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Abstract

Background: Understanding and ameliorating the effects of network damage are of significant interest, due in part to
the variety of applications in which network damage is relevant. For example, the effects of genetic mutations can
cascade through within-cell signaling and regulatory networks and alter the behavior of cells, possibly leading to a
wide variety of diseases. The typical approach to mitigating network perturbations is to consider the compensatory
activation or deactivation of system components. Here, we propose a complementary approach wherein interactions
are instead modified to alter key regulatory functions and prevent the network damage from triggering a deregulatory
cascade.

Results: We implement this approach in a Boolean dynamic framework, which has been shown to effectively model
the behavior of biological regulatory and signaling networks. We show that the method can stabilize any single state
(e.g., fixed point attractors or time-averaged representations of multi-state attractors) to be an attractor of the repaired
network. We show that the approach is minimalistic in that few modifications are required to provide stability to a
chosen attractor and specific in that interventions do not have undesired effects on the attractor. We apply the
approach to random Boolean networks, and further show that the method can in some cases successfully repair
synchronous limit cycles. We also apply the methodology to case studies from drought-induced signaling in plants and
T-LGL leukemia and find that it is successful in both stabilizing desired behavior and in eliminating undesired outcomes.
Code is made freely available through the software package BooleanNet.

Conclusions: The methodology introduced in this report offers a complementary way to manipulating node
expression levels. A comprehensive approach to evaluating network manipulation should take an "all of the above"
perspective; we anticipate that theoretical studies of interaction modification, coupled with empirical advances, will
ultimately provide researchers with greater flexibility in influencing system behavior.

Keywords: Boolean networks, Discrete dynamic models, Signal transduction, Stability, Attractors, Network
manipulation, Interaction modification, T-LGL leukemia, Abscisic acid signaling
Background
Characterizing the deregulation of signaling networks is
a crucial component of understanding a variety of dis-
eases, including diabetes [1,2] developmental disorders
[3], and cancer [3-5]. For instance, cellular signaling net-
works may be damaged via mutations or changes in the
activation levels of constituent components, which may
lead to abnormal cell behavior [6]. A specific example is
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the mutation of the transforming growth factor (TGFβ)
receptor protein that leads to unregulated cell growth [7].
Signaling networks are one class of complex systems:

i.e., collections of interacting components that, on a hol-
istic level, display behavior that cannot be predicted
from analysis of the system's components in isolation.
Complex systems exist in diverse biological, social, and
physical contexts. Network science has developed as an
effective framework with which to study complex sys-
tems. Biologists use network representations of intra-
and inter- cellular signaling to study diverse phenomena,
including pathogen-immune system interactions [8,9],
cancer progression [10-12], and regulatory behavior in
the face of changing environmental conditions [13,14].
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On a larger biological scale, networks have been used to
model ecological interactions, including predator–prey
food webs [15] and mutualistic interactions between, for
instance, plants and their pollinators [16]. Networks
have also been used to effectively model human social
interactions, especially in the context of the spread of
disease [17], opinions [18], and information [19] through
a population. Network theory has elucidated the emer-
gent properties of technological systems, including the
World Wide Web and Internet, and is used to model
power grids and roads [17].
A network, in its most basic form, consists of nodes

(denoting system components) and edges between nodes
(representing interactions and relationships among
components). The structure of a network, quantified by
network measures such as the degree distribution, cluster-
ing coefficient or distance [17,20], can be information-
rich. For example, the topology of a social friendship
network can be used to determine friendship cliques and
key social mediators [21,22]. However, the topology alone
frequently provides an incomplete view of the system. The
propagation of a signal through an intra-cellular network,
for instance, must be represented by assigning a dynamic
activation level to each node of the network and quantify-
ing the regulatory relationships between nodes.
The Boolean framework has become a standard meth-

odology for modeling dynamical processes on networks,
especially in biological contexts [23-25] (Figure 1(a)). In a
Boolean model of a network, nodes are assumed to be
either active or inactive (i.e., ON or OFF, or equivalently 1
or 0). The nodes are inter-related such that the dynamics
of an arbitrary node xi obeys xi(t + τi) = fi(x1(t),…, xN(t)),
where for simplicity each node’s state (ON or OFF) is de-
noted by the node name xi and τi is the time delay (re-
sponse time) of node xi. Depending on the system being
modeled, the regulatory relationships (the fi functions)
may be represented by logical functions [24,26], threshold
rules [27,28], or truth tables [29,30], which give the next
state of a regulated node for every combination of its
regulators’ current states. For example, the logical function
fA = (B AND C) OR D indicates the relationship between
the future state of node A and the current states of its reg-
ulators, nodes B, C and D. Specifically, node A will be ON
in the future if either B and C are ON simultaneously, or
D is ON. The dynamic updating process (recalculation of
each node’s state according to its regulatory relationship)
used in Boolean models is often done in discrete time:
node states are recalculated either synchronously (simul-
taneously), wherein τi = 1 for any i or asynchronously,
wherein node-dependent time delays are used or, equiva-
lently, node states are updated in a prescribed or random
sequence. Time discretization is clearly an abstraction of
the real system being modeled, where interactions occur
in continuous time and over differing time scales. In
situations where these time scales are not known and
therefore cannot be integrated into discrete dynamic net-
work models, as is often the case in biological systems
[24], stochastic asynchronous models offer a method of
sampling all possible time scales. In this way, these models
capture a broad range of possible dynamical behavior;
while such predictions are necessarily imprecise, dynamic
Boolean models are attractive in that they do not require
extensive parameterization (and thereby capture behavior
that arises from the fundamental characteristics of the
interactions between system components). Indeed,
these models have been shown to effectively capture
the qualitative behavior of a variety of real systems
(see e.g. [23,31-33]).
In a Boolean framework, the state of a network with N

nodes at any time step may be represented by a Boolean
vector of length N; each bit represents the state of a
node (Figure 1(b)). The procession between the 2N states
may be mapped in the so-called state transition net-
work, whose nodes are the states of the system and
whose directed edges indicate state transitions that are
allowed by the model. After sufficient applications of the
network update rules, the network enters into a state or
a closed set of states from which it cannot escape, called
an attractor. An attractor can be a steady state (a fixed
point that the network never leaves), or a limit cycle (a
set of states through which the system cycles, determin-
istically for synchronous update schemes or probabilis-
tically for stochastic asynchronous update schemes). The
attractors of a network represent the stable dynamical
configurations of the system. The states that can reach a
specified attractor through a path of successive state
transitions form the basin of attraction of the attractor.
In the context of a cellular signal transduction network,
the attractors may, for instance, represent cell fates such
as death or unregulated growth [34]. As such, determin-
ing the attractors of a network, and characterizing their
behavior in the face of system perturbations (i.e., a tran-
sient or permanent change in the state of a node and/or
in the interactions between nodes), are major foci of dy-
namic Boolean network analysis. Significant effort has
been devoted to characterizing the effects of damage on
a network's attractors (see e.g. [35,36]). While the per-
turbation of a node can, in some cases, have no effect on
any other nodes (in which case a near-identical attractor
that only differs in the state of the perturbed node is
preserved), often the perturbation leads to a cascading
failure and finally the system stabilizes in a different
attractor.
Not all system perturbations, however, necessarily rep-

resent damage to the system. A natural counterpart to
the study of network damage is the study of network
control: network manipulations brought about by human
intervention to influence the behavior of the network. In



