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Abstract: Total hip arthroplasty (THA) for patients with hip osteoarthritis improves hip flexion
contracture, subsequently improving spinal sagittal balance. However, in some cases, spinal sagittal
imbalance develops in the course after THA, and its risk factors remain unknown. We aimed to
investigate the risk factors of progressive spinal sagittal imbalance after THA. This retrospective
cohort study of a prospectively maintained database included female patients aged ≥50 years
who underwent THA. Before performing THA, we obtained each patient’s anthropometric and
muscle strength measurements and whole-spine radiographs. Three years postoperatively, patients
underwent whole-spine radiography to examine changes in the spinal sagittal balance. Patients
were assigned into groups on the basis of their preoperative and 3 year postoperative sagittal
vertical axis (SVA) values. Patients with 3 year postoperative SVA values ≥40 mm with an increase
≥30 mm were categorized into the imbalance group; the other patients were categorized into the
non-imbalance group. Of 103 patients, 11 (10.7%) were in the imbalance group. In multiple logistic
regression analysis, preoperative weak abdominal trunk muscle strength (ATMS) (p = 0.007) and small
sacral slope (SS) (p = 0.005) were significant risk factors for progressive spinal sagittal imbalance. In
conclusion, risk factors for progressive spinal sagittal imbalance after THA were weak preoperative
ATMS and small SS.

Keywords: total hip arthroplasty; spinal sagittal imbalance; spinopelvic parameters; sacral slope;
sagittal vertical axis; abdominal trunk muscle strength; short-term follow-up; female patients

1. Introduction

Hip osteoarthritis (OA) is one of the most common musculoskeletal diseases in an
aging society [1]. In recent years, it has been recognized that pelvic and spinal alignments
affect each other, and many studies have been conducted on spinopelvic alignment in hip
OA [2–6]. Patients with hip OA often have hip flexion contracture, pelvic anteversion, and a
high sagittal vertical axis (SVA), suggesting spinal sagittal imbalance [7]. As OA progresses
and the range of motion of the hip decreases, spinal sagittal imbalance progresses [4,8].

Total hip arthroplasty (THA) is the standard procedure for hip OA, and the number
of THAs being performed is increasing [9]. In general, THA reduces flexion contracture
of the hip joint, resulting in a retroverted pelvis, decreased SVA, and improved spinal
sagittal balance [10–12]. However, in some cases, spinal sagittal imbalance with lumbar
kyphosis develops in the course after THA. Corrective surgery for lumbar kyphosis, which
increases the risk of hip dislocation after THA [13–15], can be necessary for these patients.
Therefore, it is important to understand the characteristics of the patients with progressive
spinal sagittal imbalance after THA; this has not been studied to date. This study aimed
to investigate the risk factors for progressive spinal sagittal imbalance in the short-term
course after THA.
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2. Materials and Methods
2.1. Participants

A total of 156 female patients aged ≥50 years who underwent THA for hip OA at our
hospital between 2016 and 2019 and agreed to participate in a preoperative examination
were included in this study. Patients who had previously undergone spinal surgery or
were diagnosed with rheumatic diseases were excluded from the study; 46 patients who
did not have the 3 year standing whole-spine radiographs were excluded from the study.
Finally, 103 patients were evaluated in this study (Figure 1). Surgical procedures included
anterior (n = 76), posterior (n = 27), unilateral only (n = 83), and bilateral simultaneous
(n = 20) approaches.
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Figure 1. Flowchart describing the selection process of study participants and their assignment to the
two groups.

