event, with a mortality rate as
high as 25%–60% after rupture [5]. 3erefore, accurate
measurement and evaluation of the shape of intracranial
aneurysms are crucial in daily clinical work so that we can

monitor and analyze the growth and rupture risks of an-
eurysms, making it easier to intervene or treat early [6, 7].

According to the current form of technological devel-
opment, combined with the actual clinical situation, we
found that the inspection methods for intracranial aneu-
rysms include invasive and noninvasive. Compared with
invasive Digital Subtraction Angiography (DSA), Computed
Tomography Angiography (CTA), magnetic resonance an-
giography (MRA), and Transcranial Doppler (TCD) have
been advocated as the best detection methods for intra-
cranial aneurysms [8]. MRA is a noninvasive angiographic
method that does not require radiation exposure. With the
introduction of new technologies such as 3D imaging,
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contrast enhancement, and 3Tmagnetic field, its sensitivity
can reach the detection of aneurysms less than 3mm [9].
3erefore, based on the simple operation and accurate
imaging characteristics of MRA technology, radiologists
usually use it to perform 3D visualization and quantitative
analysis of small intracranial aneurysms [10]. However, the
MRA image of a particular part usually contains part of
normal tissue, and it may have a relatively large proportion.
3erefore, currently in clinical practice, experts often use
manual segmentation to separate the tumor tissue regions.
In this context, the segmentation results are greatly affected
by the subjective experience of experts, and the repetition
rate is low and time-consuming. With the development of
emerging technologies such as deep learning, some auto-
mated segmentation algorithms have gradually emerged,
which have initially solved the problem of manual seg-
mentation. However, the accuracy of these algorithms is still
to be discussed.

Under the background of the current era of big data,
driven by artificial intelligence, it automatically recog-
nizes complex pattern features in image data and provides
quantitative data evaluation results [11]. In particular, the
application of Convolutional Neural Network (CNN) [12]
in deep learning has shown superior performance in a
series of image recognition tasks [13], including medical
image processing [14–17]. At present, the research on
intracranial aneurysms is not in-depth, but some re-
searchers have made courageous attempts. Park et al.
developed and applied a neural network segmentation
model called the HeadXNet model, which can generate
accurate voxel prediction of intracranial aneurysms on
head CTA images [18]. Wang et al. presented a multilevel
segmentation method based on the lattice Boltzmann
method (LBM) and level set with ellipse for accurate
segmentation of intracranial aneurysms, making it po-
tential for clinical assessment of the volume and aspect
ratio of the intracranial aneurysms [19]. However, these
studies focused on unruptured intracranial aneurysms
(UIAs) and did not include patients with Aneurysmal
subarachnoid hemorrhage (aSAH). Hence, it remains
unclear how deep learning model (DLM) algorithms
perform on patients with acutely ruptured intracranial
aneurysms (RIAs) and whether the extent of hemorrhage
impedes detection sensitivity. Moreover, there still has
room for performance improvement due to the significant
variability of lesions in the location, size, structure, and
morphological appearance.

Based on this, we propose a novel automated MRA
image segmentation network for intracranial aneurysms,
which can quickly locate intracranial aneurysms and ac-
curately segment its three 3D shapes to help radiologists
quantitatively evaluate MRA examinations. 3e contribu-
tions are as follows:

(1) A novel 3D image preprocessing scheme is designed
to correlate the structural information between data
blocks through overlap and partition operations. If
the Graphic Processing Unit (GPU) is large enough,
the kind of processing is not necessary;

(2) A new One-Two-One Fully Convolutional Network
(OTO-Net) for intracranial aneurysms automated
segmentation in MRA images is proposed, which is
based on the idea of fully convolutional networks
with three consecutive encoding and decoding
structures to detect and segment intracranial aneu-
rysms more efficiently and accurately;

(3) Aiming at the severe imbalance of categories caused
by small intracranial aneurysms, a loss ensembles
objective function is proposed, which improves the
segmentation accuracy and dramatically enhances
the stability of the backpropagation of the network
structure.

After reviewing the state-of-the-art in the field of tra-
ditional machine learning-based segmentation methods,
deep learning-based methods, and the current intracranial
aneurysms segmentationmethods in Section 2, we introduce
in detail the structure and method of our proposed model in
Section 3. 3en, we describe the details and results of the
experiment in Section 4. Finally, we present a discussion in
Section 5 and draw the conclusions in Section 6.