Figure 1 Illustration of network damage and the methodology to repair a steady state. (a) A four-node network with logical update rules.
The corresponding state transition networks under synchronous and random order asynchronous dynamics are shown in panels (b) and (c),
respectively. Node labels indicate the state of each node in alphabetic order. Panels (d-f) show the same information for the network damaged
such that node C is always OFF (0). The network states where node C is ON (1) are shown in panels (e-f) for completeness, but because they are
no longer accessible to the network, they are shown in faded gray. Panels (g-i) show one repair methodology that ensures that the state 1101,
where all nodes aside from node C are ON (1), is a steady state of the network.
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general, network control involves driving the state of a
network from an initial state to a final target state. For
example, Liu et al. have shown that networks with linear
dynamics are fully controllable (can be driven from any
initial state to any target state) if the state of roughly
80% of the nodes are externally manipulated [37]. One
can also envision more specific intervention strategies
whose objective is to drive the system from an initial un-
desirable state (for example, a state caused by network
damage) to a more desirable target state (for example, a
state as close as possible to the undamaged state). This
type of mitigating intervention is expected to involve the
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control of fewer nodes than full controllability and thus
it should be more practical.
While the most obvious mitigating intervention in re-

sponse to network damage is the direct reversal of the
damage, this may be impractical to implement in the
system under study (for example, there may not exist a
drug to target the deregulated protein). Moreover, the
initial damage may have cascading effects that cannot be
undone by only reversing the initial damage. For ex-
ample, the loss of a species in a food web can lead to a
catastrophic collapse in the local ecosystem [38], at
which point the re-introduction of the originally lost
species will likely not suffice for the restoration of the
original food web.
An alternative approach to the direct reversal of the

initial damage involves fixing the state of one or more
nodes that are not part of the original damage (see e.g.
[34,39]). These compensatory perturbations aim to move
the system to the basin of attraction of a desirable at-
tractor which is as close as possible to the attractor of
the undamaged network. Here, we consider a complemen-
tary approach, wherein we modify network edges (e.g.,
regulatory relationships) rather than node states; this ap-
proach has received comparatively little attention in dy-
namical networks (but see [40] for such a study in static
networks). Moreover, the control problem we are consid-
ering is not of changing the state of the system, but of
changing the stability of the state that the system enters as
a direct result of the damage.
Our goal is to identify interventions that can be used

preemptively to mitigate the cascading effects of net-
work damage. The method of selecting these interven-
tions is based on developing an understanding of the
first deviations caused by the damage: in a regulatory
chain A - > B - > C wherein node A is damaged, we wish
to modify the regulatory relationships such that node B
is not deregulated as an effect of the damage. If this goal
is accomplished, the stability of node C is assured. For
example, by developing an understanding of the first ef-
fects of overactive TGFβ signaling, the identified inter-
ventions would prevent them from happening and thus
prevent unregulated cell growth. An important caveat of
this approach is that in an empirical system a deregula-
tory cascade occurs dynamically in real time; the appli-
cation of the regulatory intervention must therefore
occur immediately after or even before detecting the ini-
tial damage.
Specifically, in this article we consider Boolean net-

works with logical update rules. We express network
damage in the form of a sustained ON or OFF state of a
node, regardless of the state of the node’s regulators.
This type of abnormal state is often encountered as an
effect of gene mutations that render the encoded protein
not expressed or nonfunctional or, conversely, constitutively
expressed or over-active. We develop an algorithm that
identifies simple modifications to node interactions that
allow the damage-modified attractor to remain an at-
tractor in the damaged network. We apply the algorithm
to random Boolean networks with a synchronous update
scheme in order to show its general effectiveness and limi-
tations. We then apply the approach to two biological case
studies. We first show that the methodology identifies nu-
merous potential interaction modifications to restore
abscisic acid signaling in plants in response to the loss of
key regulatory components. We then show that the meth-
odology may be readily extended to remove an undesired
(cancerous) attractor in a network model of T cell large
granular lymphocyte leukemia.

Methods
Network properties
The state of an N node Boolean network is described by
a Boolean vector of length N: [x1(t),…, xN(t)], where xi
(t) ∈ {0, 1}. Each node xi has an update function xi(t + τi) =
fi(x1(t),…, xN(t)) that determines its dynamics; here we
express these update functions as logical update rules.
Consider the four-node network shown in Figure 1(a).
Under synchronous dynamics, where all nodes are up-
dated at multiples of a common time step, and thus τi = 1
for all i, the network has two steady states and two limit
cycle attractors (Figure 1(b)). Asynchronous dynamics are
commonly generated via the random order asynchronous
(ROA) update scheme or the general asynchronous (GA)
update scheme. In the ROA method the time delays are
randomly selected such that every sequential update of
the nodes has an equal chance. In other words, a random
permutation of the nodes is generated, the state of each
node is updated using the most recent states of its regula-
tors, then a different permutation is selected randomly,
and so on. In the GA method, a node is randomly selected
to be updated at every time step; unlike in the ROA up-
date scheme, a node in the GA update scheme may be up-
dated twice before every node is updated once. A key
observation is that the steady states of a Boolean network
are independent of the value of the time delays or of the
order of update; i.e., independent of the choice of syn-
chronous, ROA, GA, or other update scheme [24]. In con-
trast, limit cycle attractors encountered for synchronous
update may not be preserved when switching to asyn-
chronous update [24]. We apply the ROA update scheme
to the network of Figure 1(a), and show (Figure 1(c)) that
it has two steady state attractors that coincide with the
steady states under synchronous update (Figure 1(b)).
We consider network damage in the form of node

knockout or constitutive expression; i.e., the update
function for a damaged node xi becomes xi(t + τi) = 0 or
xi(t + τi) = 1. This alters the dynamical behavior of the
nodes regulated by node xi, which leads to a modified
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state transition network. For example, if node C is
knocked out, in both dynamical schemes the network's
only attractor becomes the "all OFF" (0000) steady state
(Figure 1(d-f )).
We wish to modify the node update rules to restore a

specific attractor of the original network, given that the
damage may not be directly reversed (e.g., in the ex-
ample of Figure 1, given that node C will remain fixed in
the OFF state). Consider as, a steady state attractor of
the original network. The network damage sends the
state of the network from as to ad: a state identical to as
other than for the state of the damaged node. For ex-
ample, considering the "all ON" (1111) steady state in
the example of Figure 1, after knocking node C out the
state becomes ad = 1101; the goal is then to make this
state a steady state. The state ad is not in general a
steady state of the damaged network, and so we modify
the update rules such that it becomes one, i.e. ad→ads .
Similarly, in the case of a set of limit cycle states a1,…,