2.2. Evaluation of the Demographic and Radiographic Parameters of Participants

Clinical information was collected through a retrospective review of a prospectively
maintained database. Before the surgery, participants underwent physical measurements,
standing whole-spine radiography, and other assessments as described below. We obtained
anthropometric measurements, including body height, body weight, and body mass index.
Grip power was measured using a TTM dynamometer (Tsutsumi, Tokyo, Japan). The knee
extensor muscle strength (KEMS) was measured using a handheld dynamometer (µTas
F-1; ANIMA Corp., Tokyo, Japan); KEMS values were divided by the body weight (N/kg).
To measure KEMS, subjects were seated in an elevated chair with 90◦ of knee flexion and
their feet above the floor. With the dynamometer placed on the anterior surface of their leg,
10 cm proximal to the malleoli, subjects were instructed to push against the dynamometer
by attempting to straighten their knees [16]. The right and left grip power and KEMS
were measured once, and the higher strength values were recorded. Abdominal trunk
muscle strength (ATMS) was measured using an exercise device for the abdominal trunk
muscles (RECORE: Nippon Sigmax Co., Ltd., Tokyo, Japan). As previously described [17],
this device enables patients to perform strength measurement or strengthening exercises
involving their abdominal trunk muscles in a sitting position without movement of the
trunk or load on the spine. A previous study showed that this device had excellent intra-
and inter-rater reliabilities to measure ATMS, and strengthening exercises using the device
activate and increase diaphragmatic, abdominal, and pelvic floor muscle strength [18].
ATMS was measured twice, and the higher strength values were recorded. Locomotive
syndrome, defined as a condition of reduced mobility due to an impairment of a locomotive
organ, was assessed using the 25-question Geriatric Locomotive Function Scale (GLFS-
25) and a two-step test in each patient [19]. In addition, the functional reach test (FRT)
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was performed to measure the stability of the patients while reaching forward in the
standing position [20]. Other assessments included 10 m walking speed, one-leg standing
time, lumbar bone mineral density measured using dual-energy X-ray absorptiometry,
and the presence of osteoporotic vertebral fracture evaluated using standing whole-spine
radiography. Sagittal spinal alignment was evaluated using whole-spine radiography.
Sagittal balance was assessed using the SVA, defined as the distance between the postero-
superior corner of S1 and the plumb line drawn from the vertebral midbody of C7 [21].
The following spinopelvic sagittal parameters were measured: lumbar lordosis (LL), pelvic
incidence (PI), sacral slope (SS), pelvic tilt (PT), and PI minus LL.

Three years after surgery, participants underwent a follow-up standing whole-spine
radiography. Patients were assigned into two groups on the basis of their preoperative and
3 year postoperative SVA values. Patients with a 3 year postoperative SVA value ≥40 mm
with an increase ≥30 mm were categorized into the imbalance group, while the others were
assigned to the non-imbalance group.

2.3. Statistical Analysis

Continuous variables are expressed as the mean ± standard deviation. Between-
group differences in continuous variables were examined using the Mann–Whitney U
test. Categorical data are expressed as percentages, and comparisons between groups
were performed using the chi-squared test. A multiple logistic regression model was used
to obtain odds ratios (ORs) with 95% confidence intervals (CIs) to identify the factors
associated with progressive spinal sagittal imbalance after THA. Lastly, receiver operating
characteristic (ROC) curve analysis was used to determine the optimal cutoff for the
occurrence of spinal sagittal imbalance. IBM SPSS Statistics for Macintosh, Version 27.0
(IBM Corp., Armonk, NY, USA) was used for all statistical analyses, with a level of statistical
significance of p < 0.05.

3. Results

A total of 103 patients were included and evaluated in this study. The mean change
in SVA was −2.6 mm (range: −103.7 to 156.5 mm). Of the 103 patients, 11 (10.7%) were
assigned to the imbalance group, while the other 92 (89.3%) patients were assigned to the
non-imbalance group (Figure 1). Preoperatively, the imbalance group had lower ATMS
and KEMS values, a shorter FRT distance, and smaller SS and LL values than the non-
imbalance group (Table 1). There were no significant differences in the preoperative SVA
between the two groups. In the multiple logistic regression analysis using the five items
that showed significant differences in the univariate analysis as explanatory variables,
preoperative weak ATMS and small SS were significant risk factors for progressive spinal
sagittal imbalance after THA (Table 2).

Table 1. Demographic and radiographic parameters of 103 patients.

Imbalance Group Non-Imbalance Group p-Value

No. of subjects 11 92

Age (years), mean ± SD 64.7 ± 9.3 63.8 ± 8.7 0.902

BMI (kg/m2), mean ± SD 25.0 ± 7.7 23.1 ± 3.8 0.860

Bilateral simultaneous THA, No. (%) 2 (18.2) 18 (19.6) 0.946

Anterior approach, No. (%) 9 (81.8) 67 (72.8) 0.48

Grip strength (kg), mean ± SD 20.5 ± 4.9 21.1 ± 4.8 0.435

KEMS (N/kg), mean ± SD 2.9 ± 1.4 3.9 ± 1.2 0.026

ATMS (kPa), mean ± SD 2.5 ± 1.6 5.2 ± 2.9 0.013
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Table 1. Cont.