2. Related Work

2.1. Traditional Machine Learning-Based Segmentation
Methods. For a long time in the past, traditional machine
learning algorithms have occupied a significant position in
image segmentation. Traditional machine learning algo-
rithms include decision tree, random forest, extra tree, ridge
classifier, logistic regression, K-Nearest Neighbor [20],
Naive Bayes (Gaussian) [21], and Kernel Support Vector
Machine (polynomial, Gaussian) [22], and other algorithms.
Yang et al. used the random forest method to build a
predictive model of cardiovascular disease and achieved
significant results, referencing cardiovascular disease pre-
diction and treatment [23]. In addition, Bender used re-
gression models to analyze epidemiological statistics so that
an adjusted effect estimate can be obtained that takes into
account the impact of potential confounding factors [24].
On the other hand, as the advancement of high-throughput
technology had resulted in the generation of a large amount
of genomic and epigenome data, the classification features of
support vector machines were expanding their applications
in cancer genomics, leading to the development of new
biomarkers and new drug targets [25].

2.2. Deep Learning-Based Segmentation Methods. With the
application of image segmentation in biomedical image
processing, relevant characteristics of this field are also
exposed, such as small sample dataset, high segmentation
accuracy, and fast segmentation speed. In order to solve this
series of problems, new algorithms such as deep learning
were born. However, because CNN loses image details in
convolution and pooling, the size of the feature map
gradually decreases. It does not provide a good indication of
the precise contour of the target body. To solve this problem,
Shelhamer et al. proposed a Fully Convolutional Network

2 Computational Intelligence and Neuroscience



(FCN) [26], which became the basic framework for semantic
segmentation tasks. Most of the subsequent networks are
improved on this basis. In 2015, Ronneberger et al. proposed
the U-Net structure [27], which has the advantages of
supporting a small number of data samples, classifying each
pixel and high image segmentation efficiency. In 2016, the
V-Net structure was introduced [28], a volume segmenta-
tion algorithm based on FCN. Due to its 3D convolution, the
introduction of Dice objective function, novel data expan-
sion method, and residual learning, this model showed
superior performance in the prostate MRI segmentation
task. Especially in recent years, image segmentation has been
widely used in medical image processing [29].

2.3. Intracranial Aneurysms Segmentation Methods. With
the development of modern medical imaging technology, it
is possible to understand further the structure, size, and other
characteristics of the diseased tissue in a noninvasive way to
diagnose the progress of the disease. In 1895, the German
physicist Wilhelm Konrad Rontgen discovered X-rays
[28, 30], which had opened the door to medical imaging.
Medical imaging methods commonly used in clinical practice
include X-ray imaging, X-ray computed tomography (CT),
emission computed tomography (ECT), magnetic resonance
imaging (MRI), etc., and various medical imaging equipment
are widely used in hospitals [31]. Based on literature reading
and clinical experience, MRA is a relatively good imaging
method for diagnosing intracranial aneurysms. We learned
that relevant scholars had explored the intracranial aneu-
rysms’ automatic segmentation and analysis. However, the
accuracy of its segmentation and other indicators cannot be
fully guaranteed. 3is means that aneurysm detection proves
to be challenging and time-consuming.

Shahzad et al. [32] developed and evaluated a Deep
Learning Model (DLM) to automatically detect and segment
aneurysms in patients with aneurysmal subarachnoid
hemorrhage (aSAH) on computed tomography angiogra-
phy. 3e results prove that this method is highly sensitive
and can potentially assist treating physicians in aSAH by
providing automated detection and segmentation of aneu-
rysms. Law et al. [33] proposed a novel intensity-based
algorithm to segment intracranial vessels and the attached
aneurysms, which can handle the low-contrast aneurysmal
regions affected by turbulent flows. It is grounded on
multirange filters and local variances to extract intensity-
based image features. Prior to this, the team also designed a
newmethod based onmultirange filters and local variance to
segment blood vessels and intracranial aneurysms on
PCMRA images that achieves an excellent segmentation
effect [34]. Even though there are related research results in
this field, there is still no systematic system to solve this
problem. 3is shows that in order to achieve the effect of
accurately and efficiently segmenting the tumor area, new
methods are being explored continuously.

2.4. Our Work. Facing the vast challenge of precise seg-
mentation, how to segment the intracranial aneurysm
structure from the complex brain tissue structure has

become an urgent problem that we need to overcome.
Aiming at the characteristics of the existing technology, we
proposed a novel model for intracranial aneurysms seg-
mentation in MRA images. We used datasets from the First
Affiliated Hospital of Gannan Medical University (GMU)
and Aneurysm Detection and segMentation Challenge 2020
(Adam2020, https://adam.isi.uu.nl/). 3e specific process of
our method is as follows: first, the original MRA images of
desensitized intracranial aneurysm patients were pretreated.
Next, an OTO-Net for intracranial aneurysms automated
segmentation in MRA images was proposed. 3en, the
OTO-Net model was trained on the preprocessed datasets.
Finally, the generalization ability of the OTO-Net model is
validated by model testing and evaluation indexes. 3e flow
chart of this experimental research is shown in Figure 1.