an (n > 1), we wish to ensure that the parallel damaged
states ad1 ;…; adn constitute a limit cycle of the damaged
network. We note that some states in a limit cycle may
collapse due to network damage (e.g., states 101 and 001
merge into 101 if the first node is fixed to be ON). In
these cases we choose as the target of our mitigation
strategy the largest attractor that can be formed from the
ad1 ;…; adn states. This reduces the length of the attractor
but ensures that no ambiguity arises as a result of the re-
duction in the size of the state space. For instance, the net-
work shown in Figure 2(a) has a six-state synchronous
limit cycle (grey-bordered states with gray edges, Figure 2(b)).
Knocking out node C results in the formation of a four-state
synchronous limit cycle (grey-filled states, Figure 2(b)).
When considering the damage-modified version of the
attractor states, two are identical to the original attractor
(11001 and 01011) and three translate unambiguously to a
new state (10111 - > 10011, 10101 - > 10001, and 01101 - >
01001). The sixth state, 11101, translates to a pre-
existing state of the attractor, 11001. Thus, the desired
repaired limit cycle contains five states, rather than the
original six. The blue edges with open tips indicate the
transitions that must be enacted through network repair
to force this set of five states to be an attractor of the
repaired network.
Form of interaction modifications
We provide an overview of the network repair algorithm
in Table 1. However, before discussing it in depth, we
first address the general form of the interaction modifi-
cations considered in this article (Table 2). We separ-
ately consider interaction modifications that involve
changing a node from updating to ON to updating to
OFF and vice versa (left and right columns of Table 2,
respectively). We here restrict ourselves to relatively
minor functional modifications, in an effort to generate
practically implementable predictions. We consider up-
date functions as logical rules, and choose to scaffold
upon the original update function by adding terms, ra-
ther than by removing pre-existing terms. In all cases,
we add an interaction to the update rule for node x with
a node that previously played no part in its update func-
tion. In some cases, we additionally add a secondary
dependency upon a single node with which node x ori-
ginally interacted; this weakens the relative role of the
new node in regulating node x. Essentially, this choice of
methodology reflects the introduction of biological
agents (e.g., synthetic signaling proteins [41]) that facili-
tate novel interactions that can drive system behavior in
place of, or in conjunction with, the pre-existing interac-
tions. While such an introduction, strictly speaking, in-
creases the number of regulatory components in the
system, we here choose to represent the agent only
through its effect of modifying or creating an interaction
between two pre-existing components of the system; this
is a logical simplification because the introduced agent is
designed explicitly to have no other effect on the system.
As we shall show, in networks where no node is regu-

lated by every undamaged node, this methodology and
choice of interaction rule modifications can unambigu-
ously fix any state to be a steady state of the network,
including time-averaged representations of multi-state
attractors. However, this approach is in general not suffi-
cient to fix a selection of states to be a limit cycle of the
network. When repairing a limit cycle, a single rule modi-
fication must accommodate all state transitions for each
node; furthermore, such a modification must be found for
all nodes that require repair at any transition in the limit
cycle. Failures of this approach fall into three categories.
In the first category, a node requires both an ON to

OFF correction and an OFF to ON correction within a
limit cycle; this is uncorrectable while scaffolding on the
existing update rule. We show one such example in
Figure 2(c-d)). The two-state synchronous limit cycle
shown with grey-bordered edges and grey arrows in
Figure 2(d) translates to the pair of states targeted by the
dashed edges when node C is knocked out; the desired
repaired attractor is shown by the blue arrows with un-
filled tips. However, forcing these states to form a limit
cycle entails forcing node A to update to 1 (i.e., 01001 - >
10001) when it normally updates to 0 (i.e., 01001 - >
00011) and vice versa (i.e., we desire 10001 - >01001 but
instead 10001 - > 11001).
In the second failure category, a node requires mul-

tiple corrections of a single type within a limit cycle, but
no single rule modification suffices to make the repair in
all cases. We show an example of this failure case in
Figure 1(e-f ). Figure 1(f ) is similar to Figure 1(d), but



Figure 2 Illustration of limit cycle repair. The left column indicates four networks with logical update rules. In each network, a node x is
marked in red to indicate fx = OFF when the network is damaged. Black, solid arrows indicate positive or mixed regulation and red, dashed
arrows indicate negative regulation, as described in the accompanying Boolean update rules. The right column shows a portion of the
synchronous state transition networks corresponding to each network on the left. States with a grey border correspond to a limit cycle of the
undamaged network, a, with grey arrows indicating the procession among the states. States with a grey fill correspond to an attractor of the
damaged network, with solid black arrows indicating the procession among the states. All other states act as transient states in the damaged
network. Dashed black arrows indicate the modification of a state due to the damage (i.e. the turning off of the red node). Blue arrows with
unfilled arrowheads indicate desired transitions, to be achieved through interaction modification, that stabilize the damage-equivalent attractor
ad. (a-b) An example of a limit cycle where the network damage reduces the size of the repairable limit cycle (see Methods). Panels (c-d), (e-f),
and (g-h) show limit cycles that cannot be repaired with the methodology presented in this report, illustrating cases 1, 2, and 3 (see Methods).
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Table 1 Overview of the network repair algorithm

# INPUT

1 A network, comprising update rules for all constituent nodes x1,…, xN

2 The state of every node xi for every state of the attractor of interest, as.

3 The damaged node xd and the state to which it is to be forced.

4 LCSS, set to True if a limit cycle superset is to be considered and False otherwise.

# OUTPUT

1 The nodes whose update rules must be modified to ensure the stability of the damaged attractor, ad.

2 the viable update rule modifications, for each of the nodes from (1).

or

2 In the case of limit cycle repair failure, the cause of failure.

# ALGORITHM

1 determine the damaged attractor ad.

2 if LCSS: set ad to be its superset.

determine the sensitive nodes:

3 for every node xi in every state s in ad:

4 update node xi from state s with all other nodes held constant

5 if xi changes its state as a result, it is sensitive. Record initial and final states.

6 if any sensitive node has initial and final states [0,1] and [1,0]:

7 return "limit cycle repair failure, case 1"

determine all possible modifications for sensitive nodes:

8 define an empty dictionary R

9 for every sensitive node xi in every state s in ad:

10 if the next state of xi must be OFF for repair:

11 record all combinations of nodes that obey each rule listed in col1 of Table 1.

12 else:

13 record all combinations of nodes that obey each rule listed in col2 of Table 1.