Imbalance Group Non-Imbalance Group p-Value

FRT (cm), mean ± SD 26.1 ± 6.4 30.9 ± 7.1 0.019

Walking speed (m/s), mean ± SD 0.8 ± 0.4 0.9 ± 0.2 0.359

1-leg standing time (s), mean ± SD 25.7 ± 21.4 36.7 ± 22.9 0.142

2-step score (point), mean ± SD 0.8 ± 0.3 1.0 ± 0.3 0.342

GLFS-25 score (point), mean ± SD 52.6 ± 18.7 43.8 ± 18.5 0.173

L-BMD (g/cm2), mean ± SD 1.2 ± 0.2 1.1 ± 0.2 0.275

Presence of OVF before THA, No. (%) 1 (9.0) 11 (12.0) 0.624

Occurrence of OVF after THA, No. (%) 0 (0.0) 2 (2.1) 0.797

SVA (mm), mean ± SD 47.9 ± 26.1 45.3 ± 47.2 0.665

LL (degrees), mean ± SD 40.1 ± 18.7 53.3 ± 17.9 0.019

PI (degrees), mean ± SD 51.0 ± 12.6 57.2 ± 11.6 0.075

SS (degrees), mean ± SD 32.7 ± 10.2 42.7 ± 12.4 0.006

PT (degrees), mean ± SD 18.3 ± 8.9 14.4 ± 11.4 0.175

PI-LL (degrees), mean ± SD 10.9 ± 15.2 3.9 ± 16.9 0.172

ATMS, abdominal trunk muscle strength; BMI, body mass index; FRT, functional reach test; GLFS-25, 25-question
Geriatric Locomotive Function Scale; KEMS, knee extensor muscle strength; L-BMD, bone mineral density of the
lumbar spine; LL, lumbar lordosis; OVF, osteoporotic vertebral fracture; PI, pelvic incidence; PT, pelvic tilt; SD,
standard deviation; SVA, sagittal vertical axis; SS, sacral slope; THA, total hip arthroplasty.

Table 2. Multiple logistic regression analysis of factors associated with progressive spinal sagittal imbalance.

OR p-Value 95% CI

ATMS (kPa) 0.504 0.007 0.307–0.827

SS (degrees) 0.924 0.005 0.875–0.976
ATMS, abdominal trunk muscle strength; CI, confidence interval; OR; odds ratio; SS, sacral slope.

ROC analyses showed that ATMS ≤ 4.3 kPa (Figure 2, 95% CI 0.643–0.909, p = 0.004,
area under the curve 0.776) and SS ≤ 31.9◦ (Figure 3, 95% CI 0.607–0.897, p = 0.001, area
under the curve 0.752) best predicted the progression of sagittal imbalance in the study
cohort. The progression rate of sagittal imbalance was significantly higher (p = 0.002)
in participants with ATMS ≤ 4.3 kPa (20.4%, 10/49) than in those with ATMS > 4.3 kPa
(1.9%, 1/54). Similarly, the progression rate of sagittal imbalance was significantly higher
(p = 0.001) in participants with SS ≤ 31.9◦ (40.0%, 6/15) than in those with SS > 31.9◦

(5.7%, 5/88).
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Figure 2. Receiver operating characteristic analysis showing that the cutoff value for abdominal trunk
muscle strength is 4.3 kPa (95% confidence interval 0.643–0.909, p = 0.004, AUC 0.776). The sensitivity
and specificity are 0.909 and 0.576, respectively. ATMS, abdominal trunk muscle strength; AUC, area
under the curve; CI, confidence interval.
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Figure 3. Receiver operating characteristic analysis showing that the cutoff value for sacral slope is
31.9◦ (95% confidence interval 0.607–0.897, p = 0.001, AUC 0.752). The sensitivity and specificity are
0.545 and 0.902, respectively. SS, sacral slope; AUC, area under the curve; CI, confidence interval.

4. Discussion

This retrospective cohort study with a prospectively maintained database aimed to
investigate risk factors associated with progressive spinal sagittal imbalance after THA
in middle-aged women. In this study, spinal sagittal imbalance progressed in 11 patients
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(10.7%) 3 years postoperatively, and multivariate analysis showed that the risk factors
were preoperative weak ATMS and small SS. Furthermore, ROC analysis showed that
ATMS ≤ 4.3 kPa and SS ≤ 31.9◦ were associated with spinal sagittal imbalance and may
be useful predictors of progressive spinal sagittal imbalance before THA. Although many
reports evaluated spinopelvic alignment immediately after THA [10–12,22–26], to our
knowledge, no studies have reported the risk of spinal sagittal imbalance in the long-term
course after THA. Spinal sagittal imbalance after THA may lead to a demand for corrective
surgery. Correction of lumbar kyphosis changes the pelvic tilt, resulting in an increased
risk of dislocation of the artificial hip [13–15]. Therefore, assessing the trunk function and
spinopelvic alignment before THA is important to predict the progression of spinal sagittal
imbalance according to the results of this study.