3. Methodology

3e purpose of this paper is to realize the accurate and
automated segmentation of intracranial aneurysms in MRA
images. 3erefore, we designed a novel OTO-Net model,
which was based on the idea of fully convolutional networks
with three consecutive encoding and decoding structures.
3e process of data preprocessing, OTO-Net network
structure, and loss function used were introduced in this
section.

3.1. Data Preprocessing. MRA image is a 3D data structure,
and the 2D network-based segmentation model needs to
slice it. 3e sliced data is 2D data, making the model unable
to learn the structural relationship between layers in the data,
leading to insufficient network model learning. 3erefore, to
preserve the spatial expression of intracranial aneurysms, we
decided to use 3D data as the model’s input. For radiologists’
observation and analysis of images, 3D data has significant
value in clinical diagnosis and treatment. Below we will
elaborate on the 3D image preprocessing method.

3.1.1. Overlapping Blocks. Due to the limitation of GPU
memory resources, MRA images cannot be input into the
original size network, so the 3D MRA images must be
processed in blocks. 3e paper introduces two chunking
methods, namely nonoverlapping block and overlapping
block, the structure of which is shown in Figure 2.

3e dimension size of the input data of the network
structure we designed is 128×128× 64. Here, anMRA image
with a size of 512× 512×128 in the dataset is taken as an
example. If the same nonoverlapping partitioning processes
the original image and the label image, then the step size of
each partitioning operation in theX and Y directions is equal
to 128. Furthermore, there is no overlap between the data
blocks, so theX and Y directions are divided into four blocks,
respectively. Similarly, if the Z step equals 64, it is split into
two pieces.

Although 3D data as input solves the structural rela-
tionship between the layers of the learning model, non-
overlapping block processing contains up to 64 layers of
image information, and the data blocks are still disconnected
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from each other, making the complete structure unable to be
learned. It is similar to the slice image input from the 2D
network model. 3erefore, we propose an overlapping di-
vision method to alleviate this problem.3e size of the block
remains the same.3e step size of the original image and the
label image that move simultaneously in the X, Y, and Z
directions is smaller than the block size. Although it in-
creases the number of blocks, the advantage is that there is
absolute information correlation between blocks.

3.1.2. Disequilibrium Culling. After the block processing, a
3D original image and label image are cut into many
128×128× 64 data blocks. Since the lesion area only oc-
cupies a small part of the brain, the block processing

partnership will contain the nonlesion blocks. If these data
blocks are used together as input data for the model, the class
imbalance will be caused, and the model’s learning process
will be troubled.

3erefore, to mitigate category imbalance in this study,
the label image data block is further screened after the
chunking process. If there is no data more significant than 0
in the data block, the lesion area is not included, the original
image and label image data block would be discarded.

3.2. Model Design. 3e OTO-Net is a model based on 3D
fully convolutional networks. Its main structure takes ad-
vantage of the encoder-decoder proposed by Hinton et al.
[35] in 2006. 3e most significant feature of the OTO-Net

MRA Images

OTO-Net Training Testing Output Results

Preprocessing
Input Data Non-overlapping

[Overlapping blocks]
[Disequilibrium culling]

[Dice + Cross Entropy]
[Dice + Boundary]

[Averaga Surface Distance]
[Dice Similarity Coefficient]

[Hausdorff Distance]

Figure 1: Procedures of our OTO-Net for intracranial aneurysms automated segmentation in MRA images.

Input Original
Images

Input Original
Images

Non-overlapping
Chunking

Overlapping
Chunking

Figure 2: Nonoverlapping chunking and overlapping chunking.

4 Computational Intelligence and Neuroscience



structure is the continuous use of three complete encoding
and decoding structures to achieve the purpose of accurate
detection and segmentation of intracranial aneurysms. 3e
whole network still presents an entirely symmetrical design.
3e schematic diagram of OTO-Net is shown in Figure 3.

In the OTO-Net structure designed by us, the convo-
lution kernel uses 3× 3× 3 voxels, assigns ’SAME′ mode to
supplement data, and selects ReLU as the activation func-
tion. 3e three complete encoding and decoding structures
in OTO-Net are used in downsampling, upsampling, and
skip connection. First, the input data of 64×128×128×1
was received. And then, the convolution check with 3× 3× 3
voxels with the convolution step of [1] was performed for
two convolution operations. Finally, Layer 1 was obtained by
adding the first and second convolution layers.