14 for every sensitive node xi:

15 set R[xi] = the intersection of the viable (rule, node) pairs across all states in ad

16 if R[xi] is the empty set:

17 determine R[xi] when omitting states in ad where node xi's next state is equal to its current state

18 if R[xi] is the empty set: return "limit cycle repair failure, case 2"

19 else: return "limit cycle repair failure, case 3"

20 return R

The algorithm used to determine interaction modifications that stabilize a network attractor in response to node damage is presented in a concise pseudo-code
format. A user-friendly implementation is provided as an extension to the Python software package BooleanNet [26].
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here the desired repair is for node E to transition to 1
when it normally updates to 0 at both states of the de-
sired limit cycle. Because node E's only regulator is the
damaged node, we are restricted to the rules in the top
two rows of Table 2. However, the potential new regula-
tors for node E (nodes A, B, and C) oscillate in the two
desired states (10101 and 01001), and therefore cannot
bring about the desired transition for node E in both
states when considering only modifications of the form
listed in Table 2.
In the third category of limit cycle repair failure, a

repair exists for all necessary corrections, but none
preserve an original state transition that requires no
modifications. In the example of Figure 2(g-h), the ori-
ginal attractor (10101 < − > 01101) translates into the de-
sired pair of states (10101 and 00101) when node B is
knocked out. However, in the damaged and unrepaired
network, both node A and C fail to transition as desired
from the state 00101. Node A is regulated by every node
other than node E; node E must therefore fill the role of
the new regulator of node A that takes it from the OFF
to ON state. Each of the possible repairs, listed in rows
1, 3 and 6 of column 2 in Table 2, forces node A to up-
date to 1 from the 00101 state; however, none of them



Table 2 The logical update function modifications
considered in this article

ON to OFF corrections OFF to ON corrections

fx =… AND anew fx =… OR pnew

fx =… AND NOT pnew fx =… OR NOT anew

fx =… AND (aorig OR anew) fx =… OR (porig AND pnew)

fx =… AND (NOT pnew OR aorig) fx =… OR (NOT anew AND porig)

fx=… AND (NOT pnew OR NOT porig) fx=… OR (NOT anew AND NOT aorig)

fx =… AND (anew OR NOT porig) fx =… OR (pnew AND NOT aorig)

The rule modifications considered for a node x. Initial dots are placeholders for
the original rule for the node, which could be, e.g., fx = y. p indicates an
arbitrary node that is present (ON) in the current state of the network, a
indicates an arbitrary node that is absent (OFF) in the current state of the
network. Subscripts indicate whether the node in question is a new regulator
for this node (i.e., did not exist in the original update rule) or existed as an
original regulator. The top two rules in either column are the simplest, but
place the greatest regulatory weight on the new interaction.
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ensures that A becomes inactive when updating from
the 10101 state, and therefore the overall limit cycle re-
pair is not possible.
More thorough interaction reformatting can, in gen-

eral, alleviate these issues and allow for the repair of
limit cycles. In addition, in cases where the dynamic
fluctuations represented by a limit cycle are not requisite
components of proper system function, the methodology
presented here may be used to achieve an alternative
stabilized network dynamics. We define the superset of a
limit cycle as a single state wherein every node that is at
least transiently active in the limit cycle is active, and all
other nodes are inactive. For example, both limit cycles
in Figure 1(b) have a superset of "1111", as all nodes are
at least transiently active, the superset of the original
limit cycle on Figure 2(b) is 11111, and the superset of
the damaged limit cycle of Figure 2(b) is 11011. As dis-
cussed above, the network may be modified to ensure
that the superset is a steady state, to preserve the ori-
ginal limit cycle's time-insensitive activation levels.
This choice of superset definition explicitly incorpo-

rates all nodes that are active to any extent in a time-
averaged assessment of attractor dynamics. In some
contexts, alternative definitions may be more appropri-
ate; for instance, only nodes that are ON for a specified
fraction of the limit cycle's states may be considered ON
in the superset. Notably, the details of the process by
which the states of a limit cycle are collapsed to a single
representative state do not influence the ability of the
methodology proposed here to fix that state to be a
steady state of the modified network.

Network repair
We now treat in detail the algorithm of Table 1, whose
most complex step scales as O(N2) with N equivalent to
the number of nodes in the network. A user-friendly im-
plementation is also provided as an extension to the
Python software package BooleanNet [26]. The first step
(Table 1, line 1) is to determine the attractor ad (i.e., the
attractor to be stabilized), and, if desired, to collapse it
to a single representative state (Table 1, line 2), as dis-
cussed in the previous section. The second step (Table 1,
lines 3–5) is to identify the nodes that are deregulated
within the attractor as a direct result of the network
damage. Consider an arbitrary attractor composed of
states a1,…, an (n ≥ 1). By definition, a node xi that is
not impacted by damage to node xj will not change its
state (for steady states) or usual progression of states
(for limit cycles) as a direct result, i.e.

f i x1 tð Þ;…; xj−1 tð Þ; 0; xjþ1 tð Þ;…; xn tð Þ� �

¼ f i x1 tð Þ;…; xj−1 tð Þ; 1; xjþ1 tð Þ;…; xN tð Þ� �

for all ak, k = 1,…,n. That is, a node is robust to the net-
work damage if the damage is not sufficient (with all
other node states fixed) to cause it to change its state
from any of the attractor states, and is otherwise sensi-
tive to the damage. Sensitive nodes must have their up-
date function fi modified to become robust. Consider for
example the desired attractor of Figure 1 (i.e. 1101): only
node A is sensitive; it is regulated only by node C, the
knockout of which is considered in Figure 1(d).
Importantly, because modifications to the node update

functions are applied simultaneously to the damaged
state(s) ad1 ;…; adn , the stability of every node may be indi-
vidually considered under the assumption that all other
nodes are stable. Moreover, only the regulatory targets
of the damaged node need to be considered, as only they
may suffer an immediate deregulation due to the net-
work damage. Therefore, the computational complexity
of this task scales as the product of the number of states
in ad and the number of regulatory targets of the dam-
aged node; these are generally both quite small.
Limit cycle failures of the first type may be assessed at

this point by recording all transitions (ON to OFF and
OFF to ON) among the sensitive nodes (Table 1, lines
5–7). If no such failures are identified, the next task is to
determine all viable interaction modifications that bring
about node robustness. This consists of iteratively con-
sidering every sensitive node xi in every state of the tar-
get attractor ad (Table 1, lines 9–13). For every such
combination, all other nodes are either ON or OFF and
are either a regulator of xi or not; these properties deter-
mine which nodes can be used with which rules in
Table 2 to ensure the desired next state of node xi. As
some of these rules consider node pairs as potential reg-
ulators, the complexity of this task scales as O(N2).
Steady state and limit cycle superset repair terminates

at this point; the nodes and the viable node and rule
combinations are returned. In the case of limit cycles,
however, only the approaches that are applicable to all
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states in ad, for a given sensitive node, suffice (Table 1,
lines 14–15). If there are no node and rule combinations
that exist in all state transitions for one or more sensi-
tive nodes, the method fails. Additional analysis may
then be applied (of complexity O(N)) to differentiate be-
tween the above-discussed classes of failure (Table 1,
lines 16–19). We apply this methodology to the example
of Figure 1; one viable modification to the update rule
for node A in response to the damage shown in Figure 1(d)
is shown in Figure 1(g), and the resulting state transition
networks for synchronous and asynchronous dynamic
schemes are shown in Figure 1(h-i).