The results of this study suggested that a weak ATMS is a risk factor for spinal
sagittal imbalance after THA. The relationship between trunk muscle strength and spinal
sagittal balance has been reported in the past, and these studies concluded that weak back
muscles are associated with sagittal imbalance [27–30]. A previous study showed that the
device used in this study (RECORE) could quantify ATMS, and strengthening exercises
using the device increased ATMS and activated the abdominal, diaphragmatic, and pelvic
floor muscles [18]. Muscle contraction during the ATMS measurement or strengthening
exercise was comparable to that involved during abdominal bracing with the abdominal
and paraspinal muscles activated [31]. The core can be described as a muscular box whose
anterior wall is represented by the abdominal muscles, with the posterior wall represented
by the paraspinal muscles, the roof represented by the diaphragm, and the floor represented
by the pelvic floor muscles [32]. The contraction of the diaphragm increases intra-abdominal
pressure, thus contributing to spinal stability [32]. ATMS is created through the coordinated
contraction of trunk muscles comprising the muscular box. This muscle contraction creates
a semirigid cylinder located anterior to the spinal column that can support the spinal
column from the front and prevent a progression of sagittal spinal imbalance in the lower
thoracic or lumbar spines. Although several studies have described the contribution of
these anterior trunk muscles to spinal stability [32,33], there have been no previous reports
of ATMS being associated with spinal sagittal imbalance. On the basis of the study’s results,
the functional assessment of the trunk, including ATMS measurements in patients with
hip OA, is important for predicting progressive spinal sagittal imbalance after THA, which
is clinically problematic. The device allows for easy and safe ATMS measurements [34],
and the ATMS measurement has great potential to be used in assessing trunk dysfunctions
related to the future progression of spinal sagittal imbalance after THA.

This study showed that a small SS causes spinal sagittal imbalance 3 years after THA in
female patients. Patients with hip OA usually have increased SVA due to anterior pelvic tilt
caused by hip flexion contracture [11]. The mean values of SS and PT of Japanese women
in their 60s were 31◦ and 18◦, respectively [35]. In contrast, those in the non-imbalance
group in this study had values of 42◦ and 14◦, respectively, indicating that the pelvis was
tilted anteriorly. On the other hand, the mean values of SS and PT of the imbalance group
were 32◦ and 18◦, respectively, similar to those of the general population of the same age,
despite the presence of hip OA. In cases of anterior pelvic tilt due to flexion contracture, as
in the non-imbalance group in this study, SVA decreased immediately after THA because
flexion contracture improved, and the pelvis rotated backward [10–12] (Figure 4). However,
since patients with a small SS have a smaller capacity for retroversion of the pelvis [33],
their spinal sagittal balance did not improve. In addition, patients with a small SS are less
capable of compensating for the progressive decrease in lumbar lordosis over time, making
it difficult for them to maintain spinal sagittal balance (Figure 5). These results may explain
why spinal sagittal imbalance is more likely to progress in patients with a small SS in the
long term after THA.
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and 5.2 kPa, respectively. Postoperatively, SVA decreased to 10.8 mm.
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Figure 5. A case of progressive spinal sagittal imbalance after total hip arthroplasty. Preoperatively,
the sacral slope, sagittal vertical axis (SVA), and abdominal trunk muscle strength were 15.9◦, 17.6 mm,
and 3.2 kPa, respectively. Postoperatively, SVA increased to 194.1 mm.



J. Clin. Med. 2022, 11, 5179 8 of 10

This study had several limitations. First, the back muscle strength, considered a risk
factor for spinal sagittal imbalance, was not measured. Thus, it is impossible to compare the
effects of ATMS and back muscle strength on the progression of sagittal imbalance. Second,
the spinopelvic alignment was not measured immediately after surgery. Therefore, it is unclear
to what extent the immediate postoperative changes and the 3 year course after surgery affect
sagittal balance. Third, since this study did not include nonsurgical patients, it is not certain
whether the change in sagittal balance was the effect of surgery or a natural course.

5. Conclusions

Spinal sagittal imbalance progressed in approximately 10% of patients 3 years after
THA. Preoperative weak ATMS and small SS were risk factors for progressive spinal sagittal
imbalance in the short-term course after THA in female patients. Preoperative assessments
of trunk function and spinopelvic alignment are important predictors of progressive sagittal
imbalance after THA.
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