After being downsampled with a convolution kernel step
size of [1, 2], the network structure of Layer1 changes from
16 channels to 32, and then, perform three successive
convolution operations and add the downsampled layer and
the third convolutional layer to get Layer2. Subsequently,
deconvolve Layer2. Moreover, the convolution kernel size
was still [1, 2], so the channels changed from 32 to 16. After
skip connection between the deconvolution layer and Layer1
stack operation, three consecutive convolution operations
and the deconvolution layer are added to obtain Layer3,
whose size is the same as Layer1. At this point, the first
complete encoding and decoding structure is completed.

Except for the second encoding and decoding structure
is different from the first structure, two consecutive
downsampling and then two successive upsampling are
used, while the third is the same as the first structure. When
the OTO-Net structure enters Layer 9, the layer’s size is the

same as that of Layer1 again. Finally, it passes through the
output layer’s convolution operation and uses the Sigmoid
activation function to map out the prediction result of the
size of 64×128×128×1. 3e theoretical calculation of
network parameters of the OTO-Net structure is shown in
Table 1.

3.3. Loss Ensembles. 3e loss function, also known as the
objective function, solves and evaluates the model by
minimizing it, so it is crucial for model construction.
Medical images usually have a characteristic that the target
area to be segmented is unbalanced with the background
area. To solve this problem, Milletari et al. proposed a new
objective function in the V-Net structure, which had an
immediate effect because the Dice coefficient was cited [36].
Since then, Dice loss has become one of the most critical
evaluation indexes of medical image segmentation.

Nevertheless, as Figure 4 shows, intracranial aneurysms
account for a tiny proportion of the entire brain, and the

16 Channels

32 Channels 32 Channels

32 Channels

Convoltion_Relu_Drop

Down_Sampling De-convolution

64 Channels

Add_Connet OTONet Crop and Conear

32 Channels

16 Channels 16 Channels 16 Channels

128 × 128 × 64
128 × 128 × 64

Figure 3: Overall architecture of our proposed OTO-Net.

Table 1: Parameter details of the proposed OTO-Net.

Layer Input size Kernel
OI-Stage1 128 3× 3× 3×16×16
OI-Stage2 64 3× 3× 3× 32× 32
T-Stage1 128 3× 3× 3×16×16
T-Stage2 64 3× 3× 3× 32× 32
T-Stage3 32 3× 3× 3× 64× 64
T-Stage4 64 3× 3× 3× 32× 32
T-Stage5 128 3× 3× 3×16×16
OII-Stage1 64 3× 3× 3× 32× 32
OII-Stage2 128 3× 3× 3×16×16
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foreground and the background are highly imbalanced.
3erefore, we propose an objective function optimization
for loss ensembles, including the comparative experiment
between Dice loss +Cross-Entropy loss and Dice
loss + Boundary loss. 3e principles of each are described in
detail in the following sections.

3.3.1. Dice Loss. Dice coefficient is a set similarity mea-
surement function, which is usually used to calculate the
similarity between two samples, and its value ranges between
[0, 1]. 3e formula is as follows:

s �
2|A∩B|

|A| +|B|
, (1)

where |A∩B| represents the intersection of set A and set B,
|A| and |B| represents the number of elements of set A and
set B, respectively. And the coefficient 2 in the numerator is
to eliminate the common component of double calculation
in the denominator. For semantic segmentation, p repre-
sents the predicted image and g represents the label image.
3us, Dice loss can be expressed as follows:

Ldice � 1 −
2􏽐

N
i�1 pigi􏼐 􏼑 + w

􏽐
N
i�1 p

2
i + 􏽐

N
i�1 g

2
i􏼐 􏼑 + w

, (2)

where w is known as the smoothing coefficient, a minimal
number. And it is used to prevent the denominator from
being 0. Although Dice loss has a good performance in the

scenario where there is a severe imbalance between positive
and negative samples and focuses more on the mining of
foreground area in the training process, it also has disad-
vantages. Loss is prone to be unstable, especially in small
targets, which will lead to gradient saturation in extreme
cases. 3erefore, we propose a loss ensembles optimization
method to solve these problems.

3.3.2. Cross-Entropy Loss. Suppose two different probability
distributions, P(x) and Q(x), for the same random variable
X. In that case, we can use relative entropy (KL divergence)
[37] to measure the difference between these two probability
distributions. 3e formula is expressed as follows:

DKL(PQ) � 􏽘
N

i�1
P xi( 􏼁log

P xi( 􏼁

Q xi( 􏼁
􏼠 􏼡, (3)

DKL(PQ) � −H(P(x)) + − 􏽘
N

i�1
P xi( 􏼁log Q xi( 􏼁( 􏼁⎡⎣ ⎤⎦. (4)

KL divergence formula (4) can be obtained by further
deformation from (3), where the former represents infor-
mation entropy and the latter represents cross-entropy, that
is, KL divergence� cross-entropy− information entropy.