Simulations to test the success of the method
We first consider random Boolean networks with N
nodes and k randomly assigned input nodes for every
node (self-regulation is allowed). The future state of a
node for each of the 2k possible combinations of inputs
is randomly assigned, without bias for either outcome.
For every combination of N and k shown in Figures 3
and 4, we generated 10,000 networks. We then use a
synchronous updating scheme to find an attractor of the
network, and simulate damage by forcing a randomly se-
lected node to be in its opposite state; that is, a transi-
ently or permanently active node is forced to always be
Figure 3 Stability and repair frequency in random Boolean networks.
regulators per node (black, dark gray, and light gray, respectively) are allow
cycle (squares), then are damaged by randomly selecting a node and fixing
observed steady states (panel (a)) vs. limit cycles (panels (b)-(d)) in 10,000
(a) While steady states are less commonly observed for larger networks wh
frequency that depends on k but not network size. All instances of steady sta
limit cycles are stable with a frequency that decreases with k. For k < 3 the fre
decreases as network size increases for k = 3. (c) Unstable limit cycles are repa
frequency as network size increases for k = 3. (d) Limit cycles that may not be
values corresponding to black, dark gray, and light gray squares from panels (
OFF, or a permanently inactive node is forced to always
be ON.
In the case of steady states, if the damage-modified

steady state is an attractor, the steady state is considered
to be stable with respect to the damage. For limit cycles,
if the damage-modified states of the limit cycle still con-
stitute a limit cycle, or if they contain a smaller limit
cycle (in cases of state merging), the limit cycle is con-
sidered to be stable with respect to the damage. For ex-
ample, on Figure 2(b) state 11101 of the original limit
cycle merges with state 11001 of the original limit cycle
when node C is knocked out. Thus a limit cycle of five
states would be considered stable with respect to the
damage. However, the damaged limit cycle of four states
on Figure 2(b) is not sufficient and needs repair. If the
limit cycle is not stable sensitive nodes (i.e., those that
fail to transition as in the pre-damage attractor) are
identified.
For both the random Boolean networks and the bio-

logical case studies, all possible rule modifications (all
possible combinations of nodes applied to rules listed in
Table 2) are considered; in the case of random Boolean
networks one rule is chosen at random for each sensitive
node in each attractor. Once an update rule modification
has been applied to all sensitive nodes, the stability of
Synchronously updated random Boolean networks with k = 1, 2, and 3
ed to reach a steady state (circles) or a state that belongs to a limit
it to its opposite state. Symbol size corresponds to the fraction of

attractors selected from unique networks of a given size and value of k.
en k > 1, those that are observed are resilient to node knockout at a
tes that are not stable may be repaired without ambiguity. (b) Observed
quency of stable limit cycles does not depend on the network size, but it
ired with decreasing frequency for increasing k, and with decreasing
repaired (see Methods) grow more frequent with increasing k. The
b)-(d) sum to 1.



Figure 4 Edge manipulations in random Boolean networks. The
average number of edge modifications required to stabilize (a) steady
states and (b) non-truncated limit cycles for random Boolean networks
with k = 1, 2, and 3 regulators per node (black, dark gray, and light gray,
respectively). 10,000 networks were sampled for every combination of
network size and k; symbol size corresponds to the distribution of
these networks between panels (a) and (b).
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the attractor of the repaired network is evaluated. In
cases where a limit cycle is unable to be repaired, the
category of failure (as outlined above) is recorded.
The biological case studies involve straightforward ap-

plication of the network repair methodology discussed
here. Dynamics in the T-LGL case study are performed
with the general asynchronous updating scheme wherein
a randomly selected node is updated at each step. The
update process in this scheme is a Markov chain; its
attractors may be found by summarizing all possible
state transitions in the transition matrix T, where Ti,j is
the probability of state i updating to state j in a single
update. Entries in every row of T sum to 1; rows with a
single nonzero entry Ti,i correspond to steady state
attractors. Complex attractors may be determined from
T by determining the terminal strongly connected com-
ponents of the corresponding transition graph.
Alternatively, because the probability of a state i up-

dating to state j after m steps is given by Tm
i;j [42], evalu-

ating Tm
i;j for sufficiently large m reveals the relative

probability of reaching every attractor from all possible
source states. Specifically, any nonzero column j corre-
sponds to a state that exists in an attractor, and the
column entries indicate the relative frequency with
which the system will be in the given terminal state j
when initialized from source state i. The complexity of
this procedure is O(mnx), with x = 2.38 for the standard
Coppersmith-Winograd algorithm for multiplication of
two n × n matrices [43]. Here, the transition matrices
were computed through exhaustive simulation of all
possible transitions from every network state. The
attractors were then determined by computing the non-
zero values (>10−5) with m > 103.

Results
The methodology outlined above may be applied to any
Boolean network with logical update rules. We first
show the analytical result that the methodology outlined
here may be used to stabilize any single steady state or
limit cycle superset of a wide class of networks. We then
apply the methodology to (1) random Boolean networks
and (2) two biological cases studies. In case (1), we show
the ability of the method to repairing both steady states
and synchronous limit cycles for a robust range of
network parameters, and in case (2) we show that the
method is able to quickly provide insight into possible
methods for intervention in real networks.

Stabilization of a single state
Theorem
Any state σ of a discrete time Boolean network may be
modified to be a steady state of the network through
application of the rule modifications listed in Table 2 if
no node is regulated by every undamaged node in the
network and if the future state of every node depends
only on the current state of other nodes.

Proof
Consider the network to be in state σ at time t. Then all
nodes xi that obey xi(t) ≠ xi(t + τi) are candidates for
modification according to Table 2. For every such node
xi, consider an arbitrary node xj that does not regulate
node xi (xj may be the same node as xi in cases where
the node does not self-regulate). The four modifications
listed in the top two rows of Table 2 indicate a sufficient
rule modification by adding xj as a new regulator for
each of the four combinations of states of nodes xi and
xj at time t. The remaining modifications listed on
Table 2 involve xj in combination with existing regula-
tors of xi.
In this article, the state σ may be viewed as a damaged

steady state; the nodes that require interaction modifica-
tion are those that are sensitive to the network damage.
The ability for this approach to stabilize limit cycle
supersets follows directly from the fact that the method-
ology is sufficient to stabilize any single state.

Random Boolean networks
The density of connections in random Boolean networks
has a strong influence on the frequency with which both
steady state and limit cycle attractors are resilient to net-
work damage (i.e., require no node rule modifications to
preserve the attractor in its damage-modified state).
Specifically, on average 81%, 70%, and 63% steady state
attractors are resilient to damage for k = 1, 2, and 3,
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respectively (see Figure 3(a)) and on average 78%, 54%,
and 27% of limit cycles are resilient to damage for k = 1,
2, and 3; see Figure 3(b). Of the steady state attractors
that are not robust to damage, all (100%) were stabilized
after application of the update rule modifications as
described in the Methods section, i.e., by simultaneously
modifying the update rules for all sensitive nodes, we
unambiguously ensure that the damaged state becomes
a steady state in the repaired network (that ad→ads ).
The rule modifications considered in this article are

not able to always restore the complete dynamics of the
damage-modified limit cycle (1%, 18%, and 54% failure
rate for k = 1, 2, and 3, respectively; Figure 3(c) cf.
Figure 3(d)). Most failures are categorized as case (3)
discussed above: update rule modifications that correct
undesirable transitions cannot also preserve desirable
node state transitions within a limit cycle (accounting
for 96%, 71%, and 58% of the failures, for k = 1, 2, and 3,
respectively). Most of the remaining cases of failure fall
under case (1) discussed above: a node requires both
types of correction and may not be corrected with the
rule modifications considered here. However, collapsing
the limit cycle to its superset (see Methods) reduces the
problem to that of a steady state of the network, and is
therefore always successful.
The average number of edge modifications necessary

to repair the network does not vary based on network
size, for both steady state and limit cycle attractors
(Figure 4). Furthermore, the average number of modifi-
cations required increases only slightly as the nodal
in-degree increases. The upper bound on the number of
edge modifications that are required in response to the
deregulation of a single node is equal to the node's out-
degree. The out-degree distribution of random Boolean
networks is centered around the average out-degree
value, which equals the fixed in-degree of each node.
Nonetheless, the average number of edge manipulations
necessary for network repair was well below the average
out-degree of the networks for the k = 2,3 cases: steady
states required an average of 1.50 and 1.77 edge modifi-
cations across all simulations, respectively, while repair-
able limit cycles required an average of 1.48 and 1.62,
respectively. This suggests that in the context of sparse
random networks, when network repair of a destabilized
attractor is possible, it may be achieved through a min-
imal intervention, regardless of network size or edge
density.
The number of interventions necessary for the superset-

based repair of damaged limit cycles does depend on the
size of the network. In a bias free random Boolean net-
work, the probability of a node changing its state based on
any input is p = .5. The number of nodes that change their
state in a single step from a randomly selected state in
a random Boolean network of size N is therefore pN,
regardless of edge density. Since the state that corresponds
to the superset of a limit cycle, with one node additionally
damaged, may be as far away from a steady state as a
randomly selected state, the expected number of required
edge modifications is pN. However, limit cycles in real
biological systems may be largely stable in that few nodes
change their state over the period of the limit cycle [28].
This implies greater superset stability than in random
networks; as such, the stabilization of limit cycle supersets
in biological systems may require fewer interaction modi-
fications than in the case of random networks.

ABA induced closure of plant guard cells
Most plants regulate their uptake of carbon dioxide
through stomata: microscopic pores that coat much of
the epidermis of the plant. The aperture size of a stoma
is regulated by a pair of guard cells, which contract or
relax in response to environmental cues. While stomatal
opening is required for the uptake of carbon dioxide,
open stomata facilitate evaporative loss of water from
the plant (i.e., transpiration). In drought conditions,
plants therefore close their stomata, a process which is
induced by the plant hormone abscisic acid (ABA) and
involves protein-protein interactions, biochemical reac-
tions and ion transport.
We consider the ABA signal transduction network

constructed by Li et al. [31], and further studied in [44].
This network has a single attractor in the persistent
presence of ABA, a steady state (fixed point) in which
the node closure is in the ON state. All initial conditions
that include the presence (ON state) of ABA converge to
this closure steady state. In [31], the authors found that
single knockouts of 10 of the 43 nodes of the network
significantly impaired stomatal closure, as measured by
the frequency with which closure stabilized in the ON
state when sampling the space of all initial configura-
tions of the non-source and non-sink nodes. In 3 of
these cases (knockout of the nodes Depolar, AnionEM,
or Actin) closure was completely inhibited, while in the
remaining 7 (knockout of the nodes PLD, PA, SphK,
S1P, GPA1, KOUT, or pHc), closure was partially inhib-
ited. All other single-node knockouts affected at most
the number of time steps required to achieve closure.
We therefore consider repairing this network in re-

sponse to the knockout of the 10 key regulatory nodes. In
[31], dynamics are simulated on the network via the ran-
dom order asynchronous (ROA) scheme (see Methods).
We find that the repair methodology introduced in this
article successfully repairs damage applied to the closure =
ON steady state attractor of the ABA network. In this pro-
cedure, we begin from the damaged steady state wherein a
particular node is fixed in its opposite state and identify
rule modifications that prevent the propagation of the
damage. Interestingly, the knockout of KOUT (which



Figure 5 The modified reduced ABA signaling network. The 7
node reduced network of [44], adapted from the full model of [31].
Black arrows represent activation, and red dashed arrows represent
inhibition. The bold red arrow from KOUT to Ca2+c is a possible
addition to the network that preserves the limit cycle of the
unmodified and undamaged network in response to the constitutive
loss of CaIM. The update rules and limit cycle for this network are
provided in Tables 3 and 4, respectively. The full names corresponding
to the abbreviated node labels are (see [31]): CIS, Ca2+c influx to the
cytosol from intracellular stores; Ca2+c, cytosolic Ca

2+ increase; Ca2+

ATPase, Ca2+ ATPases and Ca2+/H+ antiporters responsible for Ca2+

efflux from the cytosol; CaIM, Ca2+ influx across the plasma membrane;
Depolar, plasma membrane depolarization; KOUT, K+ efflux through
slowly activating outwardly-rectifying K+ channels at the plasma
membrane.

Table 3 The update rules for the reduced ABA network
model

fCIS = Ca2+c

fCa2+ATPase = Ca2+c

fCa2+c = ((CaIM or CIS) and (not CA2+ATPase)) or not KOUT

fDepolar = (not KOUT) or Ca2+c

fCaIM = not Depolar

fKOUT = Depolar

fClosure = KOUT and Ca2+c

The ABA model is shown in Figure 5. Bold, italicized text represents a possible
rule modification that preserves the network's limit cycle in response to the
constitutive knockout of CaIM. Node abbreviations are given in the caption
to Figure 5.
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represents K+ efflux through the plasma membrane) does
not otherwise alter the stability of the healthy attractor of
the network and therefore requires no network modifica-
tion. In [31], the authors found that after knocking out
KOUT and randomly sampling all possible initial condi-
tions, closure =ON states were found with decreased fre-
quency. Taken together with the result of this analysis, we
find that the original attractor survives a KOUT knockout,
although it becomes difficult to reach from other states.
This is in contrast to the other considered cases of net-
work damage, which lead to the further collapse of the
original attractor unless network modification occurs. In-
deed, all other knockouts required modifying the update
rules for 1, 2, or 3 nodes; the search algorithm identified
roughly between 80 and 300 possible rule modifications
for each of these nodes.
We consider in detail damage to heterotrimeric G pro-

tein α subunit 1 (abbreviated as GPA1 in [31]), and de-
termine that 16% of the possible repairs introduce one
or more undesired secondary attractors wherein closure
is OFF. This demonstrates the point that analysis of
alternate attractors is an important consideration when
characterizing network repairs that, in themselves, en-
sure only the stability of an attractor, and not the extent
to which it is reachable.
We also consider a 7-node reduced version of the