In the model training process, since the input data and
labels have been determined, and the true probability dis-
tribution P(x) has also been determined, the information
entropy is constant. In addition, since the value of KL

MRA Image1

MRA Image4

MRA Image2

MRA Image3

Figure 4: Morphology of intracranial aneurysm at high magnification.
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divergence represents the difference between the true
probability distribution P(x) and the predicted probability
distribution Q(x), the smaller the value, the better the
prediction result.3erefore, it is necessary tominimize the KL
divergence to obtain the best results. It is easier to calculate
using the cross-entropy loss function as the objective func-
tion. Replace P(x) with g(x) and Q(x) with Q(x). 3e
formula of cross-entropy loss can be expressed as follows:

Lce � − 􏽘
N

i�1
g xi( 􏼁log p xi( 􏼁( 􏼁, (5)

where the former represents the KL divergence, and the
latter is a constant.

3.3.3. Boundary Loss. Boundary loss is an objective function
proposed by Kervadec et al. to solve the difficulty of highly
unbalanced segmentation [38]. 3e core of the method is to
calculate the distance between the predicted image and the
boundary of the marked image through calculus. 3e cal-
culation formulas are as shown in (6) and (7), respectively:

Dist(zG , zS) � 􏽚
zG

yzS(p) − p
����

����
2dp, (6)

Dist(zG , zS) ≈ 2􏽚
Δs

DG(q)dp. (7)

Since the distance differential expression (6) cannot be
used as a loss function, the integral expression (7) is adopted.
3e crucial region△S is divided into S and G, and the binary
indicators function s(q) and g (q) about segmentation and
ground truth are introduced so that the integral region
extends from S and G to the entire image domain.

ΔS �
S

G
􏼒 􏼓∪

G

S
􏼒 􏼓, (8)

1
2
Dist(zG , zS) � 􏽚

S
ϕG(q)dq − 􏽚

G
ϕG(q)dq

� 􏽚
Ω
ϕG(q)s(q)dq − 􏽚

Ω
ϕG(q)g(q)dq.

(9)

3en we replaced s(q) in formula (9) with S(q), which
established a connection with the softmax output of the
network. At this point, we can obtain the Boundary loss
function expression (11):

min
θ

Di st zG , zSθ( 􏼁 ≈ 􏽚
Ω
ϕG(q)Sθ(q)dq − 􏽚

Ω
ϕG(q)g(q)dq,

(10)

LB(θ) � 􏽚
Ω
ϕG(q)Sθ(q)dq. (11)

4. Experiments

4.1. Datasets. In the study, we evaluated the proposed
OTO-Net on one public benchmark dataset and one
private dataset used to train, evaluate and objectively
compare the performance of standardized intracranial
aneurysm MRA data segmentation algorithms. First, we
use the Adam2020 dataset. A set of 255 representa-
tive intracranial aneurysm MRA data is shared on
the challenge website (https://adam.isi.uu.nl/) [2].
Adam2020 dataset includes 113 training data and 142
test data, and about 32 epochs are needed for training the
model. In addition, the second in-house private dataset
is provided by the First Affiliated Hospital of Gannan
Medical University (GMU dataset). In total, 65 clinical
intracranial aneurysm MRA data are provided with
manual segmentation labels to verify the model, in-
cluding 30 training data and 35 test data. It takes about
27 epochs to train the proposed OTO-Net with GMU
dataset.

4.2. Evaluation Metrics. In order to have a more systematic
evaluation of the effect of segmentation, we have stipulated
the following indicators as the evaluation metric. 3e Av-
erage Surface Distance (ASD) refers to the average surface
distance of all points in the 3D data block. It is a commonly
used evaluation index in medical image segmentation tasks,
and its mathematical definition can be expressed by the
following formula:

Table 2: Experimental design of image segmentation for intra-
cranial aneurysms.

Experiment Dataset Algorithm Loss function
Ex1 GMU V-Net Dice
Ex2 GMU V-Net Dice + cross-entropy
Ex3 GMU V-Net Dice + boundary
Ex4 GMU OTO-Net Dice
Ex5 GMU OTO-Net Dice + cross-entropy
Ex6 GMU OTO-Net Dice + boundary
Ex7 ADAM2020 V-Net Dice
Ex8 ADAM2020 V-Net Dice + cross-entropy
Ex9 ADAM2020 V-Net Dice + boundary
Ex10 ADAM2020 OTO-Net Dice
Ex11 ADAM2020 OTO-Net Dice + cross-entropy
Ex12 ADAM2020 OTO-Net Dice + boundary

Table 3: 3e hyperparameters of each experiment.