ABA induced closure network obtained in [44] (Figure 5,
Table 3). The sole attractor of this network in the syn-
chronous updating scheme is a 5-state limit cycle
(Table 4); asynchronous schemes yield a large complex
attractor [44]. We iteratively knock out each of the 7
nodes of the reduced model. In the case of two nodes,
CIS and Closure, the surviving portion of the limit cycle
is stable (see Methods). For the remaining five knock-
outs, the network repair methodology succeeds in
repairing the limit cycle in two cases (CA2+ATPase,
CaIM), or fails under the second (Depolar) or third clas-
sification (KOUT, Ca2+c), as discussed in the Methods.
As is always the case, the methodology proposed here is
able to collapse the limit cycle into its superset, the
steady state wherein all undamaged nodes transiently
present in the undamaged limit cycle are present. We
highlight in particular the successful repair of the limit
cycle when CaIM is knocked out. As shown in Figure 5,
CaIM regulates Ca2+c, which depends critically upon
CaIM for 2 of the 5 state transitions in the limit cycle.
KOUT is OFF in both of the relevant states, but ON in
all others; appending "OR NOT KOUT" to the update
rule for Ca2+c therefore successfully preserves its affected
state transitions without influencing any others (Table 3).
As in the full model, we consider the effects of the repair
on the topology of the state transition network. This re-
pair introduces no alternative attractors; i.e., the system
will always dynamically evolve to the repaired attractor.
T-LGL leukemia
T cell large granular lymphocyte (T-LGL) leukemia is
characterized by unregulated proliferation of cytotoxic T
cells [32,34]; this expansion continues unchecked due to
the deregulation (malfunctioning) of the natural process
of activation induced cell death (apoptosis) [45]. No



Table 4 The attractor of the reduced ABA network model

CIS Ca2+c CA2+ATPase CaIM Closure Depolar KOUT

1 0 1 0 1 1 1

0 0 0 0 0 0 1

0 0 0 1 0 0 0 Critical

0 1 0 1 0 1 0 Critical

1 1 1 0 0 1 1

The ABA model is shown in Figure 5. The states labeled as critical in bold,
italic text are those where deregulation of CaIM will lead to the deregulation
of Ca2+c in the following time step (when updating synchronously). KOUT has
one state during these critical time steps, and the other state in all other
cases, indicating that it can compensate for the loss of CaIM through the rule
modification to Ca2+c shown in Table 3, without deregulating Ca2+c in other
time steps.

Figure 6 The modified reduced T-LGL network. The 6 node
reduced network is adapted from [34]. Red dashed lines indicate
negative regulation while solid black lines indicate positive
regulation. The bold line represents a possible modification that
eliminates the Apoptosis = OFF (cancerous) steady state. The full
names corresponding to the abbreviated node labels are (see [34]):
S1P, Sphingosine-1-phosphate; DISC, death inducing signaling
complex; FLIP, CASP8 and FADD-like apoptosis regulator.

Table 5 The update rules for the reduced T-LGL network
model

fS1P = not (Ceramide or Apoptosis)

fFLIP = not (DISC or Apoptosis)

fFAS = Not (S1P or Apoptosis)

fCeramide = FAS and not (S1P or Apoptosis)

fDISC = ((Ceramide or (FAS and not FLIP)) or S1P) and not Apoptosis

fApoptosis = DISC or Apoptosis

The T-LGL model is shown in Figure 6. Bold, italicized text represents a
possible rule modification that eliminates the network's T-LGL (cancerous)
steady state. Node abbreviations are given in the caption to Figure 6.
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curative therapy exists for T-LGL leukemia; understand-
ing the signaling pathways that deregulate apoptosis is a
prerequisite to the development of therapeutic treat-
ments that restore the natural process of cell death.
We consider an asynchronous Boolean network model

of T cell survival signaling in the context of T-LGL
leukemia [32,34]. In [34], network reduction techniques
were applied to the full 60 node network to reduce it to
a 6 node network that captures the salient behavior of
the network (Figure 6, Table 5). This model employs a
general asynchronous update (GA) scheme; because the
GA scheme is not deterministic, the same initial condi-
tion may lead to multiple attractors depending on the
specific order of state transitions. Indeed, the authors
found that of the 64 dynamic states of the 6-node re-
duced network, 25 evolve to either a healthy (apoptosis =
ON) fixed state or to a T-LGL (apoptosis = OFF) fixed
point, depending on the trajectory of the asynchronous
update process. 3 states exclusively lead to the T-LGL
fixed point, while the remaining 36 exclusively lead to the
apoptosis steady state.
As in the case of the ROA update scheme discussed in

the previous case study, the edge modification method-
ology presented in this article may be applied directly to
a GA update scheme. Indeed, the GA scheme is identical
to the ROA scheme with the exception of that the GA
scheme does not require every node to be updated m
times before any node is updated m + 1 times; as steady
states are consistent across all dynamic update schemes,
this nuance does not alter the effect of edge modifica-
tions in the context of preserving steady states.
Aside from the trivial case of forcing apoptosis itself to

be OFF, the existence of the apoptosis = ON steady state
is robust to all single node perturbations, because apop-
tosis self-regulates once active (n.b. forcing apoptosis to
be OFF has limited biological meaning, as apoptosis is
an outcome of cellular signaling, rather than a molecular
entity). Rather than investigating the preservation of the
apoptosis = ON steady state, therefore, we choose to
investigate the elimination of the diseased state; i.e.,
instead of adjusting network update rules to preserve a
network attractor, we adjust the update rules to remove
an attractor.
Apoptosis is initially activated by DISC; we choose to

modify its update rule in such a way as to allow its acti-
vation when the system is in the T-LGL state (where
S1P = FLIP =ON and all other nodes are OFF). To ac-
count for the fact that the node rules in this network are
designed to reflect the deactivation of all signaling com-
ponents upon cell death, we consider rule modifications
within the context of an overarching OFF signal from
apoptosis. A rule modification that obeys the criteria
outlined in this article is an additional dependency on
S1P, such that the update rule for DISC changes from
fDISC = (ceramide OR (FAS AND NOT FLIP)) AND NOT
apoptosis to fDISC = ((ceramide OR (FAS AND NOT
FLIP)) OR S1P) AND NOT apoptosis (emphasis added
for clarity; see Figure 6, Table 5). S1P acts as an inhibitor
of FAS and ceramide, which contribute to the activation
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of DISC in the original network; bypassing this cascade
and setting S1P to directly activate DISC ensures that
DISC will always be activated in an otherwise unper-
turbed network.
Indeed, we find that the network modified in this way

has only one attractor, identical to the apoptosis = ON
attractor of the original network; the entire state space is
in the basin of attraction for this attractor. We note that
this modification has a similar effect as the knockout of
S1P, which also removes the T-LGL steady state [34].
While the outcomes are similar, this alternate approach
highlights a different avenue for the development of
curative therapies.