Experiment Inputable
data

Learning
rate Dropout Epoch Batch

size
Ex1 597 0.001 0.5 200 4
Ex2 597 0.001 0.5 200 4
Ex3 597 0.001 0.5 200 4
Ex4 597 0.001 0.5 200 2
Ex5 597 0.001 0.5 200 2
Ex6 597 0.001 0.5 200 2
Ex7 1613 0.001 0.5 150 4
Ex8 1613 0.001 0.5 150 4
Ex9 1613 0.001 0.5 150 4
Ex10 1613 0.001 0.5 150 2
Ex11 1613 0.001 0.5 150 2
Ex12 1613 0.001 0.5 150 2
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ASD �

􏽐a∈S(A) min
b∈S(B)

‖a − b‖ + 􏽐b∈S(B) min
a∈S(A)

‖b − a‖

|S(A)| +|S(B)|
. (12)

Next, since Dice Similarity Coefficient (DSC) is equiv-
alent to equation (1), and the sum of Dice loss and DSC is 1.
Based on the above conditions, DSC can be expressed as
follows by the following formula:

DSC �
2􏽐

N
i�1 pigi

􏽐
N
i�1 p

2
i + 􏽐

N
i�1 g

2
i

. (13)

If DSC is sensitive to internal filling, Hausdorff distance
(HD) focuses on calculating segmentation boundaries.
Hausdorff distance is a maximum function describing set A
to set B. And the general definition can be expressed by the
following formula:

HD(C, D) � max h(C, D), h(D, C){ }, (14)

where h(C, D) is called the directed Hausdorff distance and
given by h(C, D) � maxa∈Cminb∈D‖a − b‖, where ‖a − b‖ is
some norm. In all HD calculations, the maximum distance
quantile is set to 95%. 3e purpose is to eliminate the little
distance caused by some outliers to ensure the overall value’s
stability.

4.3. Experimental Details. We use the V-Net model and the
OTO-Net model for comparative experiments. As men-
tioned in the previous article, we used the comprehensive
objective function of Dice loss +Cross-entropy loss and Dice
loss + Boundary loss in the training process. 3e intracranial
aneurysm segmentation study provided two datasets, so we
designed Table 2 that shows the experimental protocol.

4.4. Training Process. As shown in Table 3, to meet the
experimental conditions of the control group without
limiting the optimal performance of the model, we rea-
sonably set the training parameters of each group of ex-
periments, such as learning rate, dropout, epoch, and batch
size.

In this study, we used the python-based PyCharm
framework to implement the preprocessing and our pro-
posed OTO-Net model, including the software packages

such as 1.19.2 NumPy, 3.1.1 Nibabel, 2.0.0 SimpleITK, 1.1.2
Pandas, 4.4.0 OpenCV, and the GPU version of 1.13.1
TensorFlow.3eworkstation is installed with theWindow10
system, equipped with two Intel(R) Xeon(R) Silver 4210
CPU @2.20GHz, one NVIDIA TITAN RTX 24GB GPUs,
and 128G running memory. All different modes were tested
under the same GPU and environment.

5. Results and Discussion

5.1. Results. After completing the model’s training process,
we tested its segmentation detection performance. Evalua-
tion indicators can be considered as the most intuitive
manifestation of results. As shown in Table 4, we used the
ASD, DSC, and HD three indicators introduced in the
previous article to compare and evaluate the effects of all
experimental groups. 3e last column of the
table—comprehensive ranking is the cumulative sum of the
scales of each group in the three indicators. It can be implied
by its definition that the smaller the value, the higher the
overall performance of the corresponding model.

By observing and comparing the experimental data, it
can be concluded that Ex3, Ex5, and Ex12 rank first in the
three indicators of ASD, HD, and DSC, respectively, and
Ex12 is the best in the overall ranking. Combined with the
experimental model design, they use all OTO-Net. 3ere-
fore, we have reason to believe that O’s segmentation effect
on V has been further improved. In addition, for another
experimental variable loss function, we found that the
overall rankings of Ex1, Ex4, Ex7, and Ex10 that only use the
dice objective function are relatively low, and the loss en-
sembles play a critical role in improving the segmentation
performance.

We comprehensively analyze and calculate the results of
6 sets of experiments and finally conclude that the accuracy
of the OTO-Net model on the GMU and Adam2020 datasets
is 98.37% and 97.86%, respectively. 3e accuracy is the ratio
of the correct prediction area to the target area. Ex5 ranked
first in the GMU dataset, with ASD reaching 1.989, DSC
reaching 0.9721, and HD reaching 0.578mm; Ex12 ranked
first on the Adam2020 dataset with ASD of 0.753, DSC of
0.9813, and HD of 0.642mm. We have noticed that this
model performs better on the Adam2020 dataset and believe

Table 4: Evaluation index and a comprehensive score of each experimental model.