Discussion
The deregulation of signal transduction networks, which
can be brought about by the over- or under-expression
of regulatory components, can lead to abnormal out-
comes and ultimately to disease. When investigating net-
work vulnerability, most studies identify nodes whose
destabilization leads to drastically altered topological
features or dynamical behavior in the network. The
question of mitigating the effect of network damage,
however, has received less attention.
From a dynamical systems perspective, the solution is

clear: if two attractors are present, one desirable and the
other not (as in the case of the T-LGL case study), modi-
fying the expression levels of regulatory components to
match the desirable attractor or a state in its basin of
attraction suffices [39]. Alternatively, when considering
damage in the form of node over- or under-expression,
reversing the damage and returning the network to its
original state clearly obviates the need for additional repair.
However, these approaches are often unrealistic in a

practical sense. One alternative approach involves com-
pensating for network damage by fixing the state of one
or more initially unaffected nodes; this is possible in
signal transduction networks, e.g. through gene manipu-
lations, constitutive activation, or pharmacological inter-
ventions (see e.g. [46,47]). However, these modifications
have an effect on every signaling component with which
the targeted component interacts; in many cases, the
deleterious effects of an intervention supersedes the
intended benefit. An alternative approach, considered
here, is modification not of node expression levels but
rather of node interactions. The secondary effects are
minimized, as only the chosen node (the target of the
modified interaction) is directly affected. The empirical
implementation of such a modification is highly depen-
dent on context; for instance, in some cases synthetic
signaling proteins could facilitate deliberate rewiring of
signaling networks [41].
Clearly, directly inducing widespread modifications to

expression levels of many regulatory components, or of
the interactions between many such components, can be
problematic. Minimization techniques are therefore of
considerable interest. A strength of the approach intro-
duced here is that it mitigates the effect of network
damage at its source, in that it identifies a minimal set
of network interaction modifications that preserves the
stability of a network attractor (or, alternatively, elimi-
nates an undesirable attractor). We consider modifica-
tions to the update rules for only those nodes that
initially deviate from a desired attractor, and in so doing
stymie the failure cascade that can otherwise send the
system to a drastically different attractor. While many
complex rule modifications are conceivable, we here
focus on additions to the existing update rules (Table 2),
using a novel regulator for the target node, and in some
cases an existing regulator in an auxiliary role.
We explore the limits of this methodology, as related

to network complexity (size and number of node inputs)
in the context of synchronously updated random Bool-
ean networks. We confirm our analytical result that the
method ensures that the damage-modified steady states
remain steady states with 100% frequency. A key factor
here is the relative timing of system interactions; our
methodology may be applied in a straightforward way to
various deterministic [48,49] and stochastic [50-52] tim-
ing schemes. Where the method breaks down in the case
of limit cycles, we note that (1) more substantial modifi-
cations to update rules may suffice to repair the dam-
aged network and (2) the superset equivalent of a limit
cycle (i.e., the state where all nodes that are at least
transiently ON in the limit cycle are ON, and others are
OFF) may be modified to be a steady state using the
methodology outlined for steady states; clearly, however,
this destroys the dynamics of a limit cycle and is not an
appropriate strategy in situations where cyclic dynamics
are an important property of the attractor. Indeed, net-
work modifications must be considered in the context of
the entire system in which the network is embedded, not
only in the interests of practicality of implementation
but also in order to understand the potential ramifica-
tions of manipulating the network. Indeed, we stress that
the method, as presented here, considers the preserva-
tion of a single attractor. When the stabilization of mul-
tiple attractors is of interest, each may be considered
separately and joint solutions may be identified from the
set intersection of the individual solutions. Furthermore,
while this methodology effectively identifies avenues for
network repair, it does not explicitly consider the im-
pacts of the repair on the state transition network: pro-
posed repairs must be carefully filtered for the possible
introduction of undesired attractors or other undesired
effects on the system's dynamics.
The utility of this approach has been demonstrated in

two biological case studies. In the case of drought-
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induced signaling in plants, we identify regulatory modi-
fications that stand to protect the signaling network of
the plants against the deregulation of key nodes. Resili-
ent signaling in response to drought is an important
consideration for agriculture; moreover, these insights
provide testable hypotheses that may lead to further
insight into the functioning of this complex regulatory
network. In the T-LGL leukemia case study, we demon-
strate alternative approaches for the elimination of the
diseased T-LGL cell state; such an approach may lead to
therapies for the removal of T-LGL cells in vivo.

Conclusions
We have shown that in the context of random Boolean
networks, successful network repair can be achieved
with few edge modifications, with minimal dependence
on the size or interaction density of the network. The
upper bound on the number of edge modifications that
are required in response to the deregulation of a single
node is equal to the node's out-degree. In contrast to the
peaked out-degree distribution of random Boolean net-
works, large-scale biological networks have long-tailed
out-degree distributions [53,54]. Clearly, the loss of a
high-degree node may require many compensatory edge
modifications. Nonetheless, given the low average out-
degree of many intracellular signaling and regulatory
networks [9,31,32,53-57], it seems that network engineer-
ing via interaction manipulations may, in many cases, re-
quire few manipulations to mitigate network damage – in
addition to the aforementioned benefit of increased speci-
ficity relative to modifications to node expression levels.
We have considered two case studies of signal trans-

duction networks, and have shown that our methods are
successful in both cases and for a variety of dynamic
update schemes. While limit cycles are dependent upon
the choice of updating scheme, steady state attractors
are uniform across dynamic schemes; their stabilization,
therefore, requires comparatively less information con-
cerning system dynamics. Indeed, the methodology in-
troduced in this article is well-suited for any system
modeled by Boolean networks with logical update rules.
We provide an implementation of the analytical tools
described in this article as an extension to the freely
available software package BooleanNet [26].
The approach outlined in this article represents a first

consideration of the modification of regulatory interac-
tions with the intent of network control. Further theor-
etical work is necessary to facilitate meaningful advances
in vitro and in vivo, as a number of caveats apply to the
methodology discussed here. An important consider-
ation when examining modifications to regulatory inter-
actions is their impact on the state transition network
(see e.g. Figure 1): many biological systems respond
dynamically to exterior stimuli, and are characterized in
part by the ability to transition between dynamic attrac-
tors. In such instances, not only must the stability of an
attractor be maintained, but the ability of the system to
properly interpret exterior stimuli must also be consid-
ered. In addition, further minimization of the number of
intervention targets should be possible. Nodes that are
deregulated by network damage may not have a critical
impact on other nodes (or, notably, on the output nodes
of signal transduction networks, such as cell death), or
may only regulate other nodes that are also immediately
deregulated by the initial network damage. Depending
on the goal of network influence, therefore, not all
deregulated nodes are necessarily targets for interven-
tion. Effective prioritization of node intervention will
enhance the utility of the methodology outlined in this
article. In addition, the preemptive network modification
considered here is clearly not practical in all cases; adap-
tation of the methodology to the control of networks
that have already experienced first deviations will facili-
tate the analysis of network control in broader contexts.
Finally, computational optimization may be necessary
for very large networks; one such approach may be to
identify viable interacting partners based on limit cycle
synchrony (see e.g. Table 4) prior to the combinatorial
evaluation of node pairs for the complex rule modifica-
tions given in Table 2. Approaches that take these
considerations into account may be compared to the
approach outlined here, and in this sense this work will
serve as an effective benchmark for future studies that
consider modifications to regulatory interactions.
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