Experiment Time (h) ASD DSC 95% HD Comprehensive ranking
Ex1 11.5 3.562± 0.77 0.9391± 0.023 7.332± 2.31 12/12 + 11/12 + 12/12� 2.91
Ex2 11.7 2.409± 0.26 0.9502± 0.032 3.053± 1.11 9/12 + 10/12 + 8/12� 2.25
Ex3 12.1 0.706± 0.05 0.9672± 0.020 2.751± 1.29 1/12 + 7/12 + 7/12�1.25
Ex4 10.4 2.014± 0.20 0.9701± 0.017 1.242± 2.68 7/12 + 5/12 + 6/12�1.50
Ex5 11.0 1.989± 0.62 0.9721± 0.005 0.578± 0.43 6/12 + 3/12 + 1/12� 0.83
Ex6 11.3 1.081± 0.27 0.9710± 0.013 0.942± 0.87 4/12 + 4/12 + 3/12� 0.91
Ex7 43.6 3.194± 0.31 0.9362± 0.020 7.116± 9.84 11/12 + 12/12 + 11/12� 2.83
Ex8 43.9 2.113± 0.09 0.9586± 0.031 5.583± 1.92 8/12 + 9/12 + 10/12� 2.25
Ex9 44.1 2.991± 0.31 0.9621± 0.017 1.131± 0.31 10/12 + 8/12 + 5/12�1.91
Ex10 39.8 1.953± 0.71 0.9699± 0.042 4.112± 0.94 5/12 + 6/12 + 9/12�1.66
Ex11 40.1 0.905± 0.11 0.9761± 0.007 1.041± 0.31 3/12 + 2/12 + 4/12� 0.75
Ex12 40.6 0.753± 0.03 0.9813± 0.008 0.642± 0.17 2/12+ 1/12+ 2/12� 0.33
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Figure 5: Prediction results comparison between the OTO-Net and V-Net: (a) GMU dataset, (b) Adam2020 dataset.
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that the reason is that the data contained in it is more
standardized.

For the clinician’s diagnosis, the most intuitive and
effective way of presentation is the visualization of the
segmentation results. Both OTO-Net and V-Net men-
tioned in this article have end-to-end characteristics, so the
output data size is still 128 ×128× 64. To preserve the
predicted results in the model training process, we con-
verted the 128 ×128× 64 3D data blocks into 64 128 ×128
2D images and then merged them into 8× 8 images. 3e
smaller the inference cycle of the model is, the faster the
inference speed is, and the stronger the model’s perfor-
mance is. When the reasoning cycles are the same, the
reasoning cycles’ size can be evaluated by comparing the
value of dice loss, and then the performance of the model
can be judged.

As shown in Figure 5(a), (a) is the comparison between
the prediction results of OTO-Net and V-Net on the GMU

dataset in the 5th, 50th, and 125th rounds of the inference
period and the standard; (b) is the comparison between the
prediction results of OTO-Net and V-Net on the Adam2020
dataset in the 10th, 500th, and 2500th rounds of the inference
period and the standard. By comparing the four groups of
data, it can be found that the dice loss values of Ex5 and Ex12
are significantly smaller, indicating that their predicted re-
sults are more similar to the standard. 3erefore, the model
structure of Ex5 and Ex12 is superior.

On this basis, to observe the loss values of each group of
experiments in the training process, Figures 6(a) and 6(b)
recorded and described the dynamic change curves of
training loss of 12 groups of experiments GMU and
Adam2020 datasets, respectively. 3e volatility of the loss
curve is one of the important indexes to measure the model’s
stability. As shown in Table 5, by calculating the residual sum
of squares (RSS) of each loss curve, the volatility of the loss’s
discrete value was characterized by a quantity that measured

MRA Data 128 × 128 × 64 8 × 8

Figure 7: Test set nonoverlapping block processing.

Table 5: RSS calculation results for each loss curve.

Ex1/Ex7 Ex2/Ex8 Ex3/Ex9 Ex4/Ex10 Ex5/Ex11 Ex6/Ex12

Residual sum of squares (RSS) 17.7597 17.0351 18.1124 15.9172 15.1319 17.0053
19.8024 19.0271 21.9512 16.3814 18.7011 16.1217
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Figure 6: Training loses per group of experiments on GMU dataset and Adam2020 dataset.
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the degree of model fit in the linear model. 3e smaller the
matter is, the smaller the fluctuation is, which means that the
model tends to be more stable. By comparing the data in the
table, it can be seen that the RSS values of Ex4∼6 and
Ex10∼12 are small, so the model structure is more stable.

To sum up, all the experimental data, respectively, reflect
the excellent effects of training stability, segmentation ac-
curacy, and generalization ability, which effectively verify the
advancement of the OTO-Net structure and loss ensembles
proposed by us.

Table 6: Evaluation indexes of six MRA image test sets.

Test Dataset ASD DSC 95% HD
TOF1 GMU 0.982 0.9604 0.812
TOF2 GMU 0.699 0.9711 0.640
TOF3 GMU 0.704 0.9622 0.506
TOF4 ADAM2020 1.105 0.9730 0.618
TOF5 ADAM2020 0.786 0.9803 0.574
TOF5 ADAM2020 1.032 0.9705 0.713

TO
F4

128 × 128 GT Pred

TO
F5

TO
F6

Figure 9: Visualization results of the intracranial aneurysms segmentation using the proposed OTO-Net on Adam2020 dataset.

TO
F1

128 × 128 GT Pred

TO
F2

TO
F3

Figure 8: Visualization results of the intracranial aneurysms segmentation using the proposed OTO-Net on GMU dataset.
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5.2. Discussion. After introducing the process and results of
this experiment, it can be seen that OTO-Net with loss
ensembles shows high overall accuracy and robustness in the
segmentation of highly unbalanced intracranial aneurysms.
As shown in Figure 7, the test samples divided in advance by
GMU and Adam2020 datasets were first processed by
nonoverlapping block processing, respectively, to obtain
multiple test datasets with the size of 128×128× 64, and
then input them into OTO-Net, respectively, for prediction.

Figures 8 and 9 respectively, show the three groups of
MRA image results predicted by the OTO-Net model on the
GMU dataset and the Adam2020 dataset. Because the in-
tracranial aneurysm was too small, we enlarged and clipped
the target region to have a precise observation of each result.
Observation of the predicted results shows that OTO-Net
can still achieve pixel-level segmentation requirements, but
for tiny intracranial aneurysms, it is difficult for OTO-Net to
achieve absolute precision segmentation in some marginal
areas. In order to quantitatively discuss the prediction re-
sults, three indicators of ASD, DSC, and HD of the six
groups of test data were counted, respectively. As shown in
Table 6, ASD of TOF2 reached 0.699 and HD of TOF3
reached 0.506mm, both of which were higher than the
maximum values of the training results.3emaximum value
of DSC is 0.9803, which is slightly inferior to the maximum
value of training.

In order to increase the persuasiveness of the results of
the article, we must effectively compare it with the results of
previous studies. However, by reading a large number of
documents, we can see that few studies overlap entirely with
the research field of this article, which fully proves that the
idea of the article is quite innovative.3emodel proposed by
Sichtermann et al. has a system with a maximum overall
accuracy of 90% for detecting intracranial aneurysms and an
accuracy of 96% for aneurysms with a diameter of 3–7mm,
which is lower than the segmentation result obtained by this
model [39].

3erefore, it can be seen from the whole that the current
research results show that OTO-Net has a high level of
segmentation accuracy for large, medium, and small regions
and multiregions. OTO-Net is fully competent to assist
radiologists in quantitative analysis and evaluation of MRA
examination in patients with intracranial aneurysms. Ac-
curacy is the most important index in the field of medical
image processing. 3ere is no upper limit to this index, so
our current research needs to be more in-depth and detailed.

6. Conclusion

3is study proposed the OTO-Net model for intracranial
aneurysms automated segmentation in MRA images and
performed experiments on the Adam2020 dataset and GMU
dataset, respectively. We designed a novel 3D image pre-
processing scheme to correlate the structural information
between data blocks through overlap and partition opera-
tions. At the same time, we proposed the OTO-Net for
intracranial aneurysms automated segmentation in MRA
images. 3e OTO-Net uses full convolution to achieve in-
tracranial aneurysms automated segmentation through the

combination of downsampling, upsampling, and skip
connection. In addition, loss ensemble is used as the ob-
jective function to steadily improve the backpropagation
efficiency of the network structure during the training
process. We evaluated the proposed OTO-Net on one public
benchmark dataset and one private dataset. Our proposed
model can achieve the automated segmentation accuracy
with 98.37% and 97.86%, average surface distances with
1.081 and 0.753, dice similarity coefficients with 0.9721 and
0.9813, andHausdorff distance with 0.578 and 0.642 on these
two datasets, respectively. 3erefore, our proposed OTO-
Net plays an essential role in radiologists’ assisted discovery
and diagnosis of intracranial aneurysms and brings sub-
stantial value to intelligent medicine’s advancement and
development. 3e next research direction is to better use the
transformer and 3D information to segment intracranial
aneurysms in MRA images.